Skip to main content
Log in

Determination of 1,1-Dimethylhydrazine and its Transformation Products in Soil by Zwitterionic Hydrophilic Interaction Liquid Chromatography/Tandem Mass Spectrometry

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

1,1-Dimethylhydrazine is widely used as a fuel by some classes of carrier rockets. Being an extremely toxic and reactive substance, it gives a number of hazardous transformation products and poses a serious threat to the ecological state of the launch sites and territories used for landing of spent rocket parts. On the basis of studies of the retention of analytes on the sulfobetaine zwitterionic stationary phase, the HILIC–ESI-MS/MS method for simultaneous and rapid determination of unsymmetrical dimethylhydrazine and six major products of its transformation (methylhydrazine, N-nitrosodimethylamine, N,N-dimethylformamide, 1-methyl-1,2,4-1H-triazole, 1,1,4,4-tetramethyl-2-tetrazene, 1,1-dimethylguanidine) was developed. The achieved detection limits for the analytes were 0.02–7 μg L−1 and, for most compounds, they are significantly lower compared to the existing IC–MS/MS method. Direct combination of HILIC–MS/MS with preliminary pressurized extraction with acetonitrile allowed analysis of peat bog soils contaminated with rocket fuel within 40 min, including all sample preparation steps. The developed method was successfully tested on a sample of real soil from the falling place of the spent carrier rocket stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Edwards T (2003) Liquid fuels and propellants for aerospace propulsion. J Propuls Power 19:1089–1107. https://doi.org/10.2514/2.6946

    Article  CAS  Google Scholar 

  2. Carlsen L, Kenessov BN, Batyrbekova SY (2009) A QSAR/QSTR study on the human health impact of the rocket fuel 1,1-dimethyl hydrazine and its transformation products multicriteria hazard ranking based on partial order methodologies. Environ Toxicol Pharmacol 27:415–423. https://doi.org/10.1016/j.etap.2009.01.005

    Article  CAS  PubMed  Google Scholar 

  3. Carlsen L, Kenessov BN, Batyrbekova SY, Kolumbaeva SZ, Shalakhmetova TM (2009) Assessment of the mutagenic effect of 1,1-dimethyl hydrazine. Environ Toxicol Pharmacol 28:448–452. https://doi.org/10.1016/j.etap.2009.08.004

    Article  CAS  PubMed  Google Scholar 

  4. Buryak AK, Serdyuk TM (2013) Gas chromatography–mass spectrometry in rocket-and-space industry. Russ Chem Rev 82:369–392. https://doi.org/10.1070/RC2013v082n04ABEH004304

    Article  CAS  Google Scholar 

  5. Choudhary G, Hansen H (1998) Human health perspective on environmental exposure to hydrazines: a review. Chemosphere 37:801–843. https://doi.org/10.1016/S0045-6535(98)00088-5

    Article  CAS  PubMed  Google Scholar 

  6. Kenessov BN, Koziel JA, Grotenhuis T, Carlsen L (2010) Screening of transformation products in soils contaminated with unsymmetrical dimethylhydrazine using headspace SPME and GC–MS. Anal Chim Acta 674:32–39. https://doi.org/10.1016/j.aca.2010.05.040

    Article  CAS  PubMed  Google Scholar 

  7. Ul’yanovskii NV, Kosyakov DS, Pikovskoi II, Khabarov YuG (2017) Characterisation of oxidation products of 1,1-dimethylhydrazine by high-resolution orbitrap mass spectrometry. Chemosphere 174:66–75. https://doi.org/10.1016/j.chemosphere.2017.01.118

    Article  CAS  PubMed  Google Scholar 

  8. Mitch WA, Sedlak DL (2002) Formation of N-Nitrosodimethylamine (NDMA) from dimethylamine during chlorination. Environ Sci Technol 36:588–595. https://doi.org/10.1021/es010684q

    Article  CAS  PubMed  Google Scholar 

  9. Troyan JE (1953) Properties, production, and uses of hydrazine. Ind Eng Chem 45:2608–2612. https://doi.org/10.1021/ie50528a020

    Article  CAS  Google Scholar 

  10. Rodin IA, Moskvin DN, Smolenkov AD, Shpigun OA (2008) Transformations of asymmetric dimethylhydrazine in soils. Russ J Phys Chem A 82:911–915. https://doi.org/10.1134/S003602440806006X

    Article  CAS  Google Scholar 

  11. Kenessov B, Alimzhanova M, Sailaukhanuly Y, Baimatova N, Abilev M, Batyrbekova S, Carlsen L, Tulegenov A, Nauryzbayev M (2012) Transformation products of 1,1-dimethylhydrazine and their distribution in soils of fall places of rocket carriers in Central Kazakhstan. Sci Total Environ 427–428:78–85. https://doi.org/10.1016/j.scitotenv.2012.04.017

    Article  CAS  PubMed  Google Scholar 

  12. Kenessov B, Batyrbekova S, Nauryzbayev M, Bekbassov T, Alimzhanova M, Carlsen L (2008) GC–MS determination of 1-methyl-1H-1,2,4-triazole in soils affected by rocket fuel spills in Central Kazakhstan. Chromatographia 67:421–424. https://doi.org/10.1365/s10337-008-0535-4

    Article  CAS  Google Scholar 

  13. Bakaikina NV, Kenessov B, Derbissalin M, Ul’yanovskii NV, Kosyakov DS, Pokryshkin SA, Zhubatov ZK (2017) Quantification of transformation products of unsymmetrical dimethylhydrazine in water using SPME and GC–MS. Chromatographia 80:931–940. https://doi.org/10.1007/s10337-017-3286-2

    Article  CAS  Google Scholar 

  14. Bakaikina NV, Kenessov B, Ul’yanovskii NV, Kosyakov DS (2018) Quantification of transformation products of rocket fuel unsymmetrical dimethylhydrazine in soils using SPME and GC–MS. Talanta 184:332–337. https://doi.org/10.1016/j.talanta.2018.02.047

    Article  CAS  PubMed  Google Scholar 

  15. Ul’yanovskii NV, Kosyakov DS, Pokryshkin SA, Bogolitsyn KG (2015) Determination of transformation products of 1,1-dimethylhydrazine by gas chromatography–tandem mass spectrometry. J Anal Chem 70:1553–1560. https://doi.org/10.1134/S1061934815130080

    Article  CAS  Google Scholar 

  16. Kosyakov DS, Ul’yanovskii NV, Pokryshkin SA, Lakhmanov DE, Shpigun OA (2015) Rapid determination of 1,1-dimethylhydrazine transformation products in soil by accelerated solvent extraction coupled with gas chromatography–tandem mass spectrometry. Int J Environ Anal Chem 95:1321–1337. https://doi.org/10.1080/03067319.2015.1090569

    Article  CAS  Google Scholar 

  17. Smolenkov AD, Shpigun OA (2012) Direct liquid chromatographic determination of hydrazines. Talanta 102:3–100. https://doi.org/10.1016/j.talanta.2012.07.005

    Article  CAS  Google Scholar 

  18. Holtzclaw JR, Rose SL, Wyatt JR (1984) Simultaneous determination of hydrazine, methylhydrazine, and 1,1-dimethylhydrazine in air by derivatization/gas chromatography. Anal Chem 56:2952–2956. https://doi.org/10.1021/ac00278a074

    Article  CAS  PubMed  Google Scholar 

  19. Zhuoling A, Pengfei L, Xi Z, Lihong L (2014) Simultaneous determination of hydrazine, methylhydrazine and 1,1-dimethylhydrazine in rat plasma by LC–MS/MS. J Liq Chromatogr Relat Technol 37:1212–1225. https://doi.org/10.1080/10826076.2012.745147

    Article  CAS  Google Scholar 

  20. Smolenkov AD, Chernobrovkina AV, Smirnov RS, Chernobrovkina MG, Shpigun OA (2013) Sensitive chromatographic determination of hydrazines by naphthalene-2,3-dialdehyde derivatization. Int J Environ Anal Chem 93:1286–1295. https://doi.org/10.1080/03067319.2012.736975

    Article  CAS  Google Scholar 

  21. Kosyakov DS, Amosov AS, Ul’yanovskii NV, Ladesov AV, Khabarov YG, Shpigun OA (2017) Spectrophotometric determination of hydrazine, methylhydrazine, and 1,1-dimethylhydrazine with preliminary derivatization by 5-nitro-2-furaldehyde. J Anal Chem 72:171–177. https://doi.org/10.1134/S106193481702006X

    Article  CAS  Google Scholar 

  22. Fiala ES, Kulakis C (1981) Separation of hydrazine, monomethylhydrazine, 1,1-dimethylhydrazine and 1,2-dimethylhydrazine by high-performance liquid chromatography with electrochemical detection. J Chromatogr 214:229–233. https://doi.org/10.1016/S0021-9673(00)98529-7

    Article  CAS  Google Scholar 

  23. Smolenkov AD, Krechetov PP, Pirogov AV, Koroleva TV, Bendryshev AA, Shpigun OA, Martynova MM (2005) Ion chromatography as a tool for the investigation of unsymmetrical hydrazine degradation in soils. Int J Environ Anal Chem 85:1089–1100. https://doi.org/10.1080/03067310500191454

    Article  CAS  Google Scholar 

  24. Rodin IA, Anan’eva IA, Smolenkov AD, Shpigun OA (2010) Determination of the products of the oxidative transformation of unsymmetrical dimethylhydrazine in soils by liquid chromatography/mass spectrometry. J Anal Chem 65:1405–1410. https://doi.org/10.1134/S1061934810130150

    Article  CAS  Google Scholar 

  25. Kosyakov DS, Ul’yanovskii NV NV, Bogolitsyn KG, Shpigun OA (2014) Simultaneous determination of 1,1-dimethylhydrazine and products of its oxidative transformations by liquid chromatography–tandem mass spectrometry. Int J Environ Anal Chem 94:1254–1263. https://doi.org/10.1080/03067319.2014.940342

    Article  CAS  Google Scholar 

  26. Buszewski B, Noga S (2012) Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal Bioanal Chem 402:231–247. https://doi.org/10.1007/s00216-011-5308-5

    Article  CAS  PubMed  Google Scholar 

  27. Liu M, Ostovic J, Chen EX, Cauchon N (2009) Hydrophilic interaction liquid chromatography with alcohol as a weak eluent. J Chromatogr 1216:2362–2370. https://doi.org/10.1016/j.chroma.2009.01.012

    Article  CAS  Google Scholar 

  28. Wang PG, He W (2011) Hydrophilic interaction liquid chromatography (HILIC) and advanced applications. CRC Press, Taylor & Francis Group, Boca Raton. https://doi.org/10.1201/b10609

    Book  Google Scholar 

  29. Kosyakov DS, Pikovskoi II, Ul’yanovskii NV, Kozhevnikov AY (2017) Direct determination of hydrazine, methylhydrazine, and 1,1-dimethylhydrazine by zwitterionic hydrophilic interaction liquid chromatography with amperometric detection. Int J Environ Anal Chem 97:313–329. https://doi.org/10.1080/03067319.2017.1309036

    Article  CAS  Google Scholar 

  30. Daniela S, Francesc B, Núria F, Rosa MM (2017) Hydrophilic interaction liquid chromatography coupled to mass spectrometry-based detection to determine emerging organic contaminants in environmental samples. Trends Analyt Chem 94:141–149. https://doi.org/10.1016/j.trac.2017.07.017

    Article  CAS  Google Scholar 

  31. Smirnov RS, Rodin IA, Smolenkov AD, Shpigun OA (2010) Determination of the products of the transformation of unsymmetrical dimethylhydrazine in soils using chromatography/mass spectrometry. J Anal Chem 65:1266–1272. https://doi.org/10.1134/S1061934810120117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was performed using the instrumentation of Core Facility Center “Arktika” of Northern (Arctic) Federal University under support of the Ministry of Education and Science of Russian Federation (Projects RFMEFI59417X0013, 4.2518.2017/4.6), Russian Foundation for Basic Research (Grant 16-33-60159 mol-a-dk) and grant of President of Russian Federation MK-4734.2018.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry S. Kosyakov.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest in relation to this research.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12325 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ul’yanovskii, N.V., Kosyakov, D.S., Pikovskoi, I.I. et al. Determination of 1,1-Dimethylhydrazine and its Transformation Products in Soil by Zwitterionic Hydrophilic Interaction Liquid Chromatography/Tandem Mass Spectrometry. Chromatographia 81, 891–900 (2018). https://doi.org/10.1007/s10337-018-3522-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-018-3522-4

Keywords

Navigation