Advertisement

Chromatographia

, Volume 81, Issue 5, pp 809–821 | Cite as

Use of a Headspace Solid-Phase Microextraction-Based Methodology Followed by Gas Chromatography–Tandem Mass Spectrometry for Pesticide Multiresidue Determination in Teas

  • Jianxun Li
  • Zijuan Zhang
  • Mengyuan Sun
  • Bolun Zhang
  • Chunlin Fan
Original
  • 187 Downloads

Abstract

This study reports on the development of a fast and efficient method based on headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography–tandem mass spectrometry (GC–MS/MS) for simultaneous analysis of 128 volatile or semi-volatile pesticide residues belonging to nine classes of pesticides. The important factors related to HS-SPME performance were optimized; these factors include fiber types, water volume, ion strength, extraction temperature, and extraction time. The best extraction conditions include a PDMS/DVB fiber, and analytes were extracted at 90 °C for 60 min from 1 g of tea added to 5 mL of 0.2 g mL−1 NaCl solution. The methodology was validated using tea samples spiked with pesticides at three concentration levels (10, 50, and 100 μg kg−1). In green tea, oolong tea, black tea, and puer tea, 82.8, 88.3, 79.7, and 84.3% of the targeted pesticides meet recoveries ranging from 70 to 120% with a relative standard deviation of ≤ 20%, respectively, when spiked at a level of 10 μg kg−1. Limits of quantification in this method for most of the pesticides were 1 or 5 μg kg−1, which are far below their maximum residue limits prescribed by EU. The optimized method was employed to analyze 30 commercial samples obtained from local markets; 17 pesticide residues were detected at concentrations of 2–452 μg kg−1. Chlorpyrifos was the most detected pesticide in 80% of the samples, and the highest concentration of dicofol (452 μg kg−1) was found in a puer tea. This is the first time to find that the optimized extraction temperature for pesticide residues is 90 °C, which is much higher than other reported HS-SPME extraction conditions in tea samples. This developed method could be used to screen over one hundred volatile or semi-volatile pesticide residues which belong to multiple classes in tea samples, and it is an accurate and reliable technique.

Keywords

HS-SPME GC–MS/MS Pesticides residues Teas 

Notes

Acknowledgements

The authors acknowledge the financial support of the Key Basic Research Program (NO. 2015FY111200) of the Ministry of Science and Technology, P. R. China.

Compliance with Ethical Standards

Conflict of interest

The authors report no conflicts of interest with this study.

Supplementary material

10337_2018_3499_MOESM1_ESM.docx (145 kb)
Supplementary material 1 (DOCX 145 kb)

References

  1. 1.
    Li YF, Quyang SH, Chang YQ, Wang TM, Li WX, Tian HY, Cao H, Kurihara H, He RR (2016) Food Chem 216:282–288CrossRefGoogle Scholar
  2. 2.
    Darvesh AS, Bishayee A (2013) Nutr Cancer 65:329–344CrossRefGoogle Scholar
  3. 3.
    Kraujalytė V, Pelvan E, Alasalvar C (2015) Food Chem 194:864–872CrossRefGoogle Scholar
  4. 4.
    E U Commission, Regulation (EC) No. 396/2005 of the European Parliament and of the Council of 23 February 2005 on Maximum Residue Levels of Pesticides in Products of Plant and Animal OriginGoogle Scholar
  5. 5.
    Huo F, Tang H, Wu X, Chen D, Zhao T, Liu P, Li L (2016) J Chromatogr B 1023:44–54CrossRefGoogle Scholar
  6. 6.
    Duan Y, Guan N, Li P, Li J, Luo J (2016) Food Contr 59:250–255CrossRefGoogle Scholar
  7. 7.
    Wang Z, Chang Q, Kang J, Cao Y, Ge N, Fan C, Pang G (2015) Anal Methods 7:6385–6402CrossRefGoogle Scholar
  8. 8.
    Kadir HA, Abas F, Zakaria O, Ismail IS, Lajis NH (2015) Anal Methods 7:3141–3147CrossRefGoogle Scholar
  9. 9.
    Celeiro M, Llompart M, Lamas JP, Lores M, Garcia-Jares C, Dagnac T (2014) J Chromatogr A 1343:18–25CrossRefGoogle Scholar
  10. 10.
    Chiesa LM, Labella GF, Giorgi A, Panseri S, Pavlovic R, Bonacci S, Arioli F (2016) Chemosphere 154:482–490CrossRefGoogle Scholar
  11. 11.
    Pano-Farias NS, Ceballos-Magana SG, Gonzalez J, Jurado JM, Muniz-Valencia R (2015) J Sep Sci 38:1240–1247CrossRefGoogle Scholar
  12. 12.
    Tan Q, Fan J, Gao R, He R, Wang T, Zhang Y, Zhang W (2017) Talanta 164:362–367CrossRefGoogle Scholar
  13. 13.
    Yoshida T, Itou A, Yamamoto R, Tobino T, Murakawa H, Toda K (2013) Anal Sci 29:919–922CrossRefGoogle Scholar
  14. 14.
    Steinborna A, Alder L, Spitzkeb M, Doerk D, Anastassiades M (2017) J Agric Food Chem 65:1296–1305CrossRefGoogle Scholar
  15. 15.
    Han Y, Song L, Zou N, Chen R, Qin Y, Pan C (2016) J Chromatogr B 1031:99–108CrossRefGoogle Scholar
  16. 16.
    González-Curbelo MÁ, Lehotay SJ, Hernández-Borges J, Rodríguez-Delgado MÁ (2014) J Chromatogr A 1358:75–84CrossRefGoogle Scholar
  17. 17.
    He Z, Wang L, Peng Y, Luo M, Wang W, Liu X (2015) Food Chem 169:372–380CrossRefGoogle Scholar
  18. 18.
    Dawidowicz AL, Szewczyk J, Dybowski MP (2016) Anal Chim Acta 935:1–8CrossRefGoogle Scholar
  19. 19.
    Du L, Li J, Li W, Li Y, Li T, Xiao D (2014) Food Res Int 57:61–70CrossRefGoogle Scholar
  20. 20.
    Gutiérrez-Serpa A, Rocío-Bautista P, Pino V, Jiménez-Moreno F, Jiménez-Abizanda AI (2017) J Sep Sci 40:2009–2021CrossRefGoogle Scholar
  21. 21.
    Wu M, Wang L, Zeng B, Zhao F (2016) J Chromatogr A 1444:42–49CrossRefGoogle Scholar
  22. 22.
    Souza-Silva ÉA, Lopez-Avilab V, Pawliszyn J (2013) J Chromatogr A 1313:139–146CrossRefGoogle Scholar
  23. 23.
    Zhang S, Yang Q, Yang X, Wang W, Li Z, Zhang L, Wang C, Wang Z (2017) Talanta 166:46–53CrossRefGoogle Scholar
  24. 24.
    Wu F, Lu W, Chen J, Liu W, Zhang L (2010) Talanta 82:1038–1043CrossRefGoogle Scholar
  25. 25.
    Juan PM, Carrillo JD, Tena MT (2007) J Chromatogr A 1139:27–35CrossRefGoogle Scholar
  26. 26.
    Tat L, Comuzzo P, Stolfo I, Battistutta F (2005) Food Chem 93:361–369CrossRefGoogle Scholar
  27. 27.
    Bianco G, Novario G, Ziann IR, Cataldi TR (2009) Anal Bioanal Chem 393:2019–2027CrossRefGoogle Scholar
  28. 28.
    Torrens J, Riu-Aumatell M, López-Tamames E, Buxaderas S (2004) J Chromatogr Sci 42:310–316CrossRefGoogle Scholar
  29. 29.
    Menezes Filho A, dos Santos FN, de Paula Pereira PA (2010) Talanta 81:348–354CrossRefGoogle Scholar
  30. 30.
    Verzera A, Ziino M, Condurso C, Romeo V, Zappala M (2004) Anal Bioanal Chem 380:930–936CrossRefGoogle Scholar
  31. 31.
    Xu X, Yu C, Han J, Li J, El-Sepai F, Zhu Y, Huang B, Cai Z, Wu H, Ren Y (2011) J Sep Sci 34:210–216CrossRefGoogle Scholar
  32. 32.
    Feng J, Tang H, Chen D, Wang G, Li L (2012) Anal Methods 4:4198–4203CrossRefGoogle Scholar
  33. 33.
    Hayward DG, Wong JW, Park HY (2015) J Agric Food Chem 63:8116–8124CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jianxun Li
    • 1
    • 2
  • Zijuan Zhang
    • 2
  • Mengyuan Sun
    • 3
  • Bolun Zhang
    • 1
    • 2
  • Chunlin Fan
    • 2
  1. 1.School of Food and Chemical EngineeringBeijing Technology and Business UniversityBeijingChina
  2. 2.Chinese Academy of Inspection and QuarantineBeijingChina
  3. 3.College of Chemistry and Environmental ScienceHebei UniversityBaodingChina

Personalised recommendations