, Volume 81, Issue 4, pp 565–573 | Cite as

Orthogonal Separations in Reversed-Phase Chromatography

  • Roopali Agrawal
  • Sateesh Belemkar
  • Chandrakant Bonde


A method development for molecules in the early phase of drug discovery can be challenging; the presence of impurities in the target molecular entity can influence the quality, safety, and efficacy. An orthogonal method in analytical separation is a useful tool to ensure the specificity of the primary method. It enhances the probabilities to detect and quantify even the lowest amount of impurity that may be present in the sample. It ensures there is no co-elution of the impurity with the degradation compounds and with the active peak. This review article emphasizes and summarizes the need for an orthogonal method in chromatographic separations for pharmaceutical analysis. It enlists strategies that can be adopted for the development of an orthogonal method and the various advances in the metrics for orthogonality. The geometric approach, hydrogen subtraction model, system selectivity cube, linear solvation energy relationship, non-parametric approach and computer-assisted method development for selection of similar or orthogonal columns are discussed in detail.


Orthogonality Dissimilar Hydrogen subtraction model System selectivity cube Non-parametric method Computer-assisted method development Multidimensional chromatography 



Dr. Pradeep Phalke, Dr. Nitin Hardas and Dr. Sameer Goyal are thanked for technical assistance and guidance. All the reviewers are thanked for their helpful suggestions.


No funding was received.

Compliance with Ethical Standards

Conflict of interest

Roopali Agrawal declares that she has no conflict of interest. Sateesh Belemkar declares that he has no conflict of interest. Chandrakant Bonde declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Singh J (2015) International conference on harmonization of technical requirements for registration of pharmaceuticals for human use. J Pharmacol Pharmacother 6(3):185–187. CrossRefGoogle Scholar
  2. 2.
    Ahuja S (1998) Impurities evaluation of pharmaceuticals. In: Subjects bioscience, engineering & technology, 1st edn. Imprint CRC Press, Boca Raton, pp 304. ISBN 9781420002003Google Scholar
  3. 3.
    Dumarey M, Sneyers R, Janssens W, Somers I, Vander Heyden Y (2009) Drug impurity profiling: method optimization on dissimilar chromatographic systems: part I: pH optimization of the aqueous phase. Anal Chim Acta 656(1):85–92. CrossRefGoogle Scholar
  4. 4.
    Ryan TW (1998) Identification of four process-related impurities in the bulk drug butalbital using HPLC-UV photodiode array detection, particle beam MS, and NMR. Synth React Inorg Met Org Chem. Google Scholar
  5. 5.
    Pellett J, Lukulay P, Mao Y, Bowen W, Reed R, Ma M, Munger RC, Dolan JW, Wrisley L, Medwid K, Toltl NP, Chan CC, Skibic M, Biswas K, Wells KA, Snyder LR (2006) “Orthogonal” separations for reversed-phase liquid chromatography. J Chromatogr A 1101(1):122–135. CrossRefGoogle Scholar
  6. 6.
    Van Gyseghem E, Van Hemelryck S, Daszykowski M, Questier F, Massart DL, Vander Heyden Y (2003) Determining orthogonal chromatographic systems prior to the development of methods to characterise impurities in drug substances. J Chromatogr A 988(1):77–93CrossRefGoogle Scholar
  7. 7.
    Detroyer A, Schoonjans V, Questier F, Vander Heyden Y, Borosy AP, Guo Q, Massart DL (2000) Exploratory chemometric analysis of the classification of pharmaceutical substances based on chromatographic data. J Chromatogr A 897(1–2):23–36. CrossRefGoogle Scholar
  8. 8.
    ICH expert working group (1999) International conference on harmonisation; specifications: test procedures and acceptance criteria for new drug substance and new drug products: chemical substances Q6A. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use, pp 44928–44935Google Scholar
  9. 9.
    Ahuja S (2005) Overview: handbook of pharmaceutical analysis by HPLC. In: Ahuja S, Dong MW (eds) Separation science and technology, 1st edn, vol 6. Academic Press, New York, p 148. Google Scholar
  10. 10.
    Van Gyseghem E, Crosiers I, Gourvénec S, Massart DL, Vander Heyden Y (2004) Determining orthogonal and similar chromatographic systems from the injection of mixtures in liquid chromatography–diode array detection and the interpretation of correlation coefficients color maps. J Chromatogr A 1026(1–2):117–128. CrossRefGoogle Scholar
  11. 11.
    Karcher BD, Davies ML, Delaney EJ, Venit JJ (2005) A 21st century HPLC workflow for process R&D. JALA J Assoc Lab Autom 10(6):381–393. CrossRefGoogle Scholar
  12. 12.
    Xue G, Bendick AD, Chen R, Sekulic SS (2004) Automated peak tracking for comprehensive impurity profiling in orthogonal liquid chromatographic separation using mass spectrometric detection. J Chromatogr A 1050(2):159–171. CrossRefGoogle Scholar
  13. 13.
    Pellett J, Lukulay P, Mao Y, Bowen W, Reed R, Ma M, Munger RC, Dolan JW, Wrisley L, Medwid K, Toltl NP, Chan CC, Skibic M, Biswas K, Wells KA, Snyder LR (2006) “Orthogonal” separations for reversed-phase liquid chromatography. J Chromatogr A 1101(1–2):122–135. CrossRefGoogle Scholar
  14. 14.
    Cheng X, Hochlowski J (2002) Current application of mass spectrometry to combinatorial chemistry. Anal Chem 74(12):2679–2690. CrossRefGoogle Scholar
  15. 15.
    Lim CK, Lord G (2002) Current developments in LC–MS for pharmaceutical analysis. Biol Pharm Bull 25(5):547–557CrossRefGoogle Scholar
  16. 16.
    Kostiainen R, Kotiaho T, Kuuranne T, Auriola S (2003) Liquid chromatography/atmospheric pressure ionization–mass spectrometry in drug metabolism studies. J Mass Spectrom 38(4):357–372. CrossRefGoogle Scholar
  17. 17.
    Clarke NJ, Rindgen D, Korfmacher WA, Cox KA (2001) Peer reviewed: systematic LC/MS metabolite identification in drug discovery. Anal Chem 73(15):430 A–439 A. CrossRefGoogle Scholar
  18. 18.
    Slonecker PJ, Li X, Ridgway TH, Dorsey JG (1996) Informational orthogonality of two-dimensional chromatographic separations. Anal Chem 68(4):682–689. CrossRefGoogle Scholar
  19. 19.
    James Mitchell DE (2016) The role of complimentary methods in analytical quality control. Am Pharm Rev.
  20. 20.
    Grand-Guillaume Perrenoud A, Veuthey JL, Guillarme D (2012) Comparison of ultra-high performance supercritical fluid chromatography and ultra-high performance liquid chromatography for the analysis of pharmaceutical compounds. J Chromatogr A 1266:158–167. CrossRefGoogle Scholar
  21. 21.
    Grand-Guillaume Perrenoud A, Hamman C, Goel M, Veuthey JL, Guillarme D, Fekete S (2013) Maximizing kinetic performance in supercritical fluid chromatography using state-of-the-art instruments. J Chromatogr A 1314:288–297. CrossRefGoogle Scholar
  22. 22.
    Ng M, Choo Y (2015) Packed supercritical fluid chromatography for the analyses and preparative separations of palm oil minor components. American Anal Chem 6:645–650. CrossRefGoogle Scholar
  23. 23.
    West C Lesellier E (2012) Chemometric methods to classify stationary phases for achiral packed column supercritical fluid chromatography. J Chemometr 26:52–65. CrossRefGoogle Scholar
  24. 24.
    West C, Khalikova MA, Lesellier E, Heberger K (2015) Sum of ranking differences to rank stationary phases used in packed column supercritical fluid chromatography. J Chromatogr A 1409:241–250. CrossRefGoogle Scholar
  25. 25.
    Neue UD, Alden BA, Walter TH (1999) Universal procedure for the assessment of the reproducibility and the classification of silica-based reversedphase packings: II. Classification of reversed-phase packings. J Chemometr A 849(1):101–116. Google Scholar
  26. 26.
    Dolan JW, Snyder LR (2009) Selecting an “orthogonal” column during high-performance liquid chromatographic method development for samples that may contain non-ionized solutes. J Chromatogr A 1216(16):3467–3472. CrossRefGoogle Scholar
  27. 27.
    Dolan JW (2011) Selectivity in reverse-phase LC separations, part III column-type selectivity. LCGC N Am 29(3):236–244Google Scholar
  28. 28.
    Mani-Varnosfaderani A, Ghaemmaghami M (2015) Assessment of the orthogonality in two-dimensional separation systems using criteria defined by the maximal information coefficient. J Chromatogr A 1415:108–114. CrossRefGoogle Scholar
  29. 29.
    Davis JM, Stoll DR, Carr PW (2008) Dependence of effective peak capacity in comprehensive two-dimensional separations on the distribution of peak capacity between the two dimensions. Anal Chem 80(21):8122–8134. CrossRefGoogle Scholar
  30. 30.
    Van Gyseghem E, Dejaegher B, Put R, Forlay-Frick P, Elkihel A, Daszykowski M, Héberger K, Massart DL, Heyden YV (2006) Evaluation of chemometric techniques to select orthogonal chromatographic systems. J Pharm Biomed Anal 41(1):141–151. CrossRefGoogle Scholar
  31. 31.
    Beens J, Blomberg J, Schoenmakers PJ (2000) Proper tuning of comprehensive two-dimensional gas chromatography (GC × GC) to optimize the separation of complex oil fractions. J Sep Sci 23(2000):182–188Google Scholar
  32. 32.
    Gilar M, Fridrich J, Schure MR, Jaworski A (2012) Comparison of orthogonality estimation methods for the two-dimensional separations of peptides. Anal Chem 84(20):8722–8732. CrossRefGoogle Scholar
  33. 33.
    Schure MR (2011) The dimensionality of chromatographic separations. J Chromatogr A 1218(2):293–302. CrossRefGoogle Scholar
  34. 34.
    Gilar M, Olivova P, Daly AE, Gebler JC (2005) Orthogonality of separation in two-dimensional liquid chromatography. Anal Chem 77(19):6426–6434. CrossRefGoogle Scholar
  35. 35.
    Mani-Varnosfaderani A, Ghaemmaghami M (2015) Assessment of the orthogonality in two-dimensional separation systems using criteria defined by the maximal information coefficient. J Chromatogr A 1415(Supplement C):108–114. CrossRefGoogle Scholar
  36. 36.
    Camenzuli M, Schoenmakers PJ (2014) A new measure of orthogonality for multi-dimensional chromatography. Anal Chim Acta 838:93–101. CrossRefGoogle Scholar
  37. 37.
    Melander WR, Horváth C (1982) Stationary phase effects in reversed-phase chromatography II. Substituent selectivities for retention on various hydrocarbonaceous bonded phases. Chromatographia 15(2):86–90. CrossRefGoogle Scholar
  38. 38.
    Kimata K, Iwaguchi K, Onishi S, Jinno K, Eksteen R, Hosoya K, Araki M, Tanaka N (1989) Chromatographic characterization of silica C18 packing materials. correlation between a preparation method and retention behavior of stationary phase. J Chromatogr Sci 27(12):721–728. CrossRefGoogle Scholar
  39. 39.
    Solomonov BN, Sedov IA (2006) Quantitative description of the hydrophobic effect: the enthalpic contribution. J Phys Chem B 110(18):9298–9303. CrossRefGoogle Scholar
  40. 40.
    Ishihama Y, Asakawa N (1999) Characterization of lipophilicity scales using vectors from solvation energy descriptors. J Pharm Sci 88(12):1305–1312. CrossRefGoogle Scholar
  41. 41.
    Abraham MH, Martins F (2004) Human skin permeation and partition: general linear free-energy relationship analyses. J Pharm Sci 93(6):1508–1523. CrossRefGoogle Scholar
  42. 42.
    Snyder LR, Dolan JW, Carr PW (2004) The hydrophobic-subtraction model of reversed-phase column selectivity. J Chromatogr A 1060(1–2):77–116CrossRefGoogle Scholar
  43. 43.
    Dragovic S, Haghedooren E, Németh T, Palabiyik IM, Hoogmartens J, Adams E (2009) Evaluation of two approaches to characterise liquid chromatographic columns using pharmaceutical separations. J Chromatogr A 1216(15):3210–3216. CrossRefGoogle Scholar
  44. 44.
    Johnson AR, Johnson CM, Stoll DR, Vitha MF (2012) Identifying orthogonal and similar reversed phase liquid chromatography stationary phases using the system selectivity cube and the hydrophobic subtraction model. J Chromatogr A 1249:62–82. CrossRefGoogle Scholar
  45. 45.
    Johnson AR, Vitha MF, Urness T, Marrinan T (2010) System selectivity cube: a 3D visualization tool for comparing the selectivity of gas chromatography, supercritical-fluid chromatography, high-pressure liquid chromatography, and micellar electrokinetic capillary chromatography systems. Anal Chem 82(14):6251–6258. CrossRefGoogle Scholar
  46. 46.
    Marchand DH, Croes K, Dolan JW, Snyder LR (2005) Column selectivity in reversed-phase liquid chromatography. VII. Cyanopropyl columns. J Chromatogr A 1062(1):57–64CrossRefGoogle Scholar
  47. 47.
    HPLC column selectivity measurement. Accessed 21 Nov 2017
  48. 48.
    US Pharmacopeial convention column equivalency application. Accessed 23 Nov 2017
  49. 49.
    PQRI approach for selecting columns of equivalent selectivity. Accessed 23 Nov 2017
  50. 50.
    Cela R, Ordonez EY, Quintana JB, Rodil R (2013) Chemometric-assisted method development in reversed-phase liquid chromatography. J Chromatogr A 1287:2–22. CrossRefGoogle Scholar
  51. 51.
    Forlay-Frick P, Van Gyseghem E, Héberger K, Vander HeydenY (2005) Selection of orthogonal chromatographic systems based on parametric and non-parametric statistical tests. Analytica Chimica Acta 539(1–2):1–10. CrossRefGoogle Scholar
  52. 52.
    Andric F, Heberger K (2017) How to compare separation selectivity of high-performance liquid chromatographic columns properly? J Chromatogr A 1488:45–56. CrossRefGoogle Scholar
  53. 53.
    Do L, Geladi P, Haglund P (2014) Multivariate data analysis to characterize gas chromatography columns for dioxin analysis. J Chromatogr A 1347:137–145. CrossRefGoogle Scholar
  54. 54.
    Euerby MR, Petersson P, Campbell W, Roe W (2007) Chromatographic classification and comparison of commercially available reversed-phase liquid chromatographic columns containing phenyl moieties using principal component analysis. J Chromatogr A 1154(1–2):138–151. CrossRefGoogle Scholar
  55. 55.
    Biswas KM, Castle BC, Olsen BA, Risley DS, Skibic MJ, Wright PB (2009) A simple and efficient approach to reversed-phase HPLC method screening. J Pharm Biomed Anal 49(3):692–701. CrossRefGoogle Scholar
  56. 56.
    Bolanča T, Ukić Š, Novak M, Rogošić M (2014) Computer assisted method development in liquid chromatography. Croat Chem Acta 87(2):111–122. CrossRefGoogle Scholar
  57. 57.
    Li W, Rasmussen HT (2003) Strategy for developing and optimizing liquid chromatography methods in pharmaceutical development using computer-assisted screening and Plackett–Burman experimental design. J Chromatogr A 1016(2):165–180CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shobhaben Pratapbhai Patel School of Pharmacy and Technology ManagementSVKM’s NMIMSMumbaiIndia
  2. 2.School of Pharmacy and Technology ManagementSVKM’s NMIMSShirpurIndia

Personalised recommendations