, Volume 81, Issue 4, pp 595–610 | Cite as

Prediction of Dispersive Liquid–Liquid Microextraction Enrichment Effect of Aromatic Organics by [OMIM] [PF6] Ionic Liquid Based on Atom-Type Electrotopological State Indices

  • Wei Liu
  • Ji Quan


In this work, a quantitative structure–property relationship (QSPR) model based on atom-type electrotopological state (E-state) indices has been developed for predicting the dispersive liquid–liquid microextraction (DLLME) enrichment effect for aromatic organics by using 1-octyl-3-methylimidazolium hexafluorophosphate ([OMIM][PF6]) ionic liquid as extractant. The enrichment factors of the aromatic organics obtained through DLLME-IL process were used as the dependent variable of the multiple linear regression (MLR) equation. The E-state indices of those organic compounds which combined together both electronic and topological characteristics of the analyzed molecules were used as molecular structure descriptors and the independent variable of the equation. The squared correlation coefficient R2 for the MLR was 0.992 for the training set of 33 compounds. For the test set of 8 compounds, the linear regression coefficient was R2 = 0.985. The results of this study showed that it can successfully predict enrichment factors of [OMIM][PF6] in DLLME by using atom-type E-state indices, which can provide one more way for predicting the ability of ionic liquid to extract organic compounds based on their molecular structures.


Atom-type electrotopological state indices Dispersive liquid–liquid microextraction Ionic liquid Quantitative structure–property relationship 



This work was supported by the National Natural Science Foundation of China (Nos. 21277108, 71501149).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Human/animal studies

This article does not contain any studies with human participants or animals performed by the authors.


  1. 1.
    Shi X, Qiao L, Xu G (2015) J Chromatogr A 1420:1–15. CrossRefGoogle Scholar
  2. 2.
    Welton T (1999) Chem Rev 99:2071–2083. CrossRefGoogle Scholar
  3. 3.
    Eshetu GG, Armand M, Ohno H, Scrosati B, Passerini S (2016) Energy Environ Sci 9:49–61. CrossRefGoogle Scholar
  4. 4.
    Cui YX, Zhang J, Li GY, Sun Y, Zhang GF, Zheng WJ (2017) Chem Eng J 325:424–432. CrossRefGoogle Scholar
  5. 5.
    Elizarova IS, Luckham PF (2017) J Colloid Interface Sci 491:286–293. CrossRefGoogle Scholar
  6. 6.
    Zhao PP, Yang F, Zhao ZG, Liao QX, Zhang Y, Chen P, Guo WH, Bai RX (2017) J Ind Eng Chem 54:369–376. CrossRefGoogle Scholar
  7. 7.
    Moghadam FR, Azizian S, Bayat M, Yarie M, Kianpour E, Zolfigol MA (2017) Fuel 208:214–222. CrossRefGoogle Scholar
  8. 8.
    Xu H, Zhang DD, Wu FM, Cao RQ (2017) Fuel 208:508–513. CrossRefGoogle Scholar
  9. 9.
    Zhang Y-N, Yu H (2017) Chromatographia 80:1615–1622. CrossRefGoogle Scholar
  10. 10.
    Farajzadeh MA, Abbaspour M (2017) Talanta 174:111–121. CrossRefGoogle Scholar
  11. 11.
    Yang MY, Gu YH, Wu XL, Xi XF, Yang XL, Zhou WF, Zeng HZ, Zhang SB, Lu RH, Gao HX, Li J (2018) Food Chem 239:797–805. CrossRefGoogle Scholar
  12. 12.
    Fanali C, Micalizzi G, Dugo P, Mondello L (2017) Analyst 142:4601–4612. CrossRefGoogle Scholar
  13. 13.
    Yao L, Wang X, Liu H, Lin C, Pang L, Yang J, Zeng Q (2017) J Ind Eng Chem 56:321–326. CrossRefGoogle Scholar
  14. 14.
    Rezaee M, Assadi Y, Hosseinia MRM, Aghaee E, Ahmadi F, Berijani S (2006) J Chromatogr A 1116:1–9. CrossRefGoogle Scholar
  15. 15.
    Zhou QX, Bai HH, Xie GH, Xiao JP (2008) J Chromatogr A 1188:148–153. CrossRefGoogle Scholar
  16. 16.
    Li LQ, Huang MY, Shao JL, Lin BK, Shen Q (2017) J Pharm Biomed 135:61–66. CrossRefGoogle Scholar
  17. 17.
    Li DP, Ma XG, Wang R, Yu YM (2017) Anal Bioanal Chem 409:1165–1172. CrossRefGoogle Scholar
  18. 18.
    De Boeck M, Missotten S, Dehaen W, Tytgat J, Cuypers E (2017) Forensic Sci Int 274:44–54. CrossRefGoogle Scholar
  19. 19.
    Botrel BMC, Abreu DCP, Saczk AA, Bazana MJF, Nascimento CD, Rosa PVE (2017) Microchem J 133:70–75. CrossRefGoogle Scholar
  20. 20.
    Biata NR, Nyaba L, Ramontja J, Mketo N, Nomngongo PN (2017) Food Chem 237:904–911. CrossRefGoogle Scholar
  21. 21.
    Zhang YH, Zhang Y, Zhao QY, Chen WJ, Jiao BN (2016) Food Anal Method 9:596–604. CrossRefGoogle Scholar
  22. 22.
    Wang XJ, Chen P, Cao L, Xu GL, Yang SY, Fang Y, Wang GZ, Hong XC (2017) Food Anal Method 10:1653–1660. CrossRefGoogle Scholar
  23. 23.
    Vaghar-Lahijani G, Aberoomand-Azar P, Saber-Tehrani M, Soleimani M (2017) J Liq Chromatogr Relat Technol 40:1–7. CrossRefGoogle Scholar
  24. 24.
    Padilla-Alonso DJ, Garza-Tapia M, Chavez-Montes A, Gonzalez-Horta A, de Torres NHW, Castro-Rios R (2017) J Liq Chromatogr Relat Technol 40:147–155. CrossRefGoogle Scholar
  25. 25.
    Liu RQ, Liu Y, Cheng CS, Yang YL (2017) Chromatographia 80:783–791. CrossRefGoogle Scholar
  26. 26.
    Wu J, Ye ZH, Li XL, Wang XD, Luo FJ, Sheng B, Li YW, Lyu JX (2016) J Chromatogr B 1014:1–9. CrossRefGoogle Scholar
  27. 27.
    Wang LL, Zhang DF, Xu X, Zhang L (2016) Food Chem 197:754–760. CrossRefGoogle Scholar
  28. 28.
    Chen S, Sun Y, Chao J, Cheng L, Chen Y, Liu J (2016) J Environ Sci China 41:211–217. CrossRefGoogle Scholar
  29. 29.
    Gong AQ, Zhu XS (2015) Talanta 131:603–608. CrossRefGoogle Scholar
  30. 30.
    Vazquez MMP, Vazquez PP, Galera MM, Moreno AU (2014) J Chromatogr A 1356:1–9. CrossRefGoogle Scholar
  31. 31.
    Wen SP, Wu J, Zhu XS (2013) J Mol Liq 180:59–64. CrossRefGoogle Scholar
  32. 32.
    Vazquez MMP, Vazquez PP, Galera MM, Garcia MDG, Ucles A (2013) J Chromatogr A 1291:19–26. CrossRefGoogle Scholar
  33. 33.
    Vazquez MMP, Vazquez PP, Galera MM, Garcia MDG (2012) Anal Chim Acta 748:20–27. CrossRefGoogle Scholar
  34. 34.
    Atabaki F, Keshavarz MH, Bastam NN (2017) Z Anorg Allg Chem 643:1049–1056. CrossRefGoogle Scholar
  35. 35.
    Gupta S, Basant N (2017) Chemosphere 185:1164–1172. CrossRefGoogle Scholar
  36. 36.
    Hasnaoui H, Krea M, Roizard D (2017) J Membr Sci 541:541–549. CrossRefGoogle Scholar
  37. 37.
    Jovanovic IN, Milicevic A (2017) J Mol Liq 241:255–259. CrossRefGoogle Scholar
  38. 38.
    Kessler T, Sacia ER, Bell AT, Mack JH (2017) Fuel 206:171–179. CrossRefGoogle Scholar
  39. 39.
    Olguin CJM, Sampaio SC, dos Reis RR (2017) Chemosphere 184:498–504. CrossRefGoogle Scholar
  40. 40.
    Weinebeck A, Kaminski S, Murrenhoff H, Leonhard K (2017) Tribol Int 115:274–284. CrossRefGoogle Scholar
  41. 41.
    Lowell H, Hall LBK (1995) J Chem Inf Comp Sci 35:1039–1045CrossRefGoogle Scholar
  42. 42.
    Wang L, Liu X, Shan Z, Shi L (2010) J Environ Sci China 22:1544–1550. CrossRefGoogle Scholar
  43. 43.
    Wang R, Jiang J, Pan Y, Cao H, Cui Y (2009) J Hazard Mater 166:155–186. CrossRefGoogle Scholar
  44. 44.
    Cao HY, Jiang JC, Pan Y, Wang R, Cui Y (2009) J Loss Prev Proc 22:222–227. CrossRefGoogle Scholar
  45. 45.
    Pan Y, Jiang J, Wang R, Cao H, Zhao J (2008) J Hazard Mater 157:510–517. CrossRefGoogle Scholar
  46. 46.
    Cash GG, Anderson B, Mayo K, Bogaczyk S, Tunkel J (2005) Mutat Res Genet Toxicol Environ 585:170–183. CrossRefGoogle Scholar
  47. 47.
    Zhang LJ, Chen F, Liu SW, Chen BY, Pan CP (2012) J Sep Sci 35:2514–2519. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Resources and Environmental EngineeringWuhan University of TechnologyWuhanChina
  2. 2.School of ManagementWuhan University of TechnologyWuhanChina

Personalised recommendations