Advertisement

Chromatographia

, Volume 81, Issue 4, pp 677–688 | Cite as

Method Validation Using Normal and Weighted Linear Regression Models for Quantification of Pesticides in Mango (Mangifera indica L.) Samples

  • Fátima Itana Chaves Custódio Martins
  • Pablo Gordiano Alexandre Barbosa
  • Guilherme Julião Zocolo
  • Ronaldo Ferreira do Nascimento
Original
  • 181 Downloads

Abstract

A fast and efficient method was developed and validated for the determination of pesticides in mangos, which uses the QuEChERS citrate and gas chromatography–mass spectrometry (GC–MS) techniques. A detailed statistical analysis was performed to study the matrix effect. The calibration model using the method of weighted least squares is used in cases, where heteroscedasticity is observed. The matrix effect was observed for most studied compounds using analytical curves based on a spiked matrix. The limits of detection were 0.0025–0.01 mg kg−1, and the limits of quantification (LOQ) were 0.008–0.03 mg kg−1. The LOQ values were minor or equal to the established MRLs by major regulatory agencies in Brazil (ANVISA), the United States (US-EPA), and Europe (CE). The compounds showed acceptable recovery levels of 71–109% with a standard deviation less than 15%. The method was applied to determine pesticide residues in mango samples. For 12 samples, five compounds (chloroneb, propachlor, α-chlordane, chlorpyrifos, DCPA, chlorobenzilate, and trans-permethrin) were detected, with contents of 0.004–0.042 mg kg−1. For chloroneb, propachlor, and α-chlordane, the found concentrations were above the maximum permitted residue limit, according to data from the European Commission.

Keywords

Pesticides Matrix effect Statistical analysis Heteroscedasticity Weighted regression 

Notes

Acknowledgements

The authors gratefully the Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (Grant Number 405167/2015-6 and 304888/2014-1) and Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico—FUNCAP for financial support of this research and the UFC for providing the laboratory infrastructure for the chromatographic analysis.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not contain any studies with human participants, so no informed consent was necessary for this study.

Supplementary material

10337_2018_3483_MOESM1_ESM.docx (691 kb)
Supplementary material 1 (DOCX 691 kb)

References

  1. 1.
    Saúco VG (2004) Acta Hortic 645:107–116CrossRefGoogle Scholar
  2. 2.
    ANVISA—Agência Nacional de Vigilância Sanitária (2016). Monografias de agrotóxicos. http://portal.anvisa.gov.br/. Accessed 20 June 2016
  3. 3.
    MAPA—Ministério da Agricultura, Pecuária e Abastecimento (2016) Sistema de agrotóxicos fitossanitários (AGROFIT). http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Accessed 23 June 2016
  4. 4.
    USFDA (2015). Pesticides residues in food. United States Food and Drug Administration. http://www.fda.gov/ICECI/ComplianceManuals/CompliancePolicyGuidanceManual/ucm123236.htm. Accessed 08 Oct 2015
  5. 5.
    European Commission Health and Consumer Protection Directorate-General (2013) Guidance document on analytical quality control and validation procedures for pesticide residues analysis in food and feed. SANCO 12571/2013Google Scholar
  6. 6.
    Prestes OD, Adaime MB, Zanela R (2011) Sci Chromatogr 3:51–64Google Scholar
  7. 7.
    Prestes OD, Friggi CA, Adaime MB, Zanella R (2009) Quím Nova 32:1620–1634CrossRefGoogle Scholar
  8. 8.
    Silva RO, Castro RC, Milhome MAL, Nascimento RF (2014) Food Sci Technol LEB 59:21–25CrossRefGoogle Scholar
  9. 9.
    Anastassiades M, Lehotay SJ, Tajnbaher D, Schenck FJ (2003) J AOAC Int 86:412–431Google Scholar
  10. 10.
    Lehotay SJ, Son KA, Kwon H, Koesukwiwat U, Fu W, Mastovska K, Hoh E, Leepipatpiboon N (2010) J Chromatogr A 1217:2548–2560CrossRefGoogle Scholar
  11. 11.
    Wilkowska A, Biziuk M (2011) Food Chem 125:803–812CrossRefGoogle Scholar
  12. 12.
    Guedes JAC, Silva RO, Lima CG, Milhome MAL, Nascimento RF (2016) Food Chem 199:380–386CrossRefGoogle Scholar
  13. 13.
    Stöckelhuber M, Müller C, Vetter F, Mingo V, Lötters S, Wagner N, Bracher F (2017) Chromatographia 80:825–829CrossRefGoogle Scholar
  14. 14.
    Li Y, Chen Z, Zhang R, Luo P, Zhou Y, Wen S, Ma M (2016) Chromatographia 79:1165–1175CrossRefGoogle Scholar
  15. 15.
    Miller JN (1991) Analyst 116(1991):3–14CrossRefGoogle Scholar
  16. 16.
    Karnes HT, Shiu G, Shah VP (1991) Pharm Res 8:421–426CrossRefGoogle Scholar
  17. 17.
    Caulcutt R, Boddy R (1994) Statistics for analytical chemists. Chapman and Hall, LondonGoogle Scholar
  18. 18.
    Feinberg M (2007) J Chromatogr A 1158:174–183CrossRefGoogle Scholar
  19. 19.
    Dong J, Pan Y-X, Lv J-X, Sun J, Gong X-M, Li K (2011) Chromatographia 74:109–119CrossRefGoogle Scholar
  20. 20.
    Lee SW, Choi JH, Cho SK (2011) J Chromatogr A 1218:4366–4377CrossRefGoogle Scholar
  21. 21.
    Sousa JS, Castro RC, Andrade GA, Lima CG, Nascimento RF (2013) Food Chem 141:2675–2681CrossRefGoogle Scholar
  22. 22.
    Milhome MAL, Sousa JS, Andrade GA, Castro RC, Lima LK, Lima CG, Nascimento RF (2015) J Phys Conf Ser 575:012032CrossRefGoogle Scholar
  23. 23.
    Almeida AM, Castel-Branco MM, Falcão AC (2002) J Chromatogr B 774:215–222CrossRefGoogle Scholar
  24. 24.
    Miller JN, Miller JC (2010) Statistics and chemometrics for analytical chemistry. Pearson, HarlowGoogle Scholar
  25. 25.
    Cacoullos T (2001) Stat Probab Lett 54:1–3CrossRefGoogle Scholar
  26. 26.
    Mansilha C, Melo A, Rebelo H, Ferreira IMPLVO, Pinho O, Domingues VC, Pinho C, Gameiro P (2010) J Chromatogr A 1217:6681–6691CrossRefGoogle Scholar
  27. 27.
    Barbosa PGA, Martins FICC, Lima LK, Milhome MAL, Cavalcante RM, Nascimento RF (2017) Food Anal Methods (in press) Google Scholar
  28. 28.
    Lehotay SJ, Mastovska K (2004) J Chromatogr A 1040:259–272CrossRefGoogle Scholar
  29. 29.
    Egoburo DE, Diaz Peña R, Kolender A, Pettinari MJ (2017) Chromatographia 80:1121–1127CrossRefGoogle Scholar
  30. 30.
    Pang N, Wang T, Hu J (2016) Food Chem 190:793–800CrossRefGoogle Scholar
  31. 31.
    Pinho GP, Neves AA, Queiroz MELR, Silvério FO (2009) Quím Nova 32:985–987Google Scholar
  32. 32.
    Zainudin BH, Salleh S, Mohamed R, Yap KC, Muhamad H (2015) Food Chem 172:585–595CrossRefGoogle Scholar
  33. 33.
    Páleníková A, Martínez-Domínguez G, Arrebola FJ, Romero-González R, Hrouzková S, Frenich AG (2015) Food Chem 173:796–807CrossRefGoogle Scholar
  34. 34.
    Masibo M, He Q (2008) Compr Rev Food Sci Food Saf 7:309–319CrossRefGoogle Scholar
  35. 35.
    Palmeira SMV, Gois LM, Souza LD (2012) Lat Am Appl Res 42:77–81Google Scholar
  36. 36.
    WEBBOOK NIST. Disponível em. http://webbook.nist.gov/chemistry/cas-ser.html. Accessed 24 Feb 2015
  37. 37.
    Choi S, Kim S, Shin JY, Kim M, Kim J (2015) Food Chem 173:1236–1242CrossRefGoogle Scholar
  38. 38.
    European Union (EU) (2012) Pesticides residues MRLs. European Commission. http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=pesticide.residue.selection&language=EN. Accessed 07 Oct 2015
  39. 39.
    Savant RH, Banerjee K, Uttre SC, Patil SH, Dasgupta S, Ghaste MS, Adsule PG (2010) J Agric Food Chem 58:1447–1454CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Analytical Chemistry and Physical ChemistryFederal University of CearaFortalezaBrazil
  2. 2.Federal Institute of EducationScience and Technology of CearáSobralBrazil
  3. 3.Embrapa Agroindústria TropicalFortalezaBrazil

Personalised recommendations