Chromatographia

, Volume 81, Issue 2, pp 303–314 | Cite as

Simultaneous Screening and Determination of Eight Tetracycline Antibiotics Illegally Adulterated in Herbal Preparations Using HPLC–DAD Combined with LC–MS–MS

  • Fuyan Liu
  • Xiaofeng Zhang
  • Yuqiu Li
  • Hui Gao
  • Peixue Ling
  • Xiaoyan Li
  • Qixin Chen
  • Aibin Ma
  • Huarong Shao
  • Mei Li
  • Fengshan Wang
Original
  • 147 Downloads

Abstract

In this study, the applicability of high-performance liquid chromatography with diode-array detection (HPLC–DAD) combined with electrospray ionization tandem mass spectrometry (ESI–MS) for the simultaneous screening and determination of tetracycline antibiotic analogues illegally adulterated in herbal preparations was investigated. The HPLC–DAD method could be employed to separate and simultaneously determine eight tetracyclines using an isocratic solvent system. These tetracycline antibiotics include doxycycline, 6-epidoxycycline and tetracycline, which are difficult to identify because they are structural isomers. ESI–MS was used in combination with HPLC–DAD to improve the qualitative accuracy in this study. Method validation included the investigation of linearity, selectivity, stability, limits of detection and quantitation, trueness, precision and ruggedness. The response exhibited a good linear relationship with the analyte concentration. The coefficient of determination (r 2) was greater than 0.9993. The limits of quantification for the examined tetracycline antibiotics ranged from 1.11 to 25.73 µg·mL−1, and the recoveries ranged from 91.0 to 104.0%. The proposed methods were specific, sensitive and accurate, and they could be promising and powerful tools for the routine screening of tetracycline analogues in herbal medicines to ensure food safety and public health.

Graphical abstract

Keywords

Illegal adulteration Tetracycline antibiotics HPLC–DAD LC/MS/MS Herbal preparations Screening analysis 

Abbreviations

CTC

Chlortetracycline

DC

Doxycycline

DEMC

Demeclocycline

EDTA

Ethylenediamine tetraacetic acid

ESI-MS

Electrospray ionization tandem mass spectrometry

6-epi-DC

6-Epidoxycycline

HPLC–DAD

High-performance liquid chromatography with diode-array detection

LOD

Limit of detection

LOQ

Limit of quantitation

MNC

Minocycline

MTC

Methacycline

OTC

Oxytetracycline

RSD

The relative standard deviation

RT

Retention time

TC

Tetracycline

Notes

Acknowledgements

This work was supported by the Shandong Public Service Platform for new drug safety and pharmacology evaluation, Shandong Provincial Research Fund for Outstanding Young Scholars (BS2015YY037).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

10337_2017_3450_MOESM1_ESM.docx (328 kb)
Supplementary material 1 (DOCX 327 kb)

References

  1. 1.
    Li SP, Zhao J, Yang B (2011) J Pharm Biomed Anal 55:802–809CrossRefGoogle Scholar
  2. 2.
    Feng Y, Lei D, Hu C (2014) Spectrochim Acta Part A Mol Biomol Spectrosc 125:363–374CrossRefGoogle Scholar
  3. 3.
    Guo C, Shi F, Jiang S, Gong L et al (2014) J Chromatogr B Anal Technol Biomed Life Sci 967:174–182CrossRefGoogle Scholar
  4. 4.
    Liang Q, Qu J, Luo G, Wang Y (2006) J Pharm Biomed Anal 40:305–311CrossRefGoogle Scholar
  5. 5.
    Yao J, Shi YQ, Li ZR, Jin SH (2007) J Chromatogr B Anal Technol Biomed Life Sci 853:254–259CrossRefGoogle Scholar
  6. 6.
    Shi F, Guo C, Gong L, Li J et al (2014) J Chromatogr A 1344:91–98CrossRefGoogle Scholar
  7. 7.
    Liu F, Xie Y, Li Y, Niu C, Ling X (2008) Chin J Pharm Anal 28:1276–1279Google Scholar
  8. 8.
    Deconinck E, Cauwenbergh T, Bothy JL, Custers D et al (2014) J Pharm Biomed Anal 100:279–283CrossRefGoogle Scholar
  9. 9.
    Fejos I, Neumajer G, Beni S, Jankovics P (2014) J Pharm Biomed Anal 98:327–333CrossRefGoogle Scholar
  10. 10.
    Holzgrabe U, Malet-Martino M (2011) J Pharm Biomed Anal 55:679–687CrossRefGoogle Scholar
  11. 11.
    Johansson M, Fransson D, Rundlof T, Huynh NH, Arvidsson T (2014) J Pharm Biomed Anal 100:215–229CrossRefGoogle Scholar
  12. 12.
    Lee ES, Lee JH, Han KM, Kim JW et al (2013) J Pharm Biomed Anal 83:171–178CrossRefGoogle Scholar
  13. 13.
    Poplawska M, Blazewicz A, Bukowinska K, Fijalek Z (2013) J Pharm Biomed Anal 84:232–243CrossRefGoogle Scholar
  14. 14.
    Glette J, Sandberg S (1986) Biochem Pharmacol 35:2883–2885CrossRefGoogle Scholar
  15. 15.
    Douglas AC (1963) Br J Dis Chest 57:44–47CrossRefGoogle Scholar
  16. 16.
    Karageorgou E, Armeni M, Moschou I, Samanidou V (2014) Food Chem 150:328–334CrossRefGoogle Scholar
  17. 17.
    Cristofani E, Antonini C, Tovo G, Fioroni L et al (2009) Anal Chim Acta 637:40–46CrossRefGoogle Scholar
  18. 18.
    Tolgyesi A, Tolgyesi L, Bekesi K, Sharma VK, Fekete J (2014) Meat Sci 96:1332–1339CrossRefGoogle Scholar
  19. 19.
    Shalaby AR, Salama NA, Abou-Raya SH, Emam WH, Mehaya FM (2011) Food Chem 124:1660–1666CrossRefGoogle Scholar
  20. 20.
    Ben W, Qiang Z, Adams C, Zhang H, Chen L (2008) J Chromatogr A 1202:173–180CrossRefGoogle Scholar
  21. 21.
    Lillenberg M, Yurchenko S, Kipper K, Herodes K et al (2009) J Chromatogr A 1216:5949–5954CrossRefGoogle Scholar
  22. 22.
    O’Connor S, Aga DS (2007) Trends Anal Chem 26:456–465CrossRefGoogle Scholar
  23. 23.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Pharmaceutical SciencesShandong UniversityJinanChina
  2. 2.Shandong Provincial Key Laboratory of BiopharmaceuticalsShandong Academy of Pharmaceutical ScienceJinanChina
  3. 3.Shandong Institute for Food and Drug ControlJinanChina
  4. 4.School of Life SciencesLanzhou UniversityLanzhouChina
  5. 5.Shandong University of Traditional Chinese MedicineJinanChina

Personalised recommendations