, Volume 81, Issue 2, pp 335–348 | Cite as

Interinstrumental Transfer of a Chiral Capillary Electrophoretic Method: The Use of Robustness Test Information to Overcome Differences in Detector and Data-Handling Specifications

  • Bart De Cock
  • Debby Mangelings
  • Yvan Vander Heyden


Capillary electrophoresis has been widely used as chiral separation technique, applying chiral selectors that are added to the background electrolyte. The advantages of capillary electrophoresis as separation technique are its flexibility, low cost, and high separation efficiency. This study is part of a research project, where guidelines are defined to facilitate interinstrumental method transfer of capillary electrophoretic methods, which is one of the major drawbacks of capillary electrophoresis. Another drawback is the lower sensitivity compared to liquid chromatographic methods. Improving and maintaining the sensitivity are the reason why focus should be put on the interinstrumental differences between detector settings. The aim of this study was to determine when adaption of the detector settings during interinstrumental method transfer was needed. The chiral separations of two betablockers were selected as case studies. The influence of detector parameters, such as data acquisition rate, bandwidth, and filter, on sensitivity responses, such as peak area, height, and width, was evaluated by means of robustness tests performed on two capillary electrophoresis instruments. The statistically significant parameters were identified and non-significance intervals determined. To maintain or optimise the obtained sensitivity, the information gathered from the robustness test was further incorporated in guidelines developed to facilitate interinstrumental analytical method transfer of capillary electrophoretic methods.


Capillary electrophoresis Interinstrumental transfer Detector settings Data-handling specifications Robustness test 


Compliance with Ethical Standards


No funding was granted for this study.

Conflict of interest

The authors declare that there are no conflicts of interest.

Human/animal rights statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10337_2017_3429_MOESM1_ESM.pdf (156 kb)
Supplementary material 1 (PDF 155 kb)
10337_2017_3429_MOESM2_ESM.pdf (157 kb)
Supplementary material 2 (PDF 156 kb)
10337_2017_3429_MOESM3_ESM.pdf (157 kb)
Supplementary material 3 (PDF 156 kb)
10337_2017_3429_MOESM4_ESM.pdf (156 kb)
Supplementary material 4 (PDF 156 kb)
10337_2017_3429_MOESM5_ESM.pdf (157 kb)
Supplementary material 5 (PDF 157 kb)
10337_2017_3429_MOESM6_ESM.pdf (160 kb)
Supplementary material 6 (PDF 159 kb)
10337_2017_3429_MOESM7_ESM.pdf (159 kb)
Supplementary material 7 (PDF 159 kb)
10337_2017_3429_MOESM8_ESM.pdf (157 kb)
Supplementary material 8 (PDF 156 kb)
10337_2017_3429_MOESM9_ESM.pdf (148 kb)
Supplementary material 8 (PDF 149 kb)


  1. 1.
    Ahuja S (1991) In: Ahuja S (ed) Chiral separations by liquid chromatography. American Chemical Society, Washington DC, pp 1–8CrossRefGoogle Scholar
  2. 2.
    Mangelings D, Vander Heyden Y (2011) Chiral separation methods for pharmaceutical and biotechnology products. In: Ahuja S (ed) lxChiral separation methods for pharmaceutical and biotechnological products, chapter 11. Wiley, New York, pp 331–350Google Scholar
  3. 3.
    Fillet M, Bechet I, Chiap P, Hubert Ph, Crommen J (1995) J Chromatogr A 717:203–209CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Directive 75/318/EEC: investigation of chiral active substances, Accessed 23 Aug 2017
  6. 6.
    International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, ICH Harmonised Tripartite guideline, specifications: test procedures and acceptance criteria for new drug substances and new drug products: chemical substances, Q6A. Accessed 10 Aug 2017
  7. 7.
    Gübitz G, Schmid MG (2004) Chiral recognition in separation science: an overview. In: Gübitz G, Schmid MG (eds) Methods in molecular biology; chiral separation methods and protocols, chapter 1. Humana Press, New Jersey, pp 1–29Google Scholar
  8. 8.
    Chankvetadze B (1997) Basics of capillary electrophoresis. In: Chankvetadze B (ed) Capillary electrophoresis in chiral analysis, chapter 1. Wiley, New York, pp 5–40Google Scholar
  9. 9.
    De Cock B, Dejaegher B, Stiens J, Mangelings D, Vander Heyden Y (2014) J Chromatogr A 1353:148–159CrossRefGoogle Scholar
  10. 10.
    Hempel G (2000) Electrophoresis 21:691–698CrossRefGoogle Scholar
  11. 11.
    De Kort BJ, De Jong GJ, Somsen GW (2013) Anal Chim Acta 766:13–33CrossRefGoogle Scholar
  12. 12.
    Sluszny C, He Y, Yeung ES (2005) Electrophoresis 26:4197–4203CrossRefGoogle Scholar
  13. 13.
    Chen Y, Lü W, Chen X, Teng M (2012) Cent Eur J Chem 10:611–638Google Scholar
  14. 14.
    Breadmore MC, Shallan AI, Rabanes HR, Gstoettenmayr D, Keyon ASA, Gaspar A, Dawod M, Quirino JP (2013) Electrophoresis 34:29–54CrossRefGoogle Scholar
  15. 15.
    Stalmach A, Albalat A, Mullen W, Mischak H (2013) Electrophoresis 34:1452–1464CrossRefGoogle Scholar
  16. 16.
    Pioch M, Bunz SC, Neusüss C (2012) Electrophoresis 33:1517–1530CrossRefGoogle Scholar
  17. 17.
    Klepárnik K (2015) Electrophoresis 36:159–178CrossRefGoogle Scholar
  18. 18.
    Sekhon BS (2011) J Pharm Educ Res 2:2–36Google Scholar
  19. 19.
    Gübitz G, Schmid MG (2014) Electrophoresis 23:3981–3996Google Scholar
  20. 20.
    Ingelse BA, Everaerts FM, Desiderio C, Fanali S (1995) J Chromatogr A 709:89–98CrossRefGoogle Scholar
  21. 21.
    De Cock B, Dejaegher B, Stiens J, Mangelings D, Vander Heyden Y (2014) J Chromatogr A 1353:140–147CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Vander Heyden Y, Nijhuis A, Smeyers-Verbeke J, Vandeginste BGM, Massart DL (2001) J Pharm Biomed Anal 24:723–753CrossRefGoogle Scholar
  24. 24.
    Montgomery DC (2013) Three-level and mixed-level factorial and fractional factorial designs. In: Montgomery DC (ed) Design and analysis of experiments by Douglas montgomery a supplement for using JMP, chapter 9. SAS Institute Inc., Cary, North Carolina, USA, pp 173–188Google Scholar
  25. 25.
    Dejaegher B, Capron X, Smeyers-Verbeke J, Vander Heyden Y (2006) Anal Chim Acta 564:184–200CrossRefGoogle Scholar
  26. 26.
    Mangelings D, Tanret I, Matthijs N, Maftouh M, Massart DL, Vander Heyden Y (2005) Electrophoresis 26:818–832CrossRefGoogle Scholar
  27. 27.
    Dong F (1993) Stat Sin 3:209–217Google Scholar
  28. 28.
    Dejaegher B, Durand A, Vander Heyden Y (2008) J Chromatogr B 877:2252–2261CrossRefGoogle Scholar
  29. 29.
    Perrin C, Fabre H, Massart DL, Vander Heyden Y (2003) Electrophoresis 24:2469–2480CrossRefGoogle Scholar
  30. 30.
    P/ACE™ MDQ User’s Guide 32 Karat™ 8.0 (2009) Beckman Coulter, Fullerton, chapter 5, pp 41–47Google Scholar
  31. 31.
  32. 32.
    Dejaegher B, Vander Heyden Y (2007) J Chromatogr A 1158:138–157CrossRefGoogle Scholar
  33. 33.
    Vander Heyden Y, Jimidar M, Hund E, Niemeijer N, Peeters R, Smeyers-Verbeke J, Massart DL (1999) J Chromatogr A 845:145–154CrossRefGoogle Scholar
  34. 34.
    De Cock B, Van Eeckhaut A, Stiens J, Mangelings D, Vander Heyden Y (2015) Electrophoresis 36(21–22):2658–2664CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Bart De Cock
    • 1
  • Debby Mangelings
    • 1
  • Yvan Vander Heyden
    • 1
  1. 1.Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Center for Pharmaceutical ResearchVrije Universiteit Brussel (VUB)BrusselsBelgium

Personalised recommendations