Skip to main content
Log in

Interinstrumental Transfer of a Chiral Capillary Electrophoretic Method: The Use of Robustness Test Information to Overcome Differences in Detector and Data-Handling Specifications

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Capillary electrophoresis has been widely used as chiral separation technique, applying chiral selectors that are added to the background electrolyte. The advantages of capillary electrophoresis as separation technique are its flexibility, low cost, and high separation efficiency. This study is part of a research project, where guidelines are defined to facilitate interinstrumental method transfer of capillary electrophoretic methods, which is one of the major drawbacks of capillary electrophoresis. Another drawback is the lower sensitivity compared to liquid chromatographic methods. Improving and maintaining the sensitivity are the reason why focus should be put on the interinstrumental differences between detector settings. The aim of this study was to determine when adaption of the detector settings during interinstrumental method transfer was needed. The chiral separations of two betablockers were selected as case studies. The influence of detector parameters, such as data acquisition rate, bandwidth, and filter, on sensitivity responses, such as peak area, height, and width, was evaluated by means of robustness tests performed on two capillary electrophoresis instruments. The statistically significant parameters were identified and non-significance intervals determined. To maintain or optimise the obtained sensitivity, the information gathered from the robustness test was further incorporated in guidelines developed to facilitate interinstrumental analytical method transfer of capillary electrophoretic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahuja S (1991) In: Ahuja S (ed) Chiral separations by liquid chromatography. American Chemical Society, Washington DC, pp 1–8

    Chapter  Google Scholar 

  2. Mangelings D, Vander Heyden Y (2011) Chiral separation methods for pharmaceutical and biotechnology products. In: Ahuja S (ed) lxChiral separation methods for pharmaceutical and biotechnological products, chapter 11. Wiley, New York, pp 331–350

    Google Scholar 

  3. Fillet M, Bechet I, Chiap P, Hubert Ph, Crommen J (1995) J Chromatogr A 717:203–209

    Article  CAS  Google Scholar 

  4. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm122883.htm. Accessed 10 Aug 2017

  5. Directive 75/318/EEC: investigation of chiral active substances, http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002816.pdf. Accessed 23 Aug 2017

  6. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, ICH Harmonised Tripartite guideline, specifications: test procedures and acceptance criteria for new drug substances and new drug products: chemical substances, Q6A. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q6A/Step4/Q6Astep4.pdf. Accessed 10 Aug 2017

  7. Gübitz G, Schmid MG (2004) Chiral recognition in separation science: an overview. In: Gübitz G, Schmid MG (eds) Methods in molecular biology; chiral separation methods and protocols, chapter 1. Humana Press, New Jersey, pp 1–29

    Google Scholar 

  8. Chankvetadze B (1997) Basics of capillary electrophoresis. In: Chankvetadze B (ed) Capillary electrophoresis in chiral analysis, chapter 1. Wiley, New York, pp 5–40

    Google Scholar 

  9. De Cock B, Dejaegher B, Stiens J, Mangelings D, Vander Heyden Y (2014) J Chromatogr A 1353:148–159

    Article  Google Scholar 

  10. Hempel G (2000) Electrophoresis 21:691–698

    Article  CAS  Google Scholar 

  11. De Kort BJ, De Jong GJ, Somsen GW (2013) Anal Chim Acta 766:13–33

    Article  Google Scholar 

  12. Sluszny C, He Y, Yeung ES (2005) Electrophoresis 26:4197–4203

    Article  CAS  Google Scholar 

  13. Chen Y, Lü W, Chen X, Teng M (2012) Cent Eur J Chem 10:611–638

    Google Scholar 

  14. Breadmore MC, Shallan AI, Rabanes HR, Gstoettenmayr D, Keyon ASA, Gaspar A, Dawod M, Quirino JP (2013) Electrophoresis 34:29–54

    Article  CAS  Google Scholar 

  15. Stalmach A, Albalat A, Mullen W, Mischak H (2013) Electrophoresis 34:1452–1464

    Article  CAS  Google Scholar 

  16. Pioch M, Bunz SC, Neusüss C (2012) Electrophoresis 33:1517–1530

    Article  CAS  Google Scholar 

  17. Klepárnik K (2015) Electrophoresis 36:159–178

    Article  Google Scholar 

  18. Sekhon BS (2011) J Pharm Educ Res 2:2–36

    CAS  Google Scholar 

  19. Gübitz G, Schmid MG (2014) Electrophoresis 23:3981–3996

    Google Scholar 

  20. Ingelse BA, Everaerts FM, Desiderio C, Fanali S (1995) J Chromatogr A 709:89–98

    Article  CAS  Google Scholar 

  21. De Cock B, Dejaegher B, Stiens J, Mangelings D, Vander Heyden Y (2014) J Chromatogr A 1353:140–147

    Article  Google Scholar 

  22. CE expert tool, Beckman Coulter, Fullerton, USA. https://www.beckmancoulter.com/wsrportal/wsr/research-and-discovery/products-and-services/capillary-electrophoresis/ce-expert-lite/index.htm. Accessed 10 Aug 2017

  23. Vander Heyden Y, Nijhuis A, Smeyers-Verbeke J, Vandeginste BGM, Massart DL (2001) J Pharm Biomed Anal 24:723–753

    Article  CAS  Google Scholar 

  24. Montgomery DC (2013) Three-level and mixed-level factorial and fractional factorial designs. In: Montgomery DC (ed) Design and analysis of experiments by Douglas montgomery a supplement for using JMP, chapter 9. SAS Institute Inc., Cary, North Carolina, USA, pp 173–188

    Google Scholar 

  25. Dejaegher B, Capron X, Smeyers-Verbeke J, Vander Heyden Y (2006) Anal Chim Acta 564:184–200

    Article  CAS  Google Scholar 

  26. Mangelings D, Tanret I, Matthijs N, Maftouh M, Massart DL, Vander Heyden Y (2005) Electrophoresis 26:818–832

    Article  CAS  Google Scholar 

  27. Dong F (1993) Stat Sin 3:209–217

    Google Scholar 

  28. Dejaegher B, Durand A, Vander Heyden Y (2008) J Chromatogr B 877:2252–2261

    Article  Google Scholar 

  29. Perrin C, Fabre H, Massart DL, Vander Heyden Y (2003) Electrophoresis 24:2469–2480

    Article  CAS  Google Scholar 

  30. P/ACE™ MDQ User’s Guide 32 Karat™ 8.0 (2009) Beckman Coulter, Fullerton, chapter 5, pp 41–47

  31. https://www.agilent.com/cs/library/Support/Documents/a10424.pdf. Accessed 11 Jan 2017

  32. Dejaegher B, Vander Heyden Y (2007) J Chromatogr A 1158:138–157

    Article  CAS  Google Scholar 

  33. Vander Heyden Y, Jimidar M, Hund E, Niemeijer N, Peeters R, Smeyers-Verbeke J, Massart DL (1999) J Chromatogr A 845:145–154

    Article  CAS  Google Scholar 

  34. De Cock B, Van Eeckhaut A, Stiens J, Mangelings D, Vander Heyden Y (2015) Electrophoresis 36(21–22):2658–2664

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvan Vander Heyden.

Ethics declarations

Funding

No funding was granted for this study.

Conflict of interest

The authors declare that there are no conflicts of interest.

Human/animal rights statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Cock, B., Mangelings, D. & Vander Heyden, Y. Interinstrumental Transfer of a Chiral Capillary Electrophoretic Method: The Use of Robustness Test Information to Overcome Differences in Detector and Data-Handling Specifications. Chromatographia 81, 335–348 (2018). https://doi.org/10.1007/s10337-017-3429-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-017-3429-5

Keywords

Navigation