Skip to main content
Log in

γ-Fe2O3 Nanoparticles Covered with Glutathione-Modified Quantum Dots as a Fluorescent Nanotransporter

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The present paper describes the synthesis, characterization, and utilization of multi-functional magnetic conjugates that integrate optical and magnetic properties in a single structure for use in many biomedical applications. Spontaneous interaction with eukaryotic cell membrane (HEK-239 cell culture) was determined using fluorescence microscopy, and fluorescence analyses. Both, differences in excitation, and emission wavelength were observed, caused by glutathione intake by cells, resulting in disintegration of core–shell structure of quantum dots, as well as adhesion of conjugate onto cell surface. When compared with quantum dots fluorescent properties, HEK-239 cells with incorporated nanoconjugate exhibited two excitation maxima (λ ex = 430 and 390 nm). Simultaneously, application of ideal λ ex for quantum dots (λ ex = 430 nm), resulted in two emission maxima (λ = 740 and 750 nm). This nanoconjugate fulfills the requirements of term theranostics, because it can be further functionalized with biomolecules as DNA, proteins, peptides or antibodies, and thus serves as a tool for therapy in combination with simultaneous treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pamme N (2006) Lab Chip 6:24–38

    Article  CAS  Google Scholar 

  2. Graham DL, Ferreira HA, Freitas PP (2004) Trends Biotechnol 22:455–462

    Article  CAS  Google Scholar 

  3. Miller MM, Sheehan PE, Edelstein RL, Tamanaha CR, Zhong L, Bounnak S, Whitman LJ, Colton RJ (2001) J Magn Magn Mater 225:138–144

    Article  CAS  Google Scholar 

  4. Skaat H, Shafir G, Margel S (2011) J Nanopart Res 13:3521–3534

    Article  CAS  Google Scholar 

  5. Teja AS, Koh PY (2009) Prog Cryst Growth Charact Mater 55:22–45

    Article  CAS  Google Scholar 

  6. Majewski P, Thierry B (2007) Crit Rev Solid State Mat Sci 32:203–215

    Article  CAS  Google Scholar 

  7. Kim JS, Yoon TJ, Kim BG, Park SJ, Kim HW, Lee KH, Park SB, Lee JK, Cho MH (2006) Toxicol Sci 89:338–347

    Article  CAS  Google Scholar 

  8. Silva AKA, Silva EL, Carrico AS, Egito EST (2007) Curr Pharm Design 13:1179–1185

    Article  CAS  Google Scholar 

  9. Neuberger T, Schopf B, Hofmann H, Hofmann M, von Rechenberg B (2005) J Magn Magn Mater 293:483–496

    Article  CAS  Google Scholar 

  10. Lubbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, Matthias M, Dorken B, Herrmann F, Gurtler R, Hohenberger P, Haas N, Sohr R, Sander B, Lemke AJ, Ohlendorf D, Huhnt W, Huhn D (1996) Cancer Res 56:4686–4693

    CAS  Google Scholar 

  11. Wang C, Cheng L, Liu Z (2013) Theranostics 3:317–330

    Article  CAS  Google Scholar 

  12. Wang ST, Chen KJ, Wu TH, Wang H, Lin WY, Ohashi M, Chiou PY, Tseng HR (2010) Angew Chem Int Edit 49:3777–3781

    Article  CAS  Google Scholar 

  13. Valero E, Tambalo S, Marzola P, Ortega-Munoz M, Lopez-Jaramillo FJ, Santoyo-Gonzalez F, Lopez JD, Delgado JJ, Calvino JJ, Cuesta R, Dominguez-Vera JM, Galvez N (2011) J Am Chem Soc 133:4889–4895

    Article  CAS  Google Scholar 

  14. Meffre A, Mehdaoui B, Kelsen V, Fazzini PF, Carrey J, Lachaize S, Respaud M, Chaudret B (2012) Nano Lett 12:4722–4728

    Article  CAS  Google Scholar 

  15. Hilger I (2013) Int J Hyperthermia 29:828–834

    Article  Google Scholar 

  16. Kaufner L, Cartier R, Wustneck R, Fichtner I, Pietschmann S, Bruhn H, Schutt D, Thunemann AF, Pison U (2007) Nanotechnology 18:1–5

    Article  Google Scholar 

  17. Thunemann AF, Schutt D, Kaufner L, Pison U, Mohwald H (2006) Langmuir 22:2351–2357

    Article  Google Scholar 

  18. Oghabian MA, Jeddi-Tehrani M, Zolfaghari A, Shamsipour F, Khoei S, Amanpour S (2011) J Nanosci Nanotechnol 11:5340–5344

    Article  CAS  Google Scholar 

  19. Miyawaki J, Yudasaka M, Imai H, Yorimitsu H, Isobe H, Nakamura E, Iijima S (2006) Adv Mater 18:1010–1014

    Article  CAS  Google Scholar 

  20. Kim BH, Lee N, Kim H, An K, Park YI, Choi Y, Shin K, Lee Y, Kwon SG, Na HB, Park JG, Ahn TY, Kim YW, Moon WK, Choi SH, Hyeon T (2011) J Am Chem Soc 133:12624–12631

    Article  CAS  Google Scholar 

  21. Shi SF, Jia JF, Guo XK, Zhao YP, Liu BY, Chen DS, Guo YY, Zhang XL (2012) J Nanopart Res 14:1–11

    Google Scholar 

  22. Wilkinson K, Ekstrand-Hammarstrom B, Ahlinder L, Guldevall K, Pazik R, Kepinski L, Kvashnina KO, Butorin SM, Brismar H, Onfelt B, Osterlund L, Seisenbaeva GA, Kessler VG (2012) Nanoscale 4:7383–7393

    Article  CAS  Google Scholar 

  23. Drbohlavova J, Adam V, Kizek R, Hubalek J (2009) Int J Mol Sci 10:656–673

    Article  CAS  Google Scholar 

  24. Derfus AM, Chan WCW, Bhatia SN (2004) Nano Lett 4:11–18

    Article  CAS  Google Scholar 

  25. Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM (2004) Nat Biotechnol 22:969–976

    Article  CAS  Google Scholar 

  26. Geys J, Nemmar A, Verbeken E, Smolders E, Ratoi M, Hoylaerts MF, Nemery B, Hoet PHM (2008) Environ Health Perspect 116:1607–1613

    Article  CAS  Google Scholar 

  27. Wang DS, He JB, Rosenzweig N, Rosenzweig Z (2004) Nano Lett 4:409–413

    Article  CAS  Google Scholar 

  28. Liu B, Xie WX, Wang DP, Huang WH, Yu MJ, Yao AH (2008) Mater Lett 62:3014–3017

    Article  CAS  Google Scholar 

  29. Gu ZY, Zou L, Fang Z, Zhu WH, Zhong XH (2008) Nanotechnology 19:1–12

    Google Scholar 

  30. Peng H, Zhang LJ, Soeller C, Travas-Sejdic J (2007) J Lumines 127:721–726

    Article  CAS  Google Scholar 

  31. Chan WCW, Nie SM (1998) Science 281:2016–2018

    Article  CAS  Google Scholar 

  32. Zitka O, Cernei N, Heger Z, Matousek M, Kopel P, Kynicky J, Masarik M, Kizek R, Adam V (2013) Electrophoresis 34:2639–2647

    Article  CAS  Google Scholar 

  33. Chowdhury SR, Yanful EK (2013) J Environ Manage 129:642–651

    Article  CAS  Google Scholar 

  34. Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP (2001) J Phys Chem B 105:8861–8871

    Article  CAS  Google Scholar 

  35. Wuister SF, Swart I, van Driel F, Hickey SG, Donega CD (2003) Nano Lett 3:503–507

    Article  CAS  Google Scholar 

  36. Aldana J, Wang YA, Peng XG (2001) J Am Chem Soc 123:8844–8850

    Article  CAS  Google Scholar 

  37. Magro M, Sinigaglia G, Nodari L, Tucek J, Polakova K, Marusak Z, Cardillo S, Salviulo G, Russo U, Stevanato R, Zboril R, Vianello F (2012) Acta Biomater 8:2068–2076

    Article  CAS  Google Scholar 

  38. Lukashova NV, Savchenko AG, Yagodkin YD, Muradova AG, Yurtov EV (2014) J Alloy Compd 586:S298–S300

    Article  CAS  Google Scholar 

  39. Rudzka K, Viota JL, Munoz-Gamez JA, Carazo A, Ruiz-Extremera A, Delgado AV (2013) Colloid Surf B-Biointerfaces 111:88–96

    Article  CAS  Google Scholar 

  40. Giakisikli G, Anthemidis AN (2013) Talanta 110:229–235

    Article  CAS  Google Scholar 

  41. Salgueirino-Maceira V, Correa-Duarte MA, Spasova M, Liz-Marzan LM, Farle M (2006) Adv Funct Mater 16:509–514

    Article  CAS  Google Scholar 

  42. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Science 281:2013–2016

    Article  CAS  Google Scholar 

  43. Dubertret B, Calame M, Libchaber AJ (2001) Nat Biotechnol 19:365–370

    Article  CAS  Google Scholar 

  44. Perez JM, O’Loughin T, Simeone FJ, Weissleder R, Josephson L (2002) J Am Chem Soc 124:2856–2857

    Article  CAS  Google Scholar 

  45. Zitka O, Heger Z, Kominkova M, Skalickova S, Krizkova S, Adam V, Kizek R (2014) J Sep Sci 37:465–575

  46. Hergt R, Dutz S, Muller R, Zeisberger M (2006) J Phys Condes Matter 18:S2919–S2934

    Article  CAS  Google Scholar 

  47. Yang CY, Huang LY, Shen TL, Yeh JA (2010) Eur Cells Mater 20:415–430

    CAS  Google Scholar 

  48. Zhang WX, Tong L, Yang C (2012) Nano Lett 12:1002–1006

    Article  Google Scholar 

  49. Townsend DM, Tew KD, Tapiero H (2003) Biomed Pharmacother 57:145–155

    Article  CAS  Google Scholar 

  50. Lu SC (2000) Curr Top Cell Reg 36:95–116

    Article  CAS  Google Scholar 

  51. Kinter M, Roberts RJ (1996) Free Radic Biol Med 21:457–462

    Article  CAS  Google Scholar 

  52. Gu HW, Xu KM, Yang ZM, Chang CK, Xu B (2005) Chem Commun 2005:4270–4272

    Article  Google Scholar 

  53. Zebli B, Susha AS, Sukhorukov GB, Rogach AL, Parak WJ (2005) Langmuir 21:4262–4265

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to CEITEC CZ.1.05/1.1.00/02.0068 for financial support. The authors also with to express their thanks to Lukas Melichar for perfect technical assistance.

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rene Kizek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heger, Z., Cernei, N., Blazkova, I. et al. γ-Fe2O3 Nanoparticles Covered with Glutathione-Modified Quantum Dots as a Fluorescent Nanotransporter. Chromatographia 77, 1415–1423 (2014). https://doi.org/10.1007/s10337-014-2732-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-014-2732-7

Keywords

Navigation