Skip to main content

Advertisement

Log in

Sequential Determination of Inorganic Cations and Anions in Cerebrospinal Fluid by Microchip Electrophoresis

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Analysis of inorganic ions in cerebrospinal fluid (CSF) is used mainly in the diagnostics of central nervous system diseases, such as Alzheimer’s disease or multiple sclerosis. A new analytical method for fast determination of inorganic cations (ammonium, calcium, magnesium, sodium and potassium) and anions (chloride, sulfate, nitrite and nitrate) in CSF on an electrophoretic microchip was developed in this context. Zone electrophoresis (ZE) separations were performed on the microchip with coupled channels (CC) and contact conductivity detection. Two different propionate background electrolytes were used for the sequential determination of cations at pH 3.1 and anions at pH 4.3. ZE was used for the determination of cationic constituents while ZE–ZE approach was employed for the determination of chloride in the first separation channel on the CC microchip and other anionic micro-constituents in the second channel. LOD values were in the range of 0.003–0.012 mg L−1 and 0.019–0.047 mg L−1 for cations and anions, respectively. Repeatability of migration time was up to 1.2 % for both cations and anions. Repeatability of peak area ranged from 0.3 to 5.6 % for cations and from 0.6 to 6.0 % for anions. Recovery of both cations and anions was in the range 90–106 %. CSF samples were only diluted appropriately without other sample pretreatment prior to analysis. Developed sequential method is suitable for fast determination of the studied cations and anions in CSF with total analysis time <15 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Deisenhammer F, Bartos A, Egg R, Gilhus N, Giovannoni G, Rauer S, Sellebjerg F (2006) Eur J Neurol 13:913–922

    Article  CAS  Google Scholar 

  2. Lloyd DK (2008) J Chromatogr B 866:154–166

    Article  CAS  Google Scholar 

  3. Tohgi H, Abe T, Yamazaki K, Murata T, Isobe C, Ishizaki E (1998) J Neural Transm 105:1283–1291

    Article  CAS  Google Scholar 

  4. Yamashita T, Ando Y, Obayashi K, Uchino M, Ando M (1997) J Neurol Sci 153:32–34

    Article  CAS  Google Scholar 

  5. Basun H, Forssell LG, Wetterberg L, Winblad B (1991) J Neural Transm Parkinson Dis Dement Sect 3:231–258

    CAS  Google Scholar 

  6. Murphy VA, Smith QR, Rapoport SI (1986) J Neurochem 47:1735–1741

    Article  CAS  Google Scholar 

  7. Lampl Y, Geva D, Gilad R, Eshel Y, Ronen L, Sarova-Pinhas I (1998) J Neurol 245:584–588

    Article  CAS  Google Scholar 

  8. Timerbaev AR (2008) J Sep Sci 31:2012–2021

    Article  CAS  Google Scholar 

  9. Seiler HG, Sigel A, Sigel H (1994) Handbook on metals in clinical and analytical chemistry. Marcel Dekker, New York

    Google Scholar 

  10. McClatchey K (2002) Clinical laboratory medicine. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  11. Becker JS (2007) Inorganic mass spectrometry: principles and applications. Wiley, Chichester

    Book  Google Scholar 

  12. Tsikas D (2005) Free Radical Res 39:797–815

    Article  CAS  Google Scholar 

  13. Ions in physiological fluids. Dionex Application Note 107. Dionex, Sunnyvale

  14. Jorgenson JW, Lukacs KD (1981) Anal Chem 53:1298–1302

    Article  CAS  Google Scholar 

  15. Haumann I, Boden J, Mainka A, Jegle U (2000) J Chromatogr A 895:269–277

    Article  CAS  Google Scholar 

  16. Padarauskas A, Olšauskaite V, Schwedt G (1998) J Chromatogr A 800:369–375

    Article  CAS  Google Scholar 

  17. Kobayashi J, Shirao M, Nakazawa H (1998) J Liq Chromatogr Relat Technol 21:1445–1456

    Article  CAS  Google Scholar 

  18. Doan TKO, Kubáň P, Kubáň P, Kiplagat IK, Boček P (2011) Electrophoresis 32:464–471

    Article  CAS  Google Scholar 

  19. Jager AV, Tavares MFM (2003) Electrophoresis 24:1208–1214

    Article  CAS  Google Scholar 

  20. Wan QJ, Kubáň P, Tanyanyiwa J, Rainelli A, Hauser PC (2004) Anal Chim Acta 525:11–16

    Article  CAS  Google Scholar 

  21. Žunić G, Spasić S, Jelić-Ivanović Z (1999) J Chromatogr B 727:73–79

    Article  Google Scholar 

  22. Blanco-Heras GA, Turnes-Carou MI, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D, Fernández-Fernández E (2007) J Chromatogr A 1144:275–278

    Article  CAS  Google Scholar 

  23. Hirokawa T, Okamoto H, Gosyo Y, Tsuda T, Timerbaev AR (2007) Anal Chim Acta 581:83–88

    Article  CAS  Google Scholar 

  24. Ciba-Geigy (1977) Wissenschaftliche Tabellen Geigy, Teilband Körperflüssigkeiten (Scientific Tables Geigy, Volume Body Fluids), 8th edn. Basel

  25. Manz A, Graber N, Widmer HM (1990) Sens Actuator B Chem 1:244–248

    Article  CAS  Google Scholar 

  26. Gaudry AJ, Nai YH, Guijt MR, Breadmore MC (2014) Anal Chem 86:3380–3388

    Article  CAS  Google Scholar 

  27. Vrouwe EX, Luttge R, van den Berg A (2004) Electrophoresis 25:1660–1667

    Article  CAS  Google Scholar 

  28. Miyado T, Tanaka Y, Nagai H, Takeda S, Saito K, Fukushi K, Yoshida Y, Wakida S, Niki E (2006) J Chromatogr A 1109:174–178

    Article  CAS  Google Scholar 

  29. Troška P, Chudoba R, Danč L, Bodor R, Horčičiak M, Tesařová E, Masár M (2013) J Chromatogr B 930:41–47

    Article  Google Scholar 

  30. Kaniansky D, Masár M, Bodor R, Žúborová M, Ölvecká E, Jöhnck M, Stanislawski B (2003) Electrophoresis 24:2208–2227

    Article  CAS  Google Scholar 

  31. Kaniansky D, Masár M, Danková M, Bodor R, Rákocyová R, Pilná M, Jöhnck M, Stanislawski B, Kajan S (2004) J Chromatogr A 1051:33–42

    Article  CAS  Google Scholar 

  32. Danč L, Bodor R, Troška P, Horčičiak M, Masár M (2014) Determination of metabolic organic acids in cerebrospinal fluid by microchip electrophoresis. Electrophoresis. doi:10.1002/elps.201300455

    Google Scholar 

  33. Masár M, Sydes D, Luc M, Kaniansky D, Kuss HM (2009) J Chromatogr A 1216:6252–6255

    Article  Google Scholar 

  34. Francois C, Morin P, Dreux M (1995) J Chromatogr A 706:535–553

    Article  CAS  Google Scholar 

  35. Masár M, Bomastyk B, Bodor R, Horčičiak M, Danč L, Troška P, Kuss HM (2012) Microchim Acta 177:309–316

    Article  Google Scholar 

  36. Woodland MA, Lucy CA (2001) Analyst 126:28–32

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This contribution is the result of the project implementation (ITMS 26240220034) supported by the OPRaD funded by the ERDF. The financial support of the Slovak Research and Development Agency (APVV-0259-12) is acknowledged. J. H. thanks for a Grant of Comenius University in Bratislava (UK/87/2014). The authors also acknowledge Pavol Kruk for his assistance with preliminary experiments.

Conflict of interest

The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marián Masár.

Additional information

Published in the topical collection Advances in Chromatography and Electrophoresis & Chiranal 2014 with guest editor Jan Petr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hradski, J., Bodor, R. & Masár, M. Sequential Determination of Inorganic Cations and Anions in Cerebrospinal Fluid by Microchip Electrophoresis. Chromatographia 77, 1461–1468 (2014). https://doi.org/10.1007/s10337-014-2711-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-014-2711-z

Keywords

Navigation