Skip to main content
Log in

Evaluation of Nonionic Block Polymer Surfactants in Maize Root Proteome Extraction within Water–Organic Solvent Phases

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

In the present work, six nonionic block copolymer surfactants consisting of poly(ethylene glycol) (PEG), polyethylene (PE), and poly(propylene glycol) (PPG) were exploited to extract total proteins from maize (Zea mays L.) roots within a water–organic solvent system. After the treatment, proteins were partitioned into aqueous phase, interphase, and organic phase. The total yield was increased by up to 30% after adding PE-PEG block polymer surfactant compared with control. Two-dimensional electrophoresis (2-DE) was further used to evaluate proteins in water phase and interphase; the results revealed that the spot numbers and density were all improved, and well-focused electrophoretic patterns were achieved with higher density and without excess Joule heating problem after adding nonionic block polymer surfactants. Among the six investigated block polymers, PE-PEG extracted the largest amount of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wilm M (2009) Proteomics 9:4590–4605

    Article  CAS  Google Scholar 

  2. Thelen J, Peck S (2007) Plant Cell 19:3339–3346

    Article  CAS  Google Scholar 

  3. Chen S, Harmon A (2006) Proteomics 6:5504–5516

    Article  CAS  Google Scholar 

  4. Saravanan RS, Rose J (2004) Proteomics 4:2522–2532

    Article  CAS  Google Scholar 

  5. Wang W, Tai F, Chen S (2008) J Sep Sci 31:2032–2039

    Article  CAS  Google Scholar 

  6. Santoni V, Bellini C, Caboche M (1994) Planta 192:557–566

    Article  CAS  Google Scholar 

  7. Stalikas CD (2007) J Sep Sci 30:3268–6295

    Article  CAS  Google Scholar 

  8. Vincent D, Wheatley MD, Cramer GR (2006) Electrophoresis 27:1853–1865

    Article  CAS  Google Scholar 

  9. Carpentier SC, Witters E, Laukens K, Deckers P, Swennen R, Panis B (2005) Proteomics 5:2497–2507

    Article  CAS  Google Scholar 

  10. Delaplace P, Wal F, Dierick JF, Cordewener JH, Fauconnier ML, Jardin P (2006) Proteomics 6:6494–6497

    Article  CAS  Google Scholar 

  11. Song J, Braun G, Bevis E, Doncaster K (2006) Electrophoresis 27:3144–3151

    Article  CAS  Google Scholar 

  12. Isaacson T, Damasceno CMB, Saravanan RS, He YH, Catalá C, Saladié M, Rose JKC (2006) Nat Protoc 1:769–774

    Article  CAS  Google Scholar 

  13. Luche S, Santoni V, Rabilloud T (2003) Proteomics 3:249–253

    Article  CAS  Google Scholar 

  14. Vâlcu CM, Schlink K (2006) Proteomics 6:4166–4175

    Article  Google Scholar 

  15. Tani H, Kamidate T, Watanabe H (1998) Anal Sci 14:875–888

    Article  CAS  Google Scholar 

  16. Rabilloud T, Adessi C, Giraudel A, Lunardi J (1997) Electrophoresis 18:307–316

    Article  CAS  Google Scholar 

  17. Santoni V, Kieffer S, Desclaux D, Masson F, Rabillou T (2000) Electrophoresis 21:3329–3344

    Article  CAS  Google Scholar 

  18. Sun TK, Kyu SC, Yu SJ, Kyu YK (2001) Electrophoresis 22:2103–2109

    Article  Google Scholar 

  19. Everberg H, Sivars U, Emanuelsson C, Persson C, Englund AK, Haneskog L, Lipniunas P, Jörntén-Karlsson M, Tjerneld F (2004) J Chromatogr A 1029:113–124

    Article  CAS  Google Scholar 

  20. Tani H, Suzuki Y, Matsuda A, Kamidate T (2001) Anal Chim Acta 429:301–309

    Article  CAS  Google Scholar 

  21. Mathesius U, Keijzers G, Natera SH, Weinman J, Djordjevic M, Rolfe B (2001) Proteomics 1:1424–1440

    Article  CAS  Google Scholar 

  22. Raharjo TJ, Widjaja I, Roytrakul S, Verpoorte R (2004) J Biomol Tech 15:97–106

    Google Scholar 

  23. Alvarez S, Berla BM, Sheffield J, Cahoon RE, Jez JM, Hicks LM (2009) Proteomics 9:2419–2431

    Article  CAS  Google Scholar 

  24. Witzel K, Weidner A, Surabhi GK, Borner A, Mock HP (2009) J Exp Bot 60:3545–3557

    Article  CAS  Google Scholar 

  25. Li K, Xu C, Li Z, Zhang K, Yang A, Zhang J (2008) The Plant J 55:927–939

    Article  CAS  Google Scholar 

  26. Prinsi B, Negri AS, Pesaresi P, Cocucci M, Espen L (2009) BMC Plant Biol 9:113–129

    Article  Google Scholar 

  27. Xie H, Pan S, Liu S, Ye K, Huo K (2007) Electrophoresis 28(5):871–875

    Article  CAS  Google Scholar 

  28. Miao J, Cui L, Lau HP, Mather PT, Zhu L (2007) Macromolecules 40:5460–5470

    Article  CAS  Google Scholar 

  29. Wang Q, Li L, Jiang S (2005) Langmuir 21:9068–9075

    Article  CAS  Google Scholar 

  30. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Anal Biochem 150:76–85

    Article  CAS  Google Scholar 

  31. Weast RC (1975) Handb Chem Phys, 56th edn. CRC Press, Clevel

  32. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  33. Neuhoff V, Arold N, Taube D, Ehrhardt W (1988) Electrophoresis 9:255–262

    Article  CAS  Google Scholar 

  34. Marra M, Fullone M, Fogliano V, Pen J, Mattei M, Masi S, Aducci P (1994) Plant Physiol 106:1497–1501

    Article  CAS  Google Scholar 

  35. Kukavical B, Vuĉinić Ž, Vuletić M (2005) Protoplasma 226:191–197

    Article  Google Scholar 

  36. Alexandridis P, Hatton T (1995) Colloid Surf (A): Physicochem Eng Asp 96:1–46

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Chinese National Scientific Foundation (20875100), Ministry of Education of China; National Key Technology R & D Program (2006BAD10B02, 2008BADA4B04), by Ministry of Science & Technology of China; the Innovative Group Grant of NSFC (30821003), funded by Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueqin Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, H., Hu, Y., Yu, F. et al. Evaluation of Nonionic Block Polymer Surfactants in Maize Root Proteome Extraction within Water–Organic Solvent Phases. Chromatographia 73, 681–690 (2011). https://doi.org/10.1007/s10337-011-1961-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-011-1961-2

Keywords

Navigation