Journal of Ornithology

, Volume 159, Issue 2, pp 565–569 | Cite as

Bird seasonal beta-diversity in the contiguous USA

  • Charles A. Martin
Short Communication


Beta-diversity, the measurement of community changes along gradients, is an important component of diversity, and is needed to understand how local communities are assembled from a regional pool. Although they have rarely been quantified, seasonal changes in species composition have important management implications, as they can hamper the representativeness of snapshot community studies. The present study thus maps bird seasonal changes in species composition (beta-diversity) across the contiguous USA, using weekly data from the eBird project. Besides management implications, this map also provides insights into the mechanisms driving seasonal beta-diversity, namely that it is mostly related to the annual temperature range and the size of the species pool.


Seasonality Turnover Migration Annual temperature range 


Saisonale Beta-Diversität von Vögeln in den kontinentalen Vereinigten Staaten

Als Maß für die Veränderung von Artengemeinschaften entlang von Gradienten ist die Beta-Diversität eine bedeutende Komponente der Biodiversität, die zum Verständnis dafür notwendig ist, wie sich lokale Gemeinschaften aus einem regionalen Pool zusammenfügen. Wenngleich selten quantifiziert, haben saisonale Veränderungen in der Artenzusammensetzung wichtige Konsequenzen für Managemententscheidungen, da sie den Repräsentationsgrad von Momentaufnahmen der Artengemeinschaft verringern können. In der vorliegenden Arbeit kartieren wir daher die saisonalen Veränderungen in der Artenzusammensetzung (Beta-Diversität) über die kontinentalen Vereinigten Staaten unter Verwendung der wöchentlichen Daten aus dem eBird-Projekt. Abgesehen von Konsequenzen für Managemententscheidungen liefert diese Karte auch Einsichten in die Mechanismen, die die saisonale Beta-Diversität antreiben. Sie ist überwiegend bestimmt von der jährlichen Schwankungsbreite der Temperatur und der Größe des Artenpools.



Thanks to Raphaël Proulx, Alison Johnston, Mark W. Miller and one anonymous reviewer whose comments and suggestions have greatly improved this manuscript. I would also like to thank the thousands of eBird contributors, without whom none of this important data would have been available. Finally, the author acknowledges a grant from the Natural Sciences and Engineering Research Council of Canada.

Data availability

The dataset generated and analyzed during the current study, along with the necessary computer code, are available in the FigShare repository,

Supplementary material

10336_2017_1525_MOESM1_ESM.pdf (166 kb)
Online Resource 1. Exploring the gamma:alpha ratio along a latitude gradient (ESM1.pdf) (PDF 165 kb)


  1. Barwell LJ, Isaac NJB, Kunin WE (2015) Measuring β-diversity with species abundance data. J Anim Ecol 84:1112–1122CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baselga A (2013) Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods Ecol Evol 4:552–557CrossRefGoogle Scholar
  3. Blackburn TM, Gaston KJ (1996) The distribution of bird species in the New World: patterns in species turnover. Oikos 77:146–152CrossRefGoogle Scholar
  4. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  5. eBird (2016) eBird: an online database of bird distribution and abundance. eBird, IthacaGoogle Scholar
  6. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  7. Hitch AT, Leberg PL (2007) Breeding distributions of North American bird species moving north as a result of climate change. Conserv Biol 21:534–539CrossRefPubMedGoogle Scholar
  8. Horn HS (1966) Measurement of “overlap” in comparative ecological studies. Am Nat 100:419–424CrossRefGoogle Scholar
  9. Kraft NJ, Comita LS, Chase JM, Sanders NJ, Swenson NG, Crist TO, Stegen JC, Vellend M, Boyle B, Anderson MJ, Cornell HV, Davies KF, Freestone AL, Inouye BD, Harrison SP, Myers JA (2011) Disentangling the drivers of beta diversity along latitudunial and elevational gradients. Science 333:1755–1758CrossRefPubMedGoogle Scholar
  10. Legendre P, Legendre L (1998) Numerical ecology: second English edition, vol 20. Developments in environmental modelling. pp 528–536Google Scholar
  11. Melo AS, Rangel TFLVB, Diniz-Filho AF (2009) Environmental drivers of beta-diversity patterns in New-World birds and mammals. Ecography 32:226–236CrossRefGoogle Scholar
  12. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  13. Sullivan BL, Wood CL, Iliff MJ, Bonney RE, Fink D, Kelling S (2009) eBird: a citizen-based bird observation network in the biological sciences. Biol Conserv 142:2282–2292CrossRefGoogle Scholar
  14. White EP, Adler PB, Lauenroth WK, Gill RA, Kaufman DM, Rassweiler A, Rusak JA, Smith MD, Steinbeck JR, Waide RB, Yao J, Ranta E (2006) A comparison of the species-time relationship across ecosystems and taxonomic groups. Oikos 112:185–195CrossRefGoogle Scholar
  15. Whittaker RH (1960) Vegetation of the Siskiyou mountains, Oregon and California. Ecol Monogr 30:279–338CrossRefGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2017

Authors and Affiliations

  1. 1.Chaire de recherche du Canada en Intégrité ÉcologiqueUniversité du Québec à Trois-RivièresTrois-RivièresCanada

Personalised recommendations