Skip to main content
Log in

Breath rate patterns in precocial Northern Lapwing (Vanellus vanellus) chicks in the wild

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Individual-specific reaction to stressful situations may reveal various, individual-specific features, including personality. Breath rate and its change during and after handling [handling stress (HS) test] has been used to test individual response to stress. In previous laboratory research, the HS test has revealed a continuous decrease from peak values immediately after catching, which was consistent in adults of precocial and altricial species. Because of opposite trends in nestlings versus adults in altricial birds, we ask what breath rate pattern appears in precocial chicks in natural conditions? Advanced development during their early ontogeny compared to altricials could lead to breath rates similar to adults, but the effect of age, (in)experience, as well as environmental conditions, such as ambient temperature, may significantly shape breath rate patterns in chicks in different ways than in adults. In this study, we examined patterns in breath rate in response to HS in chicks of different age in a precocial wader, the Northern Lapwing (Vanellus vanellus) in the wild. Factors responsible for variation were simultaneously identified. We show that breath rate significantly dropped after visual isolation in a textile bag, a pattern similar to that in adult birds, and increased with the age of chicks as well as with higher ambient temperature. Breath rate was individually repeatable, but did not reflect individual behaviour observed before capture. Our results suggest that, when controlled for ambient temperature and time before catching, the breath rate pattern has the potential to be used as a useful HS test for neonatal Northern Lapwing chicks in the field.

Zusammenfassung

Muster in der Atemfrequenz freilebender, nestflüchtender Kiebitzküken ( Vanellus vanellus )

Individuell spezifische Reaktionen auf Stresssituationen können unterschiedliche individuell spezifische Merkmale wie Persönlichkeit aufzeigen. Die Atemrate und ihre Veränderung während und nach dem Handling (Handling-Stresstest) wurden in der Vergangenheit dazu verwendet, die individuelle Stressantwort zu testen. In früheren Untersuchungen unter Laborbedingungen hat dieser Handling-Stresstest bei adulten Vögeln von nestflüchtenden und nesthockenden Arten konsistent einen kontinuierlichen Abfall von den Höchstwerten unmittelbar nach dem Fang gezeigt. Weil Nestlinge und Altvögel bei nesthockenden Vögeln entgegengesetzte Trends aufweisen, stellt sich die Frage, welches Muster in der Atemfrequenz in Nestflüchter-Küken unter natürlichen Bedingungen auftreten. Ein Entwicklungsvorsprung gegenüber Nesthockern während der früheren Ontogenese könnte zu ähnlichen Atemfrequenzen wie bei Altvögeln führen, aber der Effekt von Alter, (mangelnder) Erfahrung sowie Umweltbedingungen wie der Umgebungstemperatur könnte die Atemfrequenzmuster der Küken deutlich anders als die der Altvögel beeinflussen. In der vorliegenden Studie untersuchten wir die Atemfrequenz als Antwort auf Handling-Stress bei unterschiedlich alten Kiebitzküken (Vanellus vanellus), einer nestflüchtenden Watvogelart. Gleichzeitig bestimmten wir die Faktoren, die für die Variation verantwortlich waren. Wir zeigen, dass die Atemfrequenz nach visueller Isolation in einem Beutel deutlich abfiel, ein Muster vergleichbar mit dem der Altvögel, wohingegen sie mit dem Alter der Küken und mit erhöhter Umgebungstemperatur zunahm. Die Atemfrequenz war individuell wiederholbar, spiegelte aber nicht das vor dem Fang beobachtete, individuelle Verhalten wieder. Unsere Ergebnisse legen nahe, dass das Atemfrequenzmuster das Potential hat, als ein nützlicher Freilandtest für Handling-Stress bei frisch geschlüpften Kiebitzküken verwendet zu werden, wenn man die Umgebungstemperatur und die Zeit vor dem Fang kontrolliert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Angelier F, Parenteau C, Ruault S, Angelier N (2016) Endocrine consequences of an acute stress under different thermal conditions: a study of corticosterone, prolactin, and thyroid hormones in the pigeon (Columba livia). Comp Biochem Phys A 196:38–45

    Article  CAS  Google Scholar 

  • Ball NJ, Amlaner CJ (1980) Changing heart rates of Herring Gulls when approached by humans. In: Amlaner CJ, MacDonald DW (eds) A handbook on biotelemetry and radio tracking. Pergamon, Oxford

    Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  • Beintema AJ, Visser GH (1989) Growth parameters in chicks of charadriiform birds. Ardea 77:169–180

    Google Scholar 

  • Brent R, Rasmussen JG, Bech C, Martini S (1983) Temperature dependence of ventilation and O2-extraction in the Kittiwake, Rissa tridactyla. Experientia 39(10):1092–1093

    Article  Google Scholar 

  • Brent R, Pedersen PF, Bech C, Johansen K (1984) Lung ventilation and temperature regulation in the European Coot Fulica atra. Physiol Zool 57(1):19–25

    Article  Google Scholar 

  • Brommer JE, Kluen E (2012) Exploring the genetics of nestling personality traits in a wild passerine bird: testing the phenotypic gambit. Ecol Evol 2(12):3032–3044

    Article  PubMed  PubMed Central  Google Scholar 

  • Bucher TL, Bartholomew GA (1986) The early ontogeny of ventilation and hemeothermy in an altricial bird, Agapornis reseicollis (Psittaciformes). Resp Physiol 65(2):197–212

    Article  CAS  Google Scholar 

  • Cabanac M, Aizawa S (2000) Fever and tachycardia in a bird (Gallus domesticus) after simple handling. Physiol Behav 69(4):541–545

    Article  CAS  PubMed  Google Scholar 

  • Cabanac AJ, Guillemette M (2001) Temperature and heart rate as stress indicators of handled Common Eider. Physiol Behav 74(4):475–479

    Article  CAS  PubMed  Google Scholar 

  • Carere C, van Oers K (2004) Shy and bold Great Tits (Parus major): body temperature and breath rate in response to handling stress. Physiol Behav 82(5):905–912

    Article  CAS  PubMed  Google Scholar 

  • Cockrem JF, Silverin B (2002) Sight of a predator can stimulate a corticosterone response in the Great Tit (Parus major). Gen Comp Endocr 125:248–255

    Article  CAS  PubMed  Google Scholar 

  • Cramp S, Simmons KEL (1983) Handbook of the birds of Europe, the Middle East, and North Africa: the birds of the Western Palearctic, vol III: waders to gulls. Oxford University Press, Oxford

    Google Scholar 

  • Crawley MJ (2013) The R book, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Dallman MF, Akana SF, Scribner KA, Bradbury MJ, Walker CD, Strack AM, Cascio CS (1992) Stress, feedback and facilitation in the hypothalamo-pituitary-adrenal axis. J Neuroendocrinol 4:517–526

    Article  CAS  PubMed  Google Scholar 

  • David M, Auclair Y, Dechaume-Moncharmont FX, Cézilly F (2011) Handling stress does not reflect personality in female Zebra Finches (Taeniopygia guttata). J Comp Psychol 126:10–14

    Article  PubMed  Google Scholar 

  • de Bruijn R, Romero LM (2011) Behavioral and physiological responses of wild-caught European Starlings (Sturnus vulgaris) to a minor, rapid change in ambient temperature. Comp Biochem Phys A 160:260–266

    Article  Google Scholar 

  • Dingemanse NJ, Dochtermann NA (2013) Quantifying individual variation in behaviour: mixed-effect modelling approaches. J Anim Ecol 82(1):39–54

    Article  PubMed  Google Scholar 

  • Dingemanse NJ, Wolf M (2013) Between-individual differences in behavioural plasticity within populations: causes and consequences. Anim Behav 85:1031–1039

    Article  Google Scholar 

  • Fair JM, Jones J (eds) (2010) Guidelines to the use of wild birds in research. Ornithological Council, Washington, DC

    Google Scholar 

  • Fisher DN, James A, Rodriguez-Munoz R, Tregenza T (2015) Behaviour in captivity predicts some aspects of natural behaviour, but not others, in a wild cricket population. Proc R Soc B. https://doi.org/10.1098/rspb.2015.0708

    PubMed  PubMed Central  Google Scholar 

  • Fucikova E, Drent PJ, Smits N, van Oers K (2009) Handling stress as a measurement of personality in Great Tit nestlings (Parus major). Ethology 115:366–374

    Article  Google Scholar 

  • Groothuis TGG, Carere C (2005) Avian personalities: characterization and epigenesis. Neurosci Biobehav R 29:137–150

    Article  Google Scholar 

  • Impekoven M (1976) Prenatal parent-young interactions in birds and their long-term effects. Adv Stud Behav 7:201–253

    Article  Google Scholar 

  • Kluen E, Siitari H, Brommer JE (2014) Testing for between individual correlations of personality and physiological traits in a wild bird. Behav Ecol Sociobiol 68:205–213

    Article  Google Scholar 

  • Koolhaas JM, Korte SM, De Boer SF, Van Der Vegt BJ, Van Reenen CG, Hopster H, De Jong IC, Ruis MA, Blokhuis HJ (1999) Coping styles in animals: current status in behavior and stress-physiology. Neurosci Biobehav R 23(7):925–935

    Article  CAS  Google Scholar 

  • Korneeva EV, Aleksandrov LI, Golubeva TB, Raevskii VV (2006) Development of the auditory sensitivity and formation of the acoustically guided defensive behavior in nestlings of the Pied Flycatcher Ficedula hypoleuca. J Evol Biochem Phys 42:691–698

    Article  Google Scholar 

  • Korte SM, Ruesink W, Blokhuis HJ (1998) Heart rate variability during manual restraint in chicks from high- and low-feather pecking lines of laying hens. Physiol Behav 65(4):649–652

    Article  Google Scholar 

  • Kubelka V, Zámečník V, Šálek M (2012) Přímá ochrana hnízd čejky chocholaté (Vanellus vanellus)—metodika pro rok 2012. Vanellus—Zpravodaj Skupiny Pro Výzkum Ochranu Bahňáků ČR 7:66–75

  • Love OP, Bird DM, Shutt LJ (2003) Corticosterone levels during post-natal development in captive American Kestrels (Falco sparverius). Gen Comp Endocrinol 130:135–141

    Article  CAS  PubMed  Google Scholar 

  • Lynn SE, Kern MD (2014) Environmentally relevant bouts of cooling stimulate corticosterone secretion in free-living Eastern Bluebird (Sialia sialis) nestlings: potential links between maternal behavior and corticosterone exposure in offspring. Gen Comp Endoc 196:1–7

    Article  CAS  Google Scholar 

  • Nakagawa S, Schielzeth H (2010) Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol Rev 85:935–956

    PubMed  Google Scholar 

  • Pearson JT, Tsudzuki M, Nakane YO, Akiyama RY, Tazawa HI (1998) Development of heart rate in the precocial King Quail Coturnix chinensis. J Exp Biol 201(7):931–941

    CAS  PubMed  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Reeder DM, Kramer KM (2005) Stress in free-ranging mammals: integrating physiology, ecology, and natural history. J Mammal 86(2):225–235

    Article  Google Scholar 

  • Romero LM (2004) Physiological stress in ecology: lessons from biomedical research. Trends Ecol Evol 19(5):249–255

    Article  PubMed  Google Scholar 

  • Rydéan OO (1982) Selective resistance to approach: a precursor to fear responses to an alarm call in Great Tit nestlings Parus major. Dev Psychobiol 15:113–120

    Article  Google Scholar 

  • Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, supppressive, stimulatory, and preparative actions. 1. Endocrine Rev 21:55–89

    CAS  Google Scholar 

  • Sordahl TA (1982) Antipredator behavior of American Avocet and Black-necked Stilt chicks. J Field Ornithol 53(4):315–325

    Google Scholar 

  • Starck JM, Ricklefs RE (1998) Patterns of development: the altricial-precocial spectrum. In: Starck JM, Ricklefs RE (eds) Avian growth and development: evolution within the altricial-precocial spectrum. Oxford University Press, Oxford

    Google Scholar 

  • van Oers K, Carere C (2007) Long-term effects of repeated handling and bleeding in wild caught Great Tits Parus major. J Ornithol 148:185–190

    Article  Google Scholar 

  • van Paassen AG, Veldman DH, Beintema AJ (1984) A simple device for determination of incubation stages in eggs. Wildfowl 35:173–178

    Google Scholar 

  • Visser GH, Ricklefs RE (1993) Development of temperature regulation in shorebirds. Physiol Zool 66(5):771–792

    Article  Google Scholar 

  • Walters JR (1990) Anti-predatory behavior of lapwings: field evidence of discriminative abilities. Wilson Bull 102:49–70

    Google Scholar 

  • Zhao QS, Hu YB, Liu PF, Chen LJ, Sun YH (2016) Nest site choice: a potential pathway linking personality and reproductive success. Anim Behav 118:97–103

    Article  Google Scholar 

Download references

Acknowledgements

Permission to capture, handle, and ring wild Northern Lapwing chicks was granted by the Bird Ringing Centre under National Museum, Prague (Krouzkovaci Stanice Narodniho Muzea, Praha), licence number 1165. This study was funded by the Internal Grant Agency of the Faculty of Environmental Sciences of the Czech University of Life Sciences (project no. 20154238). The authors thank Mark Sixsmith for his linguistic advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Karlíková.

Additional information

Communicated by L. Fusani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karlíková, Z., Kejzlarová, T. & Šálek, M. Breath rate patterns in precocial Northern Lapwing (Vanellus vanellus) chicks in the wild. J Ornithol 159, 555–563 (2018). https://doi.org/10.1007/s10336-017-1517-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-017-1517-9

Keywords

Navigation