Advertisement

Journal of Ornithology

, Volume 159, Issue 2, pp 413–424 | Cite as

Climate change, predictive modelling and grassland specialists: assessing impacts of changing climate on the long-term conservation of Lesser Grey Shrikes (Lanius minor) in Romania

  • Attila D. Sándor
  • Cristian Domşa
Original Article

Abstract

Climate change is considered one of the greatest challenges that current biodiversity is facing. Successful adaptation of different species to climate-related changes depends on their ability to follow the habitat shift by modifying their range. We assessed the projected future range changes for a grassland specialist bird using two available climate scenarios. The model subject, the Lesser Grey Shrike (Lanius minor), is a vulnerable grassland specialist, distributed in southeastern Europe, with its European population concentrated in Romania. We created a distribution model for the species using data provided by the national Common Bird Monitoring Programme for the years 2002–2005. Several different statistical models, based on the generalised linear model and multivariate adaptive regression splines, were tested with use of the available habitat and climate data. The final working model was selected by means of the lowest root mean square error from the cross-validation process. The model was tested against two climate scenarios—A1 (integrated world, rapid economic growth) and B2 (regional development, environmentally friendly scenario)—on a long-term (2050) scale. To assess the efficiency of site-based conservation (Natura 2000 sites) as the only tool currently in place for the preservation of Lesser Grey Shrike populations in Romania, we evaluated the mean changes in suitable habitats inside the national protected area network. The projected changes show large-scale reduction of suitable habitats, both inside protected areas and at the national level, due to the forecasted shifts in grassland belts. Our results show that under both scenarios, two thirds of the seminatural grasslands will be out of the recent protected area system by 2050. Small protected areas will lose more habitats than larger ones, irrespective of the Lesser Grey Shrike populations breeding therein. These results suggest that current site-based protection measures will become largely insufficient for the conservation of seminatural grasslands and the associated flora and fauna in the long term in Romania.

Keywords

Grassland Climate change Lanius minor Distribution model Protected area Range 

Zusammenfassung

Klimawandel, Modellvoraussagen und Weidelandspezialisten: Einschätzung der Bedeutung des sich ändernden Klimas auf den langfristigen Schutz von Schwarzstirnwürgern ( Lanius minor ) in Rumänien Der Klimawandel gilt als eine der größten Herausforderungen, mit denen die derzeitige Artenvielfalt konfrontiert ist. Eine erfolgreiche Anpassung verschiedener Arten an klimatisch bedingte Veränderungen hängt von ihrer Fähigkeit ab, der Verschiebung des Lebensraumes durch eine Änderung ihres Verbreitungsgebietes zu begegnen. Wir schätzten die zu erwartenden zukünftigen Änderungen in der Verbreitung einer auf Weideland spezialisierten Vogelart basierend auf zwei zur Verfügung stehenden Klimaszenarien. Die Modellart, der in Südosteuropa verbreitete Schwarzstirnwürger (Lanius minor), ist ein gefährdeter Weidelandspezialist, dessen europäische Population ihren Schwerpunkt in Rumänien hat. Auf der Grundlage von Daten aus dem nationalen Monitoring häufiger Brutvogelarten aus den Jahren 2002-2005 erstellten wir ein Verbreitungsmodell für die Art. Wir testeten eine Reihe verschiedener statistischer Modelle auf der Grundlage Generalisierter Linearer Modelle (GLM) und Multivariater Regressiver Regressions-Splinen (MARS), unter Verwendung der verfügbaren Habitat- und Klimadaten. Das endgültige Arbeitsmodell wurde anhand des niedrigsten RMSE-Wertes aus dem Kreuzvalidierungsprozess ausgewählt. Dieses Modell wurde für zwei Klimaszenarien A1 (Globalisierung, schnelles Wirtschaftswachstum) und B2 (regionale Entwicklung, umweltfreundliches Szenario) im langfristigen Maßstab (bis 2050) getestet. Um die Wirksamkeit von flächenbezogenen Schutzmaßnahmen (Natura 2000-Gebiete) zu beurteilen, welche derzeit das einzige Mittel zum Erhalt der rumänischen Schwarzstirnwürger-Populationen darstellen, bewerteten wir die mittleren Veränderungen an geeigneten Lebensräumen innerhalb des Netzwerkes nationaler Schutzgebiete. Die vermuteten Veränderungen zeigen großflächiges Verschwinden geeigneter Habitate, sowohl innerhalb der Schutzgebiete als auch auf Landesebene, aufgrund der zu erwartenden Verschiebungen der Weidelandgürtel. Unsere Ergebnisse zeigen, dass bei beiden Szenarien bis 2050 zwei Drittel des halbnatürlichen Weidelandes außerhalb des derzeitigen Netzwerkes von Schutzgebieten liegen wird. Kleinere Schutzgebiete werden höhere Habitatverluste erleiden als größere, unabhängig davon, ob dort Schwarzstirnwürger-Populationen brüten. Diese Befunde legen nahe, dass die derzeitigen flächenbezogenen Schutzmaßnahmen in Rumänien langfristig zum Erhalt des halbnatürlichen Weidelandes und der dort lebenden Flora und Fauna nicht mehr ausreichen werden.

Notes

Acknowledgements

The Common Bird Monitoring Programme in Romania is implemented by the Romanian Ornithological Society, the Milvus Group and Babes-Bolyai University, Cluj, and was supported by the Royal Society for the Protection of Birds and the European Bird Census Council (through the Pan-European Common Bird Monitoring Scheme), and the Ministry of Agriculture and Rural Development (2009–2010). We thank all the volunteers who participated in the field surveys. András Báldi commented on the manuscript, significantly improving its contents.

References

  1. Albuquerque FS, Assunção-Albuquerque MJT, Cayuela L, Zamora R, Benito BM (2013) European bird distribution is “well” represented by special protected areas: mission accomplished? Biol Conserv 159:45–50CrossRefGoogle Scholar
  2. Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688CrossRefGoogle Scholar
  3. Araujo MB, Alagador D, Cabeza M, Nogues-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arponen A, Heikkinen RK, Paloniemi R, Pöyry J, Similä J, Kuussaari M (2013) Improving conservation planning for semi-natural grasslands: integrating connectivity into agri-environment schemes. Biol Conserv 160:234–241CrossRefGoogle Scholar
  5. Bertelsmeier C, Luque GM, Courchamp F (2013) The impact of climate change changes over time. Biol Conserv 167:107–115CrossRefGoogle Scholar
  6. BirdLife International (2004a) Birds in Europe: population estimates, trends and conservation status. BirdLife International, CambridgeGoogle Scholar
  7. BirdLife International (2004b) Birds in the European union: a status assessment. BirdLife International, WageningenGoogle Scholar
  8. Brotons L, Thuiller W, Araújo MB, Hirzel AH (2004) Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography 27:437–448CrossRefGoogle Scholar
  9. Brotons L, De Cáceres M, Fall A, Fortin MJ (2012) Modelling bird species distribution change in fire prone Mediterranean landscapes: incorporating species dispersal and landscape dynamics. Ecography 35:458–467CrossRefGoogle Scholar
  10. Carroll C, Dunk JR, Moilanen A (2010) Optimizing resiliency of reserve networks to climate change: multispecies conservation planning in the Pacific Northwest, USA. Global Change Biol 16:891–904CrossRefGoogle Scholar
  11. Chamberlain DE, Negro M, Caprio E, Rolando A (2013) Assessing the sensitivity of alpine birds to potential future changes in habitat and climate to inform management strategies. Biol Conserv 167:127–135CrossRefGoogle Scholar
  12. Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R, Zeller D, Pauly D (2010) Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biol 16:24–35CrossRefGoogle Scholar
  13. Conroy MJ, Runge MC, Nichols JD, Stodola KW, Cooper RJ (2011) Conservation in the face of climate change: the roles of alternative models, monitoring, and adaptation in confronting and reducing uncertainty. Biol Conserv 144:1204–1213CrossRefGoogle Scholar
  14. Cramp S, Perrins CM (eds) (1993) Handbook of the birds of Europe, the Middle East, and North Africa. The birds of the Western Palearctic volume VII: flycatchers to shrikes. Oxford University Press, OxfordGoogle Scholar
  15. D’Alba L, Monaghan P, Nager RG (2010) Advances in laying date and increasing population size suggest positive responses to climate change in common Eiders Somateria mollissima in Iceland. Ibis 152:19–28CrossRefGoogle Scholar
  16. del Barrio G, Harrison PA, Berry PM, Butt N, Sanjuan ME, Pearson RG, Dawson P (2006) Integrating multiple modelling approaches to predict the potential impacts of climate change on species’ distributions in contrasting regions: comparison and implications for policy. Environ Sci Policy 9:129–147CrossRefGoogle Scholar
  17. Elith J, Graham CH (2009) Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models. Ecography 32:66–77CrossRefGoogle Scholar
  18. Elith J, Graham H, Anderson CP, Dudík R, Ferrier M, Guisan S, Hijmans AJ, Huettmann R, Leathwick FR, Lehmann J, Li A, Lohmann JG, Loiselle A, Manion B, Moritz G, Nakamura C, Nakazawa M, Overton CNM, Townsend Peterson J, Phillips AJ, Richardson S, Scachetti-Pereira K, Schapire RE, Soberón R, Williams J, Wisz SS, Zimmermann EM (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  19. Fischer J, Batáry P, Bawa KS, Brussaard P, Chappell MJ, Clough Z, Daily GC, Dorrough J, Hartel T, Jackson LE, Klein AM, Kremen C, Juemmerle T, Lindenmayer DB, Mooney HA, Perfecto I, Philpott SM, Tscharntke T, Vandermeer J, Wanger TC, Wehrden H (2011) Conservation: limits of land sparing. Science 334:593CrossRefPubMedGoogle Scholar
  20. Gamero A, Brotons L, Brunner A, Foppen R, Fornasari L, Gregory RD, Lehikoinen A (2017) Tracking progress towards EU biodiversity strategy targets: EU policy effects in preserving its common farmland birds. Conserv Lett 10:395–402.  https://doi.org/10.1111/conl.12292 CrossRefGoogle Scholar
  21. Gaston KJ, Jackson SF, Nagy A, Cantú-Salazar L, Johnson M (2008) Protected areas in Europe. Principle and practice. Ann N Y Acad Sci 1134:97–119CrossRefPubMedGoogle Scholar
  22. Giralt D, Brotons LL, Valera F, Kristin A (2008) The role of natural habitats in agricultural systems for bird conservation: the case of the threatened Lesser Grey Shrike. Biodivers Conserv 17:1997–2012CrossRefGoogle Scholar
  23. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186CrossRefGoogle Scholar
  24. Hamer KC (2010) The search for winners and losers in a sea of climate change. Ibis 152:3–5CrossRefGoogle Scholar
  25. Harrison PA, Berry PM, Butt N, New M (2006) Modelling climate change impacts on species’ distributions at the European scale: implications for conservation policy. Environ Sci Policy 9:116–128CrossRefGoogle Scholar
  26. Hastie TJ, Pregibon D (1992) Generalized linear models. In: Chambers J, Hastie T (eds) Statistical models in S. Wadsworth, Pacific Grove, pp 195–247Google Scholar
  27. Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785CrossRefGoogle Scholar
  28. Herremans M (1998) Monitoring the world population of the Lesser Grey Shrike (Lanius minor) on the non-breeding grounds in southern Africa. J Ornithol 139:485–493CrossRefGoogle Scholar
  29. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  30. Huntley B, Green RE, Collingham YC, Willis SG (2007) A climatic Atlas of European breeding birds. Lynx, BarcelonaGoogle Scholar
  31. Iojă CI, Pătroescu M, Rozylowicz L, Popescu VD, Vergheleţ M, Zotta MI, Felciuc M (2010) The efficacy of Romania’s protected areas network in conserving biodiversity. Biol Conserv 143:2468–2476CrossRefGoogle Scholar
  32. Jetz W, Wilcove DS, Dobson AP (2007) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol 5:e157CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kleijn D, Schekkerman H, Dimmers WJ, van Kats RJM, Melman D, Teunissen WA (2010) Adverse effects of agricultural intensification and climate change on breeding habitat quality of Black-tailed Godwits Limosa l. limosa in the Netherlands. Ibis 152:475–486CrossRefGoogle Scholar
  34. Koleček J, Reif J, Šťastný K, Bejček V (2010) Changes in bird distribution in a central European country between 1985–1989 and 2001–2003. J Ornithol 151:923–932CrossRefGoogle Scholar
  35. Krištín A (2008) Lesser Grey Shrike (Lanius minor). In: Del Hoyo J, Elliot A, Christie DA (eds) Handbook of the birds of the world, vol 13. Lynx, Barcelona, p 785Google Scholar
  36. Krištín A, Hoi H, Valera F, Hoi C (2007) Philopatry, dispersal patterns and nest-site reuse in Lesser Grey Shrikes (Lanius minor). Biodivers Conserv 16:987–995CrossRefGoogle Scholar
  37. La Sorte FA, Jetz W (2010) Avian distributions under climate change: towards improved projections. J Exp Biol 213:862–869CrossRefPubMedGoogle Scholar
  38. Leathwick JR, Elith J, Hastie T (2006) Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecol Model 199:188–196CrossRefGoogle Scholar
  39. Lefranc N (1995) Decline and current status of the Lesser Grey Shrike (Lanius minor) in Western Europe. Proc West Found Vertebr Zool 6:93–97Google Scholar
  40. Lefranc N, Worfolk T (1997) Shrikes: a guide to the shrikes of the world. Pica, RobertsbridgeGoogle Scholar
  41. López-López P, García-Ripollés C, Soutullo Á, Cadahía L, Urios V (2007) Are important bird areas and special protected areas enough for conservation? The case of Bonelli’s eagle in a Mediterranean area. Biodivers Conserv 16:3755–3780CrossRefGoogle Scholar
  42. Marcer A, Sáez L, Molowny-Horas R, Pons X, Pino J (2013) Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biol Conserv 166:221–230CrossRefGoogle Scholar
  43. Morelli F, Tryjanowski P (eds) (2017) Birds as useful indicators of high nature value farmlands. Springer, BerlinGoogle Scholar
  44. Papp T, Sándor AD (eds) (2007) Arii de Importanţă Avifaunistică din România/Important Bird Areas in Romania. Societatea Ornitologică Română and Asociaţia pentru Protecţia Păsărilor şi a Naturii “Grupul Milvus”, Târgu Mureş, p 252Google Scholar
  45. Pearce-Higgins JW, Dennis P, Whittingham MJ, Yalden DW (2010) Impacts of climate on prey abundance account for fluctuations in a population of a northern wader at the southern edge of its range. Glob Chang Biol 16:12–23CrossRefGoogle Scholar
  46. Pearce-Higgins JW, Bradbury RB, Chamberlain DE, Drewitt A, Langston RHW, Willis SG (2011) Targeting research to underpin climate change adaptation for birds. Ibis 153:207–211CrossRefGoogle Scholar
  47. Popescu VD, Rozylowicz L, Cogălniceanu D, Niculae IM, Cucu AL (2013) Moving into protected areas? Setting conservation priorities for Romanian reptiles and amphibians at risk from climate change. PLoS ONE 8:e79330CrossRefPubMedPubMedCentralGoogle Scholar
  48. R Development Core Team (2009) R: a language and environment for statistical computing R Foundation for Statistical Computing. Vienna. http://wwwR-project.org
  49. Ramirez J, Jarvis A (2008) High resolution statistically downscaled future climate surfaces. International Center for Tropical Agriculture, CGIAR Research Program on Climate Change, Agriculture and Food Security, CaliGoogle Scholar
  50. Regos A, D’Amen M, Herrando S, Guisan A, Brotons L (2015) Fire management, climate change and their interacting effects on birds in complex Mediterranean landscapes: dynamic distribution modelling of an early-successional species—the near-threatened Dartford Warbler (Sylvia undata). J Ornithol 156:275–286CrossRefGoogle Scholar
  51. Ruiz-Labourdette D, Nogués-Bravo D, Ollero HS, Schmitz MF, Pineda FD (2012) Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. J Biogeogr 39:162–176CrossRefGoogle Scholar
  52. Sándor AD, Domșa C (2012) Special protected areas (SPA) for the conservation of Romania’ forest birds: status assessment and possible expansion using predictive tools. Acta Zool Bulg 64:367–374Google Scholar
  53. Saunders DA, Wintle BA, Mawson PR, Dawson R (2013) Egg-laying and rainfall synchrony in an endangered bird species: implications for conservation in a changing climate. Biol Conserv 161:1–9CrossRefGoogle Scholar
  54. Sauter A, Korner-Nievergelt F, Jenni L (2010) Evidence of climate change effects on within-winter movements of European Mallards Anas platyrhynchos. Ibis 152:600–609CrossRefGoogle Scholar
  55. Schwartz MW (2012) Using niche models with climate projections to inform conservation management decisions. Biol Conserv 155:149–156CrossRefGoogle Scholar
  56. Seavy NE, Dybala KE, Snyder MA (2008) Climate models and ornithology. Auk 125:1–10CrossRefGoogle Scholar
  57. Smallegange IM, Van Der Meer J, Fiedler W (2011) Population dynamics of three songbird species in a nestbox population in central Europe show effects of density, climate and competitive interactions. Ibis 153:806–817CrossRefGoogle Scholar
  58. Strange N, Jellesmark Thorsen B, Bladt J, Wilson KA, Rahbek C (2011) Conservation policies and planning under climate change. Biol Conserv 144:2968–2977CrossRefGoogle Scholar
  59. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, Ferreira de Siqueira M, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Townsend Peterson A, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148CrossRefPubMedGoogle Scholar
  60. Triviño M, Cabeza M, Thuiller W, Hickler T, Araújo MB (2013) Risk assessment for Iberian birds under global change. Biol Conserv 168:192–200CrossRefGoogle Scholar
  61. Troupin D, Carmel Y (2014) Can agro-ecosystems efficiently complement protected area networks? Biol Conserv 169:158–166CrossRefGoogle Scholar
  62. Tryjanowski P, Sparks TH, Kuczyński L, Kuźniak S (2004) Should avian egg size increase as a result of global warming? A case study using the red-backed shrike (Lanius collurio). J Ornithol 145:264–268CrossRefGoogle Scholar
  63. Tryjanowski P, Sparks TH, Profus P (2005) Uphill shifts in the distribution of the white stork Ciconia ciconia in southern Poland: the importance of nest quality. Divers Distrib 11:219–223CrossRefGoogle Scholar
  64. Unander S, Pedersen ÅØ, Soininen EM, Descamps S, Hörnell-Willebrand M, Fuglei E (2016) Populations on the limits: survival of Svalbard rock ptarmigan. J Ornithol 157:407–418CrossRefGoogle Scholar
  65. Wiens JA, Seavy NE, Jongsomjit D (2011) Protected areas in climate space: what will the future bring? Biol Conserv 144:2119–2125CrossRefGoogle Scholar
  66. Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, NCEAS Predicting Species Distributions Working Group (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773CrossRefGoogle Scholar
  67. Zar JH (1996) Biostatistical analysis. Prentice Hall, Upper Saddle RiverGoogle Scholar

Copyright information

© Dt. Ornithologen-Gesellschaft e.V. 2017

Authors and Affiliations

  1. 1.Department of Parasitology and Parasitic DiseasesUniversity of Agricultural Sciences and Veterinary Medicine Cluj-NapocaCluj-NapocaRomania
  2. 2.Romanian Ornithological SocietyBucharestRomania

Personalised recommendations