Skip to main content

Advertisement

Log in

Disentangling the drivers of change in Common Teal migration phenology over 50 years: land use vs. climate change effects

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

A large body of research has accumulated on the impact of climate change on wildlife movements and distributions, especially for migratory birds. We used large ringing datasets for the Common Teal (Anas crecca) from the Camargue, southern France, to compare historic (from 1956–1975) spatiotemporal patterns of teal recovery with those seen in modern (2002–2012) years and assess whether the migration phenology of these ringed birds and their use of the Camargue as winter quarters has changed. Because teal are short-distance migrants (i.e., they breed in northern Europe and winter north of the Sahara), they would be predicted to delay their autumn migration in response to climate change. Conversely, ring recoveries showed that teal are now arriving much earlier: a stable 80 % of the recoveries were made locally in the Camargue each week between mid-November and late January in the modern dataset, whereas this percentage was only 53 % on average in the older data, and the proportion of recoveries made locally in the Camargue gradually increased through the autumn and winter until late January. This suggests that Camargue habitats have changed markedly and become more attractive to teal compared to other potential wintering areas, consistent with known changes in local habitat management practices and improvements in the body condition of the birds. Despite the fact that global climate change will likely be one of the main drivers of wildlife distribution over the long term and at large spatial scales, local habitat management should not be overlooked, as it can increase habitat attractivity to migratory birds.

Zusammenfassung

Entflechtung der Einflussfaktoren auf die Phänologie des Zugverhaltens der Krickente über 50 Jahre: Landnutzung oder Klimawandel?

Es gibt inzwischen eine Vielzahl von Studien zu Einflüssen des Klimawandels auf Bewegungsmuster und Vorkommen von Wildtieren, insbesondere von Zugvögeln. Wir nutzten hier einen großen Datensatz zur Beringung der Krickente Anas crecca aus der Camargue in Südfrankreich, um die räumlich-zeitlichen Verteilungsmuster der Wiederfunde zwischen alten (1956–1975) und jungen (2002–2012) Jahren zu vergleichen und zu überprüfen, ob sich die Phänologie des Zuges dieser beringten Vögel und ihre Nutzung der Camargue als Winterquartier zwischenzeitlich geändert hat. Da Krickenten Kurzstreckenzieher sind (sie brüten in Nordeuropa und überwintern nördlich der Sahara), wurde angenommen, dass sich ihr Herbstzug aufgrund des Klimawandels verzögern würde. Gegensätzlich stellte sich aber heraus, dass Krickenten heutzutage viel früher ankommen: es wurden stets um die 80 % der Wiederfunde jede Woche zwischen Mitte November und Ende Januar in der Camargue verzeichnet, während im alten Datensatz dieser Prozentsatz bei nur etwa 53 % lag, sich aber über den Herbst bis hin zum Ende des Januars erhöhte. Dies deutet darauf hin, dass die Lebensräume in der Camargue sich stark verändert haben und für Krickenten attraktiver geworden sind im Vergleich zu anderen möglichen Wintergebieten. Dies ist im Einklang mit bekannten Veränderungen in der Landnutzung vor Ort und einer verbesserten Körperkondition der Vögel. Obwohl der globale Klimawandel wahrscheinlich langfristig und über große geographische Flächen einer der Haupt-Einflussfaktoren der Verteilung von Arten sein wird, so ist doch die Nutzung der Flächen vor Ort ein wichtiger Faktor, der die Attraktivität eines Lebensraumes für Zugvögel erhöhen kann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adamík P, Pietruszková J (2008) Advances in spring but variable autumnal trends in timing of inland wader migration. Acta Ornithol 43:119–128

    Article  Google Scholar 

  • Anthes N (2004) Long-distance migration timing of Tringa sandpipers adjusted to recent climate change. Bird Study 51:203–211

    Article  Google Scholar 

  • Arzel C, Dessborn L, Pöysä H, Elmberg J, Nummi P, Sjöberg K (2014) Early springs and breeding performance in two sympatric duck species with different migration strategies. Ibis 156:288–298

    Article  Google Scholar 

  • Barshep Y, Meissner W, Underhill LG (2012) Timing of migration of the Curlew Sandpiper (Calidris ferruginea) through Poland in relation to Arctic breeding conditions. Ornis Fenn 89:120–129

    Google Scholar 

  • Berthold P, Terrill SB (1988) Migratory behaviour and population growth of Blackcaps wintering in Britain and Ireland: some hypotheses. Ring Migr 9:153–159

    Article  Google Scholar 

  • Blondel J, Picon B (2013) L’histoire de la protection de la nature. In: Blondel J, Barruol G, Vianet R (eds) L’Encyclopédie de la Camargue. Buchet-Chastel, Paris, pp 105–107

    Google Scholar 

  • Brochet AL, Mouronval JB, Aubry P, Gauthier-Clerc M, Green AJ, Fritz H, Guillemain M (2012) Diet and feeding habitats of Camargue dabbling ducks: what has changed since the 1960s? Waterbirds 35:555–576

    Article  Google Scholar 

  • Bub H (1991) Bird trapping and bird banding. A handbook for trapping methods all over the world. Cornell University Press, Ithaca

  • Caizergues A, Guillemain M, Arzel C, Devineau O, Leray G, Pilvin D, Lepley M, Massez G, Schricke V (2011) Emigration rates and population turnover of teal Anas crecca in two major wetlands of western Europe. Wildl Biol 17:373–382

    Article  Google Scholar 

  • Chambers LE, Beaumont LJ, Hudson IL (2014) Continental scale analysis of bird migration timing: influences of climate and life history traits—a generalized mixture model clustering and discriminant approach. Int J Biomet 58:1147–4462

  • Crick HQP (2004) The impact of climate change on birds. Ibis 146(Suppl. 1):48–56

    Article  Google Scholar 

  • Dalby L (2013) Waterfowl, duck distributions and a changing climate. PhD thesis. Aarhus University, Aarhus

  • Duncan P, Hewison AJM, Houte S, Rosoux R, Tournebize T, Dubs F, Burel F, Bretagnolle V (1999) Long-term changes in agricultural practices and wildfowling in an internationally important wetland, and their effects on the guild of wintering ducks. J Appl Ecol 36:11–23

    Article  Google Scholar 

  • Elmberg J, Hessel R, Fox AD, Dalby L (2014) Interpreting seasonal range shifts in migratory birds: a critical assessment of ‘short-stopping’ and a suggested terminology. J Ornithol 155:571–579

    Article  Google Scholar 

  • Fiedler W, Bairlein F, Köppen U (2004) Using large-scale data from ringed birds for the investigation of effects of climate change on migrating birds: pitfalls and prospects. Adv Ecol Res 35:49–67

    Google Scholar 

  • Filippi-Codaccioni O, Moussus JP, Urcun JP, Jiguet F (2010) Advanced departure dates in long-distance migratory raptors. J Ornithol 151:687–694

    Article  Google Scholar 

  • Fleskes JP, Yee JL, Casazza ML, Miller MR, Takekawa JY, Orthmeyer DL (2005) Waterfowl distribution, movements and habitat use relative to recent habitat changes in the Central Valley of California: a cooperative project to investigate impacts of the Central Valley Habitat Joint Venture and changing agricultural practices on the ecology of wintering waterfowl. Final Report. US Geological Survey, Western Ecological Research Center, Dixon

  • Gordo O (2007) Why are bird migration dates shifting? A review of weather and climate effects on avian migration phenology. Clim Res 35:37–58

    Article  Google Scholar 

  • Gordo O, Sanz JJ (2006) Climate change and bird phenology: a long-term study in the Iberian Peninsula. Glob Change Biol 12:1993–2004

    Article  Google Scholar 

  • Gordo O, Tryjanowski P, Kosicki JZ, Fulín M (2013) Complex phonological changes and their consequences in the breeding success of a migratory bird, the white stork Ciconia ciconia. J Anim Ecol 82:1072–1086

    Article  PubMed  Google Scholar 

  • Guillemain M, Elmberg J (2014) The teal. T & AD Poyser, London

  • Guillemain M, Fritz H, Duncan P (2002) The importance of protected areas as nocturnal feeding grounds for dabbling ducks wintering in western France. Biol Cons 103:183–198

    Article  Google Scholar 

  • Guillemain M, Mondain-Monval JY, Johnson AR, Simon G (2005) Long-term climatic trend and body size variation in teal Anas crecca. Wildl Biol 11:81–88

    Article  Google Scholar 

  • Guillemain M, Arzel C, Mondain-Monval JY, Schricke V, Johnson AR, Simon G (2006) Spring migration dates of teal Anas crecca ringed in the Camargue, southern France. Wildl Biol 12:163–169

    Article  Google Scholar 

  • Guillemain M, Fuster J, Lepley M, Mouronval JB, Massez G (2009) Winter site fidelity is higher than expected for Eurasian Teal Anas crecca in the Camargue, France. Bird Study 56:272–275

  • Guillemain M, Elmberg J, Gauthier-Clerc M, Massez G, Hearn R, Champagnon J, Simon G (2010) Wintering French Mallard and Teal are heavier and in better condition than 30 years ago: effects of a changing environment? Ambio 39:170–180

    Article  PubMed Central  PubMed  Google Scholar 

  • Guillemain M, Devineau O, Gauthier-Clerc M, Hearn R, King R, Simon G, Grantham M (2011) Changes in ring recovery rates over the last 50 years: shall we continue to ring ducks? J Ornithol 152:55–61

  • Guillemain M, Pöysä H, Fox AD, Arzel C, Dessborn L, Ekroos J, Gunnarsson G, Holm TE, Christensen TK, Lehikoinen A, Mitchell C, Rintala J, Møller AP (2013) Effects of climate change on European ducks: what do we know and what do we need to know? Wildl Biol 19:404–419

    Article  Google Scholar 

  • Guillemain M, Van Wilgenburg SL, Legagneux P, Hobson KA (2014) Assessing geographic origins of Teal through analysis of stable-hydrogen (δ2H) isotopes and ring-recoveries. J Ornithol 155:165–172

  • Gunnarsson G, Waldenström J, Fransson T (2012) Direct and indirect effects of winter harshness on the survival of Mallards Anas platyrhynchos in northwest Europe. Ibis 154:307–317

    Article  Google Scholar 

  • Heath JA, Steenhof K, Foster MA (2012) Shorter migration distances associated with higher winter temperatures suggest a mechanism for advancing nesting phenology of American kestrels Falco sparverius. J Avian Biol 43:376–384

    Article  Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61

    Article  PubMed  Google Scholar 

  • Huntley B, Green RE, Collingham YC, Willis SG (2007) A climatic atlas of European breeding birds. Lynx Edicions, Barcelona

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Jenni L, Kéry M (2003) Timing of autumn bird migration under climate change: advances in long-distance migrants, delays in short-distance migrants. Proc R Soc Lond B 270:1467–1471

    Article  Google Scholar 

  • Jonzén N, Lindén A, Ergon T, Knudsen E, Vik JO, Rubolini D, Piacentini D, Brinch C, Spina F, Karlsson L, Stervander M, Andersson A, Waldenström J, Lehikoinen A, Edvardsen E, Solvang R, Stenseth NC (2006) Rapid advance of spring arrival dates in long-distance migratory birds. Science 312:1959–1961

    Article  PubMed  Google Scholar 

  • Kayser Y, Blanchon T, Galewski T, Gauthier-Clerc M, Poulin B, Thibault M, Massez G, Tiné R, Sadoul N, Pin C, Chérain Y, Vandewalle P, Vialet E, Paulus G, Vincent-Martin N, Ponchon C, Pilard P, Flitti A, Isenmann P, Béchet A (2014) Compte-rendu ornithologique Camargue-Crau-Alpilles pour les années 2007-2012. Tour du Valat & SNPN/Réserve nationale de Camargue, Arles

    Google Scholar 

  • Knudsen E, Lindén A, Both C, Jonzén N, Pulido F, Saino N, Sutherland WJ, Bach LA, Coppack T, Ergon T, Gienapp P, Gill JA, Gordo O, Hedenström A, Lehikoinen E, Marra PP, Møller AP, Nilsson ALK, Péron G, Ranta E, Rubolini D, Sparks TH, Spina F, Studds CE, Sæther SA, Tryjanowski P, Stenseth NC (2011) Challenging claims in the study of migratory birds and climate change. Biol Rev 86:928–946

    Article  PubMed  Google Scholar 

  • Korner-Nievergelt F, Sauter A, Atkinson PW, Guélat J, Kania W, Kéry M, Köppen U, Robinson RA, Schaub M, Thorup K, van der Jeugd H, van Noordwijk AJ (2010) Improving the analysis of movement data from marked individuals through explicit estimation of observer heterogeneity. J Avian Biol 41:8–17

    Article  Google Scholar 

  • La Sorte FA, Thompson FRIII (2007) Poleward shifts in winter ranges of North American Birds. Ecology 88:1803–1812

    Article  PubMed  Google Scholar 

  • Lehikoinen A, Jaatinen K (2012) Delayed autumn migration in northern European waterfowl. J Ornithol 153:563–570

    Article  Google Scholar 

  • Lehikoinen E, Sparks TH (2010) Changes in migration. In: Møller AP, Fiedler W, Berthold P (eds) Effects of climate change on birds. Oxford University Press, Oxford, pp 89–112

    Google Scholar 

  • Lehikoinen A, Jaatinen K, Vähätalo AV, Clausen P, Crowe O, Deceuninck B, Hearn R, Holt CA, Hornman M, Keller V, Nilsson L, Langendoen T, Tománkova I, Wahl J, Fox AD (2013) Rapid climate driven shifts in wintering distributions of three common waterbird species. Glob Change Biol 19:2071–2081

    Article  Google Scholar 

  • Long PR, Szekely T, Kershaw M, O’Connell M (2007) Ecological factors and human threats both drive wildfowl population declines. Anim Cons 10:183–191

    Article  Google Scholar 

  • Madsen J (1998) Experimental refuges for migratory waterfowl in Danish wetlands. II. Tests of hunting disturbance effects. J Appl Ecol 35:398–417

    Article  Google Scholar 

  • Márquez-Ferrando R, Figuerola J, Hooijmeijer JCEW, Piersma T (2014) Recently created man-made habitats in Doñana provide alternative wintering space for the threatened Continental European black-tailed godwit population. Biol Cons 171:127–135

    Article  Google Scholar 

  • Martínez-Abraín A, Viedma C, Bartolomé MA, Gómez JA, Oro D (2007) Hunting sites as ecological traps for coots in southern Europe: implications for the conservation of a threatened species. Endang Species Res 3:69–76

    Article  Google Scholar 

  • Mathevet R, Tamisier A (2002) Creation of a nature reserve, its effects on hunting management and waterfowl distribution in the Camargue (southern France). Biodiv Cons 11:509–519

    Article  Google Scholar 

  • McCarty JP (2001) Ecological consequences of recent climate change. Cons Biol 15:320–331

    Article  Google Scholar 

  • Miller MR, Eadie JMcA (2006) The allometric relationship between resting metabolic rate and body mass in wild waterfowl (Anatidae) and an application to estimation of winter habitat requirements. Condor 108:166–177

    Article  Google Scholar 

  • Mondain-Monval JY, Olivier A, Le Bihan A (2009) Recent trends in the number of hunters and the harvest of wildfowl in the Camargue, France: preliminary results. Wildfowl Spec Issue 2:192–201

    Google Scholar 

  • Murphy-Klassen HM, Underwood TJ, Sealy SG, Czyrnyj AA (2005) Long-term trends in spring arrival dates of migrant birds at Delta Marsh, Manitoba, in relation to climate change. Auk 122:1130–1148

    Article  Google Scholar 

  • Nilsson L (2006) Changes in migration patterns and wintering areas of south Swedish Greylag Geese Anser anser. In: Boere GC, Galbraith CA, Stroud DA (eds) Waterbirds around the world. The Stationery Office, Edinburgh, pp 514–516

  • Nilsson L (2008) Changes in numbers and distribution of wintering waterfowl in Sweden during forty years, 1967–2006. Ornis Svec 18:135–226

    Google Scholar 

  • Owen M, Atkinson-Willes GL, Salmon DG (1986) Wildfowl in Great Britain, 2nd edn. Cambridge University Press, Cambridge

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Pistorius PA, Follestad A, Taylor FE (2006) Temporal changes in spring migration phenology in the Norwegian Greylag Goose Anser anser, 1971–2004. Wildfowl 56:23–36

    Google Scholar 

  • Rainio K (2008) Climate change effects on avian migration. PhD thesis. University of Turku, Turku

  • Rainio K, Laaksonen T, Ahola M, Vähätalo AV, Lehikoinen E (2006) Climatic response in spring migration of boreal and arctic birds in relation to wintering area and taxonomy. J Avian Biol 37:507–515

    Article  Google Scholar 

  • Ridgill FC, Fox AD (1990) Cold weather movements of waterfowl in Western Europe. IWRB Spec Publ 13. IWRB, Slimbridge

  • Rodrigues DJC, Fabiao AMD, Figueredo MEMA (2001) The use of nasal markers for monitoring Mallard populations. In: Field R, Waren RJ, Okarma H, Sievert PR (eds) Wildlife, land, and people: priorities for the 21st century. Proceedings of the Second International Wildlife Management Congress. The Wildlife Society, Bethesda, pp 316–318

  • Rüger A, Prentice C, Owen M (1986) Results of the IWRB International Waterfowl Census 1967–1983. IWRB Spec Publ 6. IWRB, Slimbridge

  • Sauter A, Korner-Niervergelt F, Jenni L (2010) Evidence of climate change effects on within winter movements of European Mallards Anas platyrhynchos. Ibis 152:600–609

    Article  Google Scholar 

  • Scott DA, Rose PM (1996) Atlas of Anatidae populations in Africa and Western Eurasia. Wetlands International Publ 41. Wetlands International, Wageningen

  • Statsoft (2011) STATISTICA version 10. http://www.statsoft.fr

  • Švažas S, Meissner W, Serebryakov V, Kozulin A, Grishanov G (2001) Changes in wintering sites of waterfowl in central and Eastern Europe. OMPO Spec Publ. OMPO/Lithuanian Institute of Ecology, Vilnius

  • Tamisier A (2004) Camargue, quartier d’hiver de canards et de foulques. Modalités de fonctionnement, facteurs limitants et perspectives d’avenir. In: Isenmann P (ed) Les oiseaux de Camargue et leurs habitats. Une histoire de cinquante ans 1954–2004. Buchet-Chastel, Paris, pp 149–204

  • Tamisier A, Grillas P (1994) A review of habitat changes in the Camargue: an assesssment of the effects of the loss of biological diversity on the wintering waterfowl community. Biol Cons 70:39–47

    Article  Google Scholar 

  • Thomas CD, Lennon JJ (1999) Birds extend their ranges northwards. Nature 399:213

    Article  CAS  Google Scholar 

  • Thorup K, Tøttrup AP, Rahbek C (2007) Patterns of phenological changes in migratory birds. Oecologia 151:697–703

    Article  PubMed  Google Scholar 

  • Thorup K, Korner-Nievergelt F, Cohen EB, Baillie SR (2014) Large-scale spatial analysis of ringing and re-encounter data to infer movement patterns: a review including methodological perspectives. Method Ecol Evol 5:1337–1350

    Article  Google Scholar 

  • Toral G, Figuerola J (2010) Unraveling the importance of rice fields for waterbird populations in Europe. Biodiv Cons 19:3459–3469

    Article  Google Scholar 

  • Tøttrup AP, Thorup K, Rahbek C (2006) Changes in timing of autumn migration in North European songbird populations. Ardea 94:527–536

    Google Scholar 

  • Väänänen VM (2001) Hunting disturbance and the timing of autumn migration in Anas species. Wildl Biol 7:3–9

    Google Scholar 

  • Visser ME, Perdeck AC, Van Balen JH, Both C (2009) Climate change leads to decreasing bird migration distances. Glob Change Biol 15:1859–1865

    Article  Google Scholar 

Download references

Acknowledgments

We are most grateful to Luc Hoffmann, Hubert Kowalski, Heinz Hafner, Alan Johnson, and the other people who ringed teal at Tour du Valat for over 25 years. We would also like to thank Marc Lutz, Paul Isenmann, and the Centre de Recherche sur la Biologie des Populations d’Oiseaux (Muséum National d’Histoire Naturelle, Paris) for their help computerizing the teal database, as well as the MAVA Foundation for financial support. The modern ringing operations greatly benefited from the field assistance of many people from ONCFS and Marais du Vigueirat, in particular Michel Lepley and Jonathan Fuster. Aleksi Lehikoinen, Tony Fox, and three anonymous referees provided valuable advice during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Guillemain.

Additional information

Communicated by N. Chernetsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillemain, M., Pernollet, C.A., Massez, G. et al. Disentangling the drivers of change in Common Teal migration phenology over 50 years: land use vs. climate change effects. J Ornithol 156, 647–655 (2015). https://doi.org/10.1007/s10336-015-1171-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-015-1171-z

Keywords

Navigation