Circadian control of nocturnal songbird migration

Abstract

Bird migration has evolved under the influence of annual and daily fluctuations in resource availability. Numerous passerine migrants migrate exclusively by night, maximizing the time available for foraging and feeding during the day. When held in captivity, and in total absence of environmental cues, nocturnal migrants typically show rhythms of night-time restlessness (Zugunruhe), which persist with a periodicity of about 24 h. Experimental evidence suggests that these circadian rhythms of Zugunruhe may either result from a “redefinition” of the diurnal clock or from changes in the phase relationship between independent endogenous oscillators. The role of melatonin in this control system remains ambiguous. Lowered levels of circulating melatonin found during migratory nights could either be the positive stimulus, a permissive factor or a side effect of nocturnal wakefulness. Although the nutritional state of a migrant is known to strongly influence the incidence of migratory activity, the physiological link between the circadian clock controlling Zugunruhe and the metabolic/hormonal path-ways that regulate the incidence of migration is uncertain. A functional genetic approach promises to bring behavioural and physiological knowledge together. Determining the mechanisms that are involved in the day-to-day scheduling of migration is crucial for understanding the overall control of migration, as the sum of migratory nights determines for how long, and how far, a migrant potentially travels.

Zusammenfassung

Der Vogelzug ist unter dem Einfluss von jährlichen und tageszeitlichen Fluktuationen in der Ressourcenverfügbarkeit entstanden. Zahlreiche Singvögel ziehen ausschließlich nachts, wodurch sie die tagsüber zur Nahrungssuche und -aufnahme verfügbare Zeit maximieren. In Gefangenschaft zeigen Nachtzieher in völliger Abwesenheit von Umweltreizen typischerweise Rhythmen nächtlicher Aktivität (Zugunruhe), die mit einer Periodizität von etwa 24 Stunden andauern. Experimentelle Befunde lassen vermuten, dass diese circadianen Zugrhythmen entweder durch eine “Umdefinierung“ der tageszeitlichen Uhr oder durch eine Phasenverschiebung zwischen unabhängigen, endogenen Oszillatoren verursacht werden. Die Rolle des Hormons Melatonin bleibt dabei unklar. In Zugnächten reduzierte Melatoninkonzentrationen könnten der positive Stimulus, ein permissiver Faktor oder eine Folge nächtlicher Wachheit sein. Obwohl bekannt ist, dass der Ernährungszustand eines Zugvogels einen starken Einfluss auf das Auftreten von Zugunruhe hat, ist der physiologische Zusammenhang zwischen der circadianen Zuguhr und den metabolischen/hormonellen Regulationsmechanismen von Zugereignissen unbekannt. Ein funktionell-genetischer Ansatz verspricht die Lücke zwischen verhaltensbiologischem und physiologischem Wissen zu schließen. Die Aufklärung der Mechanismen, die bei der täglichen Zeitplanung des Zugs beteiligt sind, ist entscheidend für das übergeordnete Verständnis der Steuerung des Vogelzugs, da die Summe der Zugnächte bestimmt, wie lange und wie weit ein Individuum zu ziehen vermag.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Able KP (1980) Mechanisms of orientation, navigation, and homing. In: Gauthreaux S (ed) Animal migration, orientation, and navigation. Academic, New York, pp 283–373

    Google Scholar 

  2. Bairlein F (1985) Body weights and fat deposition of Palaearctic passerine migrants in the central Sahara. Oecologia 66:141–146

    PubMed  Google Scholar 

  3. Bairlein F, Gwinner E (1994) Nutritional mechanisms and temporal control of migratory energy accumulation in birds. Annu Rev Nutr 14:187–215

    CAS  PubMed  Google Scholar 

  4. Bartell PA, Gwinner E (2005) A separate circadian oscillator controls nocturnal migratory restlessness in the songbird Sylvia borin. J Biol Rhythm 20:538–549

    Google Scholar 

  5. Berthold P (1973) Relationships between migratory restlessness and migration distance in six Sylvia species. Ibis 115:594–599

    Google Scholar 

  6. Berthold P (1976) Über den Einfluß der Fettdeposition auf die Zugunruhe bei der Gartengrasmücke Sylvia borin. Vogelwarte 28:263–266

    Google Scholar 

  7. Berthold P (1978) Das Zusammenwirken von endogenen Zugzeit-Programmen und Umweltfaktoren beim Zugablauf bei Grasmücken: Eine Hypothese. Vogelwarte 29:153–159

    Google Scholar 

  8. Berthold P (1996) Control of bird migration. Chapman and Hall, London

    Google Scholar 

  9. Berthold P (2001) Bird migration. Oxford University Press, Oxford

    Google Scholar 

  10. Berthold P, Querner U (1981) Genetic basis of migratory behavior in European warblers. Science 212:77–79

    CAS  PubMed  Google Scholar 

  11. Bertin A, Houdelier C, Richard-Yris MA, Guyomarc’h C, Lumineau S (2007) Stable individual profiles of daily timing of migratory restlessness in European quail. Chronobiol Int 24:253–267

    PubMed  Google Scholar 

  12. Biebach H (1985) Sahara stopover in migratory flycatchers: fat and food affect the time program. Experientia 41:695–697

    Google Scholar 

  13. Biebach H, Friedrich W, Heine G (1986) Interaction of body mass, fat, foraging and stopover period in trans-Sahara migrating passerine birds. Oecologia 69:370–379

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Birkhead TR (2008) The wisdom of birds: an illustrated history of ornithology. Bloomsbury, London

    Google Scholar 

  15. Bolshakov CV, Bulyuk VN, Kosarev V, Ktitorov P, Leoke D, Mukhin A, Chernetsov N, Tsvey A (2007) Time of nocturnal departures in European robins, Erithacus rubecula, in relation to celestial cues, season, stopover duration and fat stores. Anim Behav 74:855–865

    Google Scholar 

  16. Both C, Bouwhuis S, Lessells CM, Visser ME (2006) Climate change and population declines in a long-distance migratory bird. Nature 441:81–83

    CAS  PubMed  Google Scholar 

  17. Bradshaw WE, Holzapfel CM (2010) What season is it anyway? Circadian tracking vs. photoperiodic anticipation in insects. J Biol Rhythms 25:155–165

    PubMed  Google Scholar 

  18. Bünning E (1936) Die endonome Tagesrhythmik als Grundlage der photoperiodischen Reaktion. Ber Dtsch Bot Ges 54:590–607

    Google Scholar 

  19. Chernetsov N, Kishkinev D, Mouritsen H (2008) A long-distance avian migrant compensates for longitudinal displacement during spring migration. Curr Biol 18:188–190

    CAS  PubMed  Google Scholar 

  20. Cochran WW, Mouritsen H, Wikelski M (2004) Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science 304:405–408

    CAS  PubMed  Google Scholar 

  21. Cochran WW, Bowlin MS, Wikelski M (2008) Wingbeat frequency and flap-pause ratio during natural migratory flight in thrushes. Integr Comp Biol 48:134–151

    PubMed  Google Scholar 

  22. Coppack T (2007) Experimental determination of the photoperiodic basis for geographic variation in avian seasonality. J Ornithol 148 (Suppl 2):459–467

    Google Scholar 

  23. Coppack T, Both C (2002) Predicting life-cycle adaptation of migratory birds to global climate change. Ardea 90:369–378

    Google Scholar 

  24. Coppack T, Becker SF, Becker PJJ (2008) Circadian flight schedules in night-migrating birds caught on migration. Biol Lett 4:619–622

    PubMed  PubMed Central  Google Scholar 

  25. Coverdill AJ, Bentley GE, Ramenofsky M (2008) Circadian and masking control of migratory restlessness in Gambel’s white-crowned sparrow (Zonotrichia leucophrys gambelii). J Biol Rhythm 23:59–68

    Google Scholar 

  26. Czeschlik D (1977) Der Einfluß der Beleuchtungsstärke auf die Zugunruhe von Garten- und Mönchsgrasmücken (Sylvia borin und S. atricapilla). J Ornithol 118:268–281

    Google Scholar 

  27. Dawson A, King VM, Bentley GE, Ball GF (2001) Photoperiodic control of seasonality in birds. J Biol Rhythms 16:366–381

    Google Scholar 

  28. Emlen ST (1975) Migration: orientation and navigation. In: Famer DS, King JR (eds) Avian biology, vol V. Academic, New York, pp 129–219

    Google Scholar 

  29. Farner DS (1950) The annual stimulus for migration. Condor 52:104–122

    Google Scholar 

  30. Fuchs T, Haney A, Jechura TJ, Moore FR, Bingman VP (2006) Daytime naps in night-migrating birds: behavioural adaptation to seasonal sleep deprivation in the Swainson’s thrush (Catharus ustulatus). Anim Behav 72:951–958

    Google Scholar 

  31. Fuchs T, Maury D, Moore FR, Bingman VP (2009) Daytime micro-naps in a nocturnal migrant: an EEG analysis. Biol Lett 5:77–80

    CAS  PubMed  Google Scholar 

  32. Fusani L, Gwinner E (2001) Reduced amplitude of melatonin secretion during migration in the blackcap (Sylvia atricapilla). In: Goos HJT, Rastogi RK, Vaudry H, Pierantoni R (eds) Perspective in comparative endocrinology: unity and diversity. Proceedings of 14th international congress of comparative endocrinology, Sorrento, Italy, May 2001. Monduzzi Bologna, pp 295–300

  33. Fusani L, Gwinner E (2004) Simulation of migratory flight and stopover affects night levels of melatonin in a nocturnal migrant. Proc R Soc Lond B 271:205–211

    CAS  Google Scholar 

  34. Fusani L, Gwinner E (2005) Melatonin and nocturnal migration. Ann NY Acad Sci 1046:264–270

    CAS  PubMed  Google Scholar 

  35. Fusani L, Cardinale M, Carere C, Goymann W (2009) Stopover decision during migration: physiological conditions predict nocturnal restlessness in wild passerines. Biol Lett 5:302–305

    PubMed  PubMed Central  Google Scholar 

  36. Gätke H (1895) Heligoland as an ornithological observatory. The results of fifty years experience. David Douglas, Edinburgh

    Google Scholar 

  37. Goymann W, Spina F, Ferri A, Fusani L (2010) Body fat influences departure from stopover sites in migratory birds: evidence from whole-island telemetry. Biol Lett 6:478–481

    PubMed  PubMed Central  Google Scholar 

  38. Gwinner E (1967) Circannuale Periodik der Mauser und der Zugunruhe bei einem Vogel. Naturwiss 54:447

    CAS  PubMed  Google Scholar 

  39. Gwinner E (1975) Circadian and circannual rhythms in birds. In: Farner DS, King JR (eds) Avian biology, vol 5. Academic, New York, pp 221–285

    Google Scholar 

  40. Gwinner E (1989) Einfluss der Photoperiode auf das circannuale system des Halsbandschnäppers (Ficedula albicollis) und des Trauerschnäppers (F. hypoleuca). J Ornithol 130:1–13

    Google Scholar 

  41. Gwinner E (1990) Circannual rhythms in bird migration: control of temporal patterns and interactions with photoperiod. In: Gwinner E (ed) Bird migration: physiology and ecophysiology. Springer, Berlin, pp 257–268

    Google Scholar 

  42. Gwinner E (1996) Circadian and circannual programmes in avian migration. J Exp Biol 199:39–48

    CAS  PubMed  Google Scholar 

  43. Gwinner E, Brandstätter R (2001) Complex bird clocks. Philos Trans R Soc Lond B 356:1801–1810

    CAS  Google Scholar 

  44. Gwinner E, Helm B (2003) Circannual and circadian contributions to the timing of avian migration. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, New York, pp 81–95

    Google Scholar 

  45. Gwinner E, Biebach H, von Kries I (1985) Food availability affects migratory restlessness in caged garden warblers (Sylvia borin). Naturwiss 72:51–52

    Google Scholar 

  46. Gwinner E, Schwabl H, Schwabl-Benzinger I (1988) Effects of food-deprivation on migratory restlessness and diurnal activity in the garden warbler Sylvia borin. Oecologia 77:321–326

    CAS  PubMed  Google Scholar 

  47. Gwinner E, Zeman M, Schwabl-Benzinger I, Jenni-Eiermann S, Jenni L, Schwabl H (1992) Corticosterone levels of passerine birds during migratory flight. Naturwiss 79:276–278

    CAS  Google Scholar 

  48. Gwinner E, Schwabl-Benzinger I, Schwabl H, Dittami J (1993) Twenty-four hour melatonin profiles in a nocturnally migrating bird during and between migratory seasons. Gen Comp Endocr 90:119–124

    CAS  PubMed  Google Scholar 

  49. Halberg F, Stephens AN (1959) Susceptibility to ouabain and physiologic circadian periodicity. Proc Minn Acad Sci 27:139–143

    Google Scholar 

  50. Helm B, Gwinner E, Trost L (2005) Flexible seasonal timing and migratory behavior: results from Stonechat breeding programs. Ann NY Acad Sci 1046:216–227

    PubMed  Google Scholar 

  51. Helms CW (1963) The annual cycle and Zugunruhe in birds. Proc Int Ornithol Congr 13:925–939

    Google Scholar 

  52. Jenni L, Jenni-Eiermann S, Spina F, Schwabl H (2000) Regulation of protein breakdown and adrenocortical response to stress in birds during migratory flight. Am J Physiol 278:1182–1189

    Google Scholar 

  53. Jones SG, Paletz EM, Obermeyer WM, Hannan CT, Benca RM (2010) Seasonal influences on sleep and executive function in the migratory White-crowned Sparrow (Zonotrichia leucophrys gambelii). BMC Neurosci 11:87

    PubMed  PubMed Central  Google Scholar 

  54. King JR, Farner DS (1963) The relationship of fat deposition to Zugunruhe and migration. Condor 65:200–223

    Google Scholar 

  55. Kochan Z, Karbowska J, Meissner W (2006) Leptin is synthesized in the liver and adipose tissue of the dunlin (Calidris alpina). Gen Comp Endocrinol 148:336–339

    CAS  PubMed  Google Scholar 

  56. Kumar V, Wingfield JC, Dawson A, Ramenofsky M, Rani S, Bartell P (2010) Biological clocks and regulation of seasonal reproduction and migration in birds. Physiol Biochem Zool 83:827–835

    PubMed  Google Scholar 

  57. Landys MM, Wingfield JC, Ramenofsky M (2004) Plasma corticosterone increases during migratory restlessness in the captive white-crowned sparrow Zonotrichia leucophrys gambelii. Horm Behav 46:574–581

    CAS  PubMed  Google Scholar 

  58. Lehikoinen E, Sparks TH (2010) Changes in migration. In: Møller AP, Fiedler W, Berthold P (eds) Birds and climate change. Oxford University Press, Oxford, pp 89–112

    Google Scholar 

  59. Maggini I, Bairlein F (2010) Endogenous rhythms of seasonal migratory body mass changes and nocturnal restlessness in different populations of northern wheatear Oenanthe oenanthe. J Biol Rhythms 25:268–276

    PubMed  Google Scholar 

  60. McMillan JP (1972) Pinealectomy abolishes the circadian rhythm of migratory restlessness. J Comp Physiol 79:105–112

    Google Scholar 

  61. McMillan JP, Gauthreaux SA Jr, Helms CW (1970) Spring migratory restlessness in caged birds: a circadian rhythm. Bioscience 20:1259–1260

    Google Scholar 

  62. Merkel FW (1938) Zur Physiologie der Zugunruhe bei Vögeln. Ber Ver Schles Ornithol 23:l–l72

    Google Scholar 

  63. Merkel FW, Fromme HG, Wiltschko W (1964) Nichtvisuelle Orientierung bei Rotkehlchen. Vogelwarte 22:168–173

    Google Scholar 

  64. Mueller JC, Pulido F, Kempenaers B (2011) Identification of a gene associated with avian migratory behaviour. Proc R Soc Lond B, published online, doi:https://doi.org/10.1098/rspb.2010.2567

  65. Németh Z (2009) Observation of daytime sleep-like behavior in a migratory songbird during stopover. Wilson J Ornithol 121:644–646

    Google Scholar 

  66. Newton I (2008) The migration ecology of birds. Academic, London

    Google Scholar 

  67. Ohkubo T, Adachi H (2008) Leptin signaling and action in birds. J Poultry Sci 45:233–240

    CAS  Google Scholar 

  68. Palmgren P (1944) Studien über die Tagesrhythmik gekäfigter Zugvögel. Z Tierpsychol 6:44–86

    Google Scholar 

  69. Pohl H (2000) Circadian control of migratory restlessness and the effects of exogenous melatonin in the brambling, Fringilla montifringilla. Chronobiol Internat 17:471–488

    CAS  Google Scholar 

  70. Pulido F, Berthold P (2003) Quantitative genetic analyses of migratory behaviour. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin, pp 53–77

    Google Scholar 

  71. Ramenofsky M, Savard R, Greenwood MRC (1999) Seasonal and diel transitions in physiology and behavior in the migratory dark-eyed junco. Comp Biochem Physiol A 122:385–397

    CAS  Google Scholar 

  72. Ramenofsky M, Moffat J, Bentley GE (2008) Corticosterone and migratory behaviour of captive White-crowned Sparrows. In: Morris S, Vosloo A (eds) The pressures of life: molecules to migration. Proceedings of 4th CPB meeting, pp 575–582

  73. Rani S (2010) Role of food availability in regulation of daily and seasonal responses in birds. 25. International ornithology congress, Campos do Jordao Brazil, abstract

  74. Rani S, Malik S, Trivedi AK, Singh S, Kumar V (2006) A circadian clock regulates migratory restlessness in the blackheaded bunting, Emberiza melanocephala. Curr Sci 91:1093–1096

    Google Scholar 

  75. Rattenborg NC, Mandt BH, Obermeyer WH, Winsauer PJ, Huber R, Wikelski M, Benca RM (2004) Migratory sleeplessness in the white-crowned sparrow (Zonotrichia leucophrys gambelii). PLoS Biol 2:e212

    PubMed  PubMed Central  Google Scholar 

  76. Salewski V, Schaub M (2007) Stopover duration of palearctic passerine migrants in the western Sahara—independent of fat stores? Ibis 149:223–236

    Google Scholar 

  77. Saper CB, Lu J, Chou TC, Gooley TC (2005) The hypothalamic integrator for circadian rhythms. Trends Neurosci 28:152–157

    CAS  PubMed  Google Scholar 

  78. Schildmacher H (1933) Zur Physiologie des Zugtriebes I. Versuche mit weiblichem Sexualhormon. Vogelzug 4:21–24

    Google Scholar 

  79. Schwabl H, Bairlein F, Gwinner E (1991) Basal and stress-induced corticosterone levels of garden warblers Sylvia borin during migration. J Comp Physiol 161:576–580

    CAS  Google Scholar 

  80. Sharp PJ, Dunn IC, Waddington D, Boswell T (2008) Chicken leptin. Gen Comp Endocrinol 158:2–4

    CAS  PubMed  Google Scholar 

  81. Singletary KG (2009) Nocturnal bird migration and disrupted sleep/wake cycle. PhD thesis, University of Texas, Austin, USA

  82. Underwood H, Steele CT, Zivkovic B (2001) Circadian organization and the role of the pineal in birds. Microsc Res Tech 53:48–62

    CAS  PubMed  Google Scholar 

  83. Van Noordwijk AJ, Pulido F, Helm B, Coppack T, Delingat J, Dingle H, Hedenström A, Van der Jeugd H, Marchetti C, Nilsson A, Pérez-Tris J (2006) A framework for the study of genetic variation in migratory behaviour. J Ornithol 147:221–233

    Google Scholar 

  84. Wagner HO (1930) Über Jahres-und Tagesrhythmus bei Zugvögeln. Z Vgl Physiol 12:703–724

    Google Scholar 

  85. Wikelski M, Martin LB, Robinson MT, Robinson ND, Helm B, Scheuerlein A, Hau M, Gwinner E (2008) Avian circannual clocks: adaptive significance and possible involvement of energy turnover in their proximate control. Philos Trans R Soc Lond B 363:411–423

    Google Scholar 

  86. Wiltschko W, Wiltschko R (1972) Magnetic compass of European robins. Science 176:62–64

    CAS  PubMed  Google Scholar 

  87. Wingfield JC, Schwabl H, Mattocks PW Jr (1990) Endocrine mechanisms of migration. In: Gwinner E (ed) Bird migration. Springer, Berlin, pp 232–256

    Google Scholar 

  88. Yasuo S, Watanabe M, Okabayashi N, Ebihara S, Yoshimura T (2003) Circadian clock genes and photoperiodism: comprehensive analysis of clock genes expression in the mediobasal hypothalamus, the suprachiasmatic nucleus and the pineal gland of Japanese quail under various light schedules. Endocrinology 144:3742–3748

    PubMed  Google Scholar 

  89. Yong W, Moore FR (1993) Relation between migratory activity and energetic condition among thrushes (Turdinae) following passage across the Gulf of Mexico. Condor 95:934–943

    Google Scholar 

  90. Yoshimura T, Yasuo S, Watanabe M, Iigo M, Yamamura T, Hirunagi K, Ebihara S (2003) Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds. Nature 426:178–181

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This review was stimulated by a centenary symposium on bird migration held April 2010 in Wilhelmshaven, Germany, and by an invitation to the 12th Biennial Meeting of the Society for Research on Biological Rhythms (SRBR) held May 2010 in Sandestin, FL, USA. Two anonymous referees provided helpful comments on a previous version of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Timothy Coppack.

Additional information

Communicated by C. G. Guglielmo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Coppack, T., Bairlein, F. Circadian control of nocturnal songbird migration. J Ornithol 152, 67–73 (2011). https://doi.org/10.1007/s10336-011-0708-z

Download citation

Keywords

  • Circadian clock
  • Melatonin
  • Migratory restlessness
  • Photoperiod
  • Zugunruhe