Sodium MRI of human articular cartilage of the wrist: a feasibility study on a clinical 3T MRI scanner

Abstract

Objective

To measure sodium relaxation times and concentrations in human wrists on a clinical magnetic resonance imaging (MRI) scanner with a density-adapted radial sequence.

Materials and methods

Sodium MRI of human wrists was conducted on a 3T MR system using a dual-tuned 1H/23Na surface coil. We performed two studies with 10 volunteers each investigating either sodium T1 (study 1) or sodium T2* (study 2) relaxation times in the radiocarpal joint (RCJ) and midcarpal joint (MCJ). Sodium concentrations of both regions were determined.

Results

No differences for transversal of longitudinal relaxation times were found between RCJ and MCJ (T2,s*(RCJ) = (0.9 ± 0.4) ms; T2,s*(MCJ) = (0.9 ± 0.3) ms; T2,l*(RCJ) = (14.9 ± 0.9) ms; T2,l*(MCJ) = (13.9 ± 1.1) ms; T1(RCJ) = (19.0 ± 2.4) ms; T1(MCJ) = (18.5 ± 2.1) ms). Sodium concentrations were (157.7 ± 28.4) mmol/l for study 1 and (159.8 ± 29.1) mmol/l for study 2 in the RCJ, and (172.7 ± 35.6) mmol/l for study 1 and (163.4 ± 26.3) mmol/l for study 2 in the MCJ.

Conclusion

We successfully determined sodium relaxation times and concentrations of the human wrist on a 3T MRI scanner.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Wheaton AJ, Borthakur A, Shapiro EM, Regatte RR, Akella SV, Kneeland JB, Reddy R (2004) Proteoglycan loss in human knee cartilage: quantitation with sodium MR imaging–feasibility study. Radiology 231(3):900–905

    Article  Google Scholar 

  2. 2.

    Herz B, Albrecht A, Englbrecht M, Welsch GH, Uder M, Renner N, Schlechtweg P, Paul D, Lauer L, Engelke K, Janka R, Rech J, Schett G, Finzel S (2014) Osteitis and synovitis, but not bone erosion, is associated with proteoglycan loss and microstructure damage in the cartilage of patients with rheumatoid arthritis. Ann Rheum Dis 73(6):1101–1106

    Article  Google Scholar 

  3. 3.

    Lahm A, Mrosek E, Spank H, Erggelet C, Kasch R, Esser J, Merk H (2010) Changes in content and synthesis of collagen types and proteoglycans in osteoarthritis of the knee joint and comparison of quantitative analysis with Photoshop-based image analysis. Arch Orthop Trauma Surg 130(4):557–564

    Article  Google Scholar 

  4. 4.

    Mitchell NS, Shepard N (1978) Changes in proteoglycan and collagen in cartilage in rheumatoid arthritis. J Bone Joint Surg Am 60(3):342–348

    CAS  Article  Google Scholar 

  5. 5.

    Hardingham T, Bayliss M (1990) Proteoglycans of articular cartilage: changes in aging and in joint disease. Semin Arthritis Rheum 20(3 Suppl 1):12–33

    CAS  Article  Google Scholar 

  6. 6.

    Madelin G, Jerschow A, Regatte RR (2012) Sodium relaxation times in the knee joint in vivo at 7T. NMR Biomed 25(4):530–537

    CAS  Article  Google Scholar 

  7. 7.

    Borthakur A, Mellon E, Niyogi S, Witschey W, Kneeland JB, Reddy R (2006) Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed 19(7):781–821

    CAS  Article  Google Scholar 

  8. 8.

    Borthakur A, Shapiro EM, Beers J, Kudchodkar S, Kneeland JB, Reddy R (2000) Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI. Osteoarthritis Cartilage 8(4):288–293

    CAS  Article  Google Scholar 

  9. 9.

    Zbyn S, Mlynarik V, Juras V, Szomolanyi P, Trattnig S (2016) Evaluation of cartilage repair and osteoarthritis with sodium MRI. NMR Biomed 29(2):206–215

    CAS  Article  Google Scholar 

  10. 10.

    Insko EK, Kaufman JH, Leigh JS, Reddy R (1999) Sodium NMR evaluation of articular cartilage degradation. Magn Reson Med 41(1):30–34

    CAS  Article  Google Scholar 

  11. 11.

    Borthakur A, Shapiro EM, Akella SV, Gougoutas A, Kneeland JB, Reddy R (2002) Quantifying sodium in the human wrist in vivo by using MR imaging. Radiology 224(2):598–602

    CAS  Article  Google Scholar 

  12. 12.

    Nagel AM, Laun FB, Weber MA, Matthies C, Semmler W, Schad LR (2009) Sodium MRI using a density-adapted 3D radial acquisition technique. Magn Reson Med 62(6):1565–1573

    Article  Google Scholar 

  13. 13.

    Haneder S, Konstandin S, Morelli JN, Nagel AM, Zoellner FG, Schad LR, Schoenberg SO, Michaely HJ (2011) Quantitative and qualitative (23)Na MR imaging of the human kidneys at 3 T: before and after a water load. Radiology 260(3):857–865

    Article  Google Scholar 

  14. 14.

    Madelin G, Babb JS, Xia D, Chang G, Jerschow A, Regatte RR (2012) Reproducibility and repeatability of quantitative sodium magnetic resonance imaging in vivo in articular cartilage at 3 T and 7 T. Magn Reson Med 68(3):841–849

    Article  Google Scholar 

  15. 15.

    Shapiro EM, Borthakur A, Kaufman JH, Leigh JS, Reddy R (2001) Water distribution patterns inside bovine articular cartilage as visualized by 1H magnetic resonance imaging. Osteoarthritis Cartilage 9(6):533–538

    CAS  Article  Google Scholar 

  16. 16.

    Madelin G, Lee JS, Regatte RR, Jerschow A (2014) Sodium MRI: methods and applications. Prog Nucl Magn Reson Spectrosc 79:14–47

    CAS  Article  Google Scholar 

  17. 17.

    Shapiro EM, Borthakur A, Dandora R, Kriss A, Leigh JS, Reddy R (2000) Sodium visibility and quantitation in intact bovine articular cartilage using high field (23)Na MRI and MRS. J Magn Reson 142(1):24–31

    CAS  Article  Google Scholar 

  18. 18.

    Reddy R, Li S, Noyszewski EA, Kneeland JB, Leigh JS (1997) In vivo sodium multiple quantum spectroscopy of human articular cartilage. Magn Reson Med 38(2):207–214

    CAS  Article  Google Scholar 

  19. 19.

    Madelin G, Babb J, Xia D, Chang G, Krasnokutsky S, Abramson SB, Jerschow A, Regatte RR (2013) Articular cartilage: evaluation with fluid-suppressed 7.0-T sodium MR imaging in subjects with and subjects without osteoarthritis. Radiology 268(2):481–491

    Article  Google Scholar 

  20. 20.

    Kordzadeh A, Duchscherer J, Beaulieu C, Stobbe R (2020) Radiofrequency excitation-related (23) Na MRI signal loss in skeletal muscle, cartilage, and skin. Magn Reson Med 83(6):1992–2001

    Article  Google Scholar 

  21. 21.

    Widhalm HK, Apprich S, Welsch GH, Zbyn S, Sadoghi P, Vekszler G, Hambock M, Weber M, Hajdu S, Trattnig S (2016) Optimized cartilage visualization using 7-T sodium ((23)Na) imaging after patella dislocation. Knee Surg Sports Traumatol Arthrosc 24(5):1601–1609

    Article  Google Scholar 

  22. 22.

    Zbyn S, Stelzeneder D, Welsch GH, Negrin LL, Juras V, Mayerhoefer ME, Szomolanyi P, Bogner W, Domayer SE, Weber M, Trattnig S (2012) Evaluation of native hyaline cartilage and repair tissue after two cartilage repair surgery techniques with 23Na MR imaging at 7 T: initial experience. Osteoarthritis Cartilage 20(8):837–845

    CAS  Article  Google Scholar 

  23. 23.

    Wang L, Wu Y, Chang G, Oesingmann N, Schweitzer ME, Jerschow A, Regatte RR (2009) Rapid isotropic 3D-sodium MRI of the knee joint in vivo at 7T. J Magn Reson Imaging 30(3):606–614

    Article  Google Scholar 

  24. 24.

    Feldman RE, Stobbe R, Watts A, Beaulieu C (2013) Sodium imaging of the human knee using soft inversion recovery fluid attenuation. J Magn Reson 234:197–206

    CAS  Article  Google Scholar 

  25. 25.

    Burstein D, Springer CS Jr (2019) Sodium MRI revisited. Magn Reson Med 82(2):521–524

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Georg Oeltzschner (Russell H. Morgan Department for Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, United States) for language editing and proofreading.

Author information

Affiliations

Authors

Contributions

M-L: study conception and design, acquisition of data, analysis and interpretation of data, drafting of manuscript; BK: study conception and design, acquisition of data, analysis and interpretation of data, critical revision; AMN, AL, DA, and SN: analysis and interpretation of data, critical revision; CS: study conception and design, critical revision; LW: acquisition of data, analysis and interpretation of data, critical revision; H-JW: study conception and design, analysis and interpretation of data, critical revision.

Corresponding author

Correspondence to Anja Müller-Lutz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors study was approved by the local ethics committee (ethic committee of the medical faculty of the Heinrich Heine University Dusseldorf), and written informed consent was obtained from all volunteers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Müller-Lutz, A., Kamp, B., Nagel, A.M. et al. Sodium MRI of human articular cartilage of the wrist: a feasibility study on a clinical 3T MRI scanner. Magn Reson Mater Phy (2020). https://doi.org/10.1007/s10334-020-00856-2

Download citation

Keywords

  • Sodium
  • 23Na MRI
  • Wrist
  • Sodium relaxation times
  • Cartilage
  • Magnetic resonance imaging