Skip to main content
Log in

Toward 19F magnetic resonance thermometry: spin–lattice and spin–spin-relaxation times and temperature dependence of fluorinated drugs at 9.4 T

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

This study examines the influence of the environmental factor temperature on the 19F NMR characteristics of fluorinated compounds in phantom studies and in tissue.

Materials and methods

19F MR mapping and MR spectroscopy techniques were used to characterize the 19F NMR characteristics of perfluoro-crown ether (PFCE), isoflurane, teriflunomide, and flupentixol. T1 and T2 mapping were performed, while temperature in the samples was changed (T = 20–60 °C) and monitored using fiber optic measurements. In tissue, T1 of PFCE nanoparticles was determined at physiological temperatures and compared with the T1-measured at room temperature.

Results

Studies on PFCE, isoflurane, teriflunomide, and flupentixol showed a relationship between temperature and their physicochemical characteristics, namely, chemical shift, T1 and T2. T1 of PFCE nanoparticles was higher at physiological body temperatures compared to room temperature.

Discussion

The impact of temperature on the 19F NMR parameters of fluorinated compounds demonstrated in this study not only opens a trajectory toward 19F MR-based thermometry, but also indicates the need for adapting MR sequence parameters according to environmental changes such as temperature. This will be an absolute requirement for detecting fluorinated compounds by 19F MR techniques in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schmieder AH, Caruthers SD, Keupp J, Wickline SA, Lanza GM (2015) Recent advances in 19Fluorine magnetic resonance imaging with perfluorocarbon emulsions. Engineering (Beijing, China) 1(4):475–489

    CAS  Google Scholar 

  2. Ahrens ET, Flores R, Xu H, Morel PA (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23(8):983–987

    Article  CAS  PubMed  Google Scholar 

  3. Waiczies H, Lepore S, Drechsler S, Qadri F, Purfürst B, Sydow K, Dathe M, Kühne A, Lindel T, Hoffmann W, Pohlmann A, Niendorf T, Waiczies S (2013) Visualizing brain inflammation with a shingled-leg radio-frequency head probe for 19F/1H MRI. Sci Rep 3:1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ruiz-Cabello J, Barnett BP, Bottomley PA, Bulte JW (2011) Fluorine (19F) MRS and MRI in biomedicine. NMR Biomed 24(2):114–129

    Article  CAS  PubMed  Google Scholar 

  5. Karson CN, Newton JE, Livingston R, Jolly JB, Cooper TB, Sprigg J, Komoroski RA (1993) Human brain fluoxetine concentrations. J Neuropsychiatry Clin Neurosci 5(3):322–329

    Article  CAS  PubMed  Google Scholar 

  6. Karson CN, Newton JE, Mohanakrishnan P, Sprigg J, Komoroski RA (1992) Fluoxetine and trifluoperazine in human brain: a 19F-nuclear magnetic resonance spectroscopy study. Psychiatry Res 45(2):95–104

    Article  CAS  PubMed  Google Scholar 

  7. Komoroski RA, Newton JE, Cardwell D, Sprigg J, Pearce J, Karson CN (1994) In vivo 19F spin relaxation and localized spectroscopy of fluoxetine in human brain. Magn Reson Med 31(2):204–211

    Article  CAS  PubMed  Google Scholar 

  8. Bolo NR, Hode Y, Nedelec JF, Laine E, Wagner G, Macher JP (2000) Brain pharmacokinetics and tissue distribution in vivo of fluvoxamine and fluoxetine by fluorine magnetic resonance spectroscopy. Neuropsychopharmacology 23(4):428–438

    Article  CAS  PubMed  Google Scholar 

  9. Ji Y, Waiczies H, Winter L, Neumanova P, Hofmann D, Rieger J, Mekle R, Waiczies S, Niendorf T (2015) Eight-channel transceiver RF coil array tailored for (1)H/(1)(9)F MR of the human knee and fluorinated drugs at 7.0 T. NMR Biomed 28(6):726–737

    Article  CAS  PubMed  Google Scholar 

  10. Desmoulin F, Gilard V, Malet-Martino M, Martino R (2002) Metabolism of capecitabine, an oral fluorouracil prodrug: (19)F NMR studies in animal models and human urine. Drug Metab Dispos 30(11):1221–1229

    Article  CAS  PubMed  Google Scholar 

  11. Doi Y, Shimmura T, Kuribayashi H, Tanaka Y, Kanazawa Y (2009) Quantitative (19)F imaging of nmol-level F-nucleotides/-sides from 5-FU with T(2) mapping in mice at 9.4T. Magn Reson Med 62(5):1129–1139

    Article  CAS  PubMed  Google Scholar 

  12. Cron GO, Beghein N, Ansiaux R, Martinive P, Feron O, Gallez B (2008) 19F NMR in vivo spectroscopy reflects the effectiveness of perfusion-enhancing vascular modifiers for improving gemcitabine chemotherapy. Magn Reson Med 59(1):19–27

    Article  CAS  PubMed  Google Scholar 

  13. Morikawa S, Inubushi T, Morita M, Murakami K, Masuda C, Maki J, Tooyama I (2007) Fluorine-19 fast recovery fast spin echo imaging for mapping 5-fluorouracil. Magn Reson Med Sci 6(4):235–240

    Article  CAS  PubMed  Google Scholar 

  14. Reid DG, Murphy PS (2008) Fluorine magnetic resonance in vivo: a powerful tool in the study of drug distribution and metabolism. Drug Discov Today 13(11–12):473–480

    Article  CAS  PubMed  Google Scholar 

  15. Colotti R, Bastiaansen JAM, Wilson A, Flögel U, Gonzales C, Schwitter J, Stuber M, van Heeswijk RB (2017) Characterization of perfluorocarbon relaxation times and their influence on the optimization of fluorine-19 MRI at 3 tesla. Magn Reson Med 77(6):2263–2271

    Article  CAS  PubMed  Google Scholar 

  16. Berkowitz BA, Handa JT, Wilson CA (1992) Perfluorocarbon temperature measurements using 19F NMR. NMR Biomed 5(2):65–68

    Article  CAS  PubMed  Google Scholar 

  17. Kadayakkara DK, Damodaran K, Hitchens TK, Bulte JW, Ahrens ET (2014) (19)F spin-lattice relaxation of perfluoropolyethers: dependence on temperature and magnetic field strength (7.0–14.1T). J Magn Reson 242:18–22

    Article  CAS  PubMed  Google Scholar 

  18. Dolbier WR (2016) Guide to fluorine NMR for organic chemists. Wiley, New York

    Book  Google Scholar 

  19. Waiczies S, Lepore S, Sydow K, Drechsler S, Ku MC, Martin C, Lorenz D, Schutz I, Reimann HM, Purfurst B, Dieringer MA, Waiczies H, Dathe M, Pohlmann A, Niendorf T (2015) Anchoring dipalmitoyl phosphoethanolamine to nanoparticles boosts cellular uptake and fluorine-19 magnetic resonance signal. Sci Rep 5:8427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  CAS  Google Scholar 

  21. Henkelman RM (1985) Measurement of signal intensities in the presence of noise in MR images. Med Phys 12(2):232–233

    Article  CAS  PubMed  Google Scholar 

  22. Haacke E (1999) Magnetic resonance imaging: physical principles and sequence design. Wiley-Liss, New York

    Google Scholar 

  23. Ben-Eliezer N, Sodickson DK, Block KT (2015) Rapid and accurate T 2 mapping from multi-spin-echo data using Bloch-simulation-based reconstruction. Magn Reson Med 73(2):809–817

    Article  PubMed  Google Scholar 

  24. National Electrical Manufacturers A (2001) Determination of signal-to-noise ratio (SNR) in diagnostic magnetic resonance imaging. NEMA Standards Publication MS 1-2001

  25. Niendorf T, Ji Y, Waiczies S (2016) Fluorinated natural compounds and synthetic drugs. In: Ahrens ET, Flögel U (eds) Fluorine magnetic resonance imaging. Pan Stanford Publishing, Singapore, pp 311–344

    Chapter  Google Scholar 

  26. Gerig J (2001) Fluorine NMR

  27. Bushberg JT (2002) The essential physics of medical imaging. lippincott. Williams & Wilkins, Philadelphia

    Google Scholar 

  28. Sinnecker T, Kuchling J, Dusek P, Dörr J, Niendorf T, Paul F, Wuerfel J (2015) Ultrahigh field MRI in clinical neuroimmunology: a potential contribution to improved diagnostics and personalised disease management. EPMA J 6(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  29. Niendorf T, Schulz-Menger J, Paul K, Huelnhagen T, Ferrari VA, Hodge R (2017) High field cardiac magnetic resonance imaging: a case for ultrahigh field cardiac magnetic resonance. Circ Cardiovasc Imaging 10:(6)

    Article  Google Scholar 

  30. Niendorf T, Barth M, Kober F, Trattnig S (2016) From ultrahigh to extreme field magnetic resonance: where physics, biology and medicine meet. Magma (New York, NY) 29(3):309–311

    Google Scholar 

  31. Waiczies S, Millward JM, Starke L, Delgado PR, Huelnhagen T, Prinz C, Marek D, Wecker D, Wissmann R, Koch SP, Boehm-Sturm P, Waiczies H, Niendorf T, Pohlmann A (2017) Enhanced fluorine-19 MRI sensitivity using a cryogenic radiofrequency probe: technical developments and ex vivo demonstration in a mouse model of neuroinflammation. Sci Rep 7(1):9808

    Article  PubMed  PubMed Central  Google Scholar 

  32. Faber C, Schmid F (2016) Pulse sequence considerations and schemes. In: Ahrens ET, Flögel U (eds) Fluorine magnetic resonance imaging. Pan Stanford Publishing, Singapore, pp 3–27

    Google Scholar 

  33. Zhong J, Mills PH, Hitchens TK, Ahrens ET (2013) Accelerated fluorine-19 MRI cell tracking using compressed sensing. Magn Reson Med 69(6):1683–1690

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

CP would like to thank Yiyi Ji for helpful discussions on thermometry. TN wishes to acknowledge the support provided by the European Research Council (ERC advanced Grant, ThermalMR, EU project 743077). SW wishes to acknowledge the support provided by the Germany Research Council (DFG WA2804).

Funding

This study was funded (in part) by the Deutsche Forschungsgemeinschaft to SW (DFG WA2804). TN received funding from the European Research Council (ERC advanced Grant, ThermalMR, EU project 743077).

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: CP, PR, TE, TN, and SW. Acquisition of data: CP, TE, LS, and SW. Drafting of manuscript: CP, PR, TE, LS, TN, and SW. Critical revision: CP, PR, TE, LS, TN, and SW.

Corresponding author

Correspondence to Sonia Waiczies.

Ethics declarations

Conflict of interest

Thoralf Niendorf is founder and CEO of MRI.TOOLS GmbH, Berlin, Germany.

Statement of human/animal rights

All animal experiments were conducted in accordance with procedures approved by the Animal Welfare Department of the State Office of Health and Social Affairs Berlin (LAGeSo), and conformed to national and international guidelines to minimize discomfort to animals (86/609/EEC).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prinz, C., Delgado, P.R., Eigentler, T.W. et al. Toward 19F magnetic resonance thermometry: spin–lattice and spin–spin-relaxation times and temperature dependence of fluorinated drugs at 9.4 T. Magn Reson Mater Phy 32, 51–61 (2019). https://doi.org/10.1007/s10334-018-0722-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-018-0722-8

Keywords

Navigation