Skip to main content
Log in

Cardiac- versus diaphragm-based respiratory navigation for proton spectroscopy of the heart

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objectives

To study inter-individual differences of the relation between diaphragm and heart motion, the objective of the present study was to implement respiratory navigation on the heart and compare it against the established method of navigator gating on the diaphragm for single-voxel cardiac 1H-MRS.

Materials and methods

1H-MRS was performed on a 1.5T system in 19 healthy volunteers of mixed age (range 24–75 years). Spectra were recorded in a 6–8 ml voxel in the ventricular septum using a PRESS (point-resolved spectroscopy) sequence and ECG gating. Water-unsuppressed data acquired with pencil beam navigation on the heart were compared to data with navigation on the diaphragm. Water-suppressed data were obtained to assess triglyceride-to-water ratios.

Results

Water phase and amplitude fluctuations for cardiac versus diaphragm navigation did not reveal significant differences. Both navigator positions provided comparable triglyceride-to-water ratios and gating efficiencies (coefficient of variation (CoV) 7.0%). The cardiac navigator showed a good reproducibility (CoV 5.2%).

Discussion

Respiratory navigation on the heart does not convey an advantage over diaphragm-based navigator gating for cardiac 1H-MRS, but also no disadvantage. Consequently, cardiac and diaphragm respiratory navigation may be used interchangeably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. van Ewijk PA, Schrauwen-Hinderling VB, Bekkers SCAM, Glatz JFC, Wildberger JE, Kooi ME (2015) MRS: a noninvasive window into cardiac metabolism. NMR Biomed 28:747–766

    Article  CAS  PubMed  Google Scholar 

  2. Hudsmith LE, Neubauer S (2009) Magnetic resonance spectroscopy in myocardial disease. JACC Cardiovasc Imaging 2:87–96

    Article  PubMed  Google Scholar 

  3. van der Meer RW, Lamb HJ, Smit JWA, de Roos A (2012) MR imaging evaluation of cardiovascular risk in metabolic syndrome. Radiology 264:21–37

    Article  PubMed  Google Scholar 

  4. den Hollander JA, Evanochko WT, Pohost GM (1994) Observation of cardiac lipids in humans by localized 1H magnetic resonance spectroscopic imaging. Magn Reson Med 32:175–180

    Article  CAS  Google Scholar 

  5. Bottomley PA, Weiss RG (1998) Non-invasive magnetic-resonance detection of creatine depletion in non-viable infarcted myocardium. Lancet 351:714–718

    Article  CAS  PubMed  Google Scholar 

  6. Szczepaniak LS, Dobbins RL, Metzger GJ, Sartoni-D’Ambrosia G, Arbique D, Vongpatanasin W, Unger R, Victor RG (2003) Myocardial triglycerides and systolic function in humans: in vivo evaluation by localized proton spectroscopy and cardiac imaging. Magn Reson Med 49:417–423

    Article  CAS  PubMed  Google Scholar 

  7. Bizino MB, Hammer S, Lamb HJ (2014) Metabolic imaging of the human heart: clinical application of magnetic resonance spectroscopy. Heart 100:881–890

    Article  CAS  PubMed  Google Scholar 

  8. Nyman K, Granér M, Pentikäinen MO, Lundbom J, Hakkarainen A, Sirén R, Nieminen MS, Taskinen M-R, Lundbom N, Lauerma K (2013) Cardiac steatosis and left ventricular function in men with metabolic syndrome. J Cardiovasc Magn Reson 15:103

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lingvay I, Raskin P, Szczepaniak LS (2009) The fatty hearts of patients with diabetes. Nat Rev Cardiol 6:268–269

    Article  CAS  PubMed  Google Scholar 

  10. Drosatos K, Schulze PC (2013) Cardiac lipotoxicity: molecular pathways and therapeutic implications. Curr Heart Fail Rep 10:109–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. de Heer P, Bizino MB, Lamb HJ, Webb AG (2016) Parameter optimization for reproducible cardiac 1H-MR spectroscopy at 3 tesla. J Magn Reson Imaging 44:1151–1158

    Article  PubMed  Google Scholar 

  12. Felblinger J, Jung B, Slotboom J, Boesch C, Kreis R (1999) Methods and reproducibility of cardiac/respiratory double-triggered (1)H-MR spectroscopy of the human heart. Magn Reson Med 42:903–910

    Article  CAS  PubMed  Google Scholar 

  13. van der Meer RW, Doornbos J, Kozerke S, Schär M, Bax JJ, Hammer S, Smit JWA, Romijn JA, Diamant M, Rijzewijk LJ, de Roos A, Lamb HJ (2007) Metabolic imaging of myocardial triglyceride content: reproducibility of 1H MR spectroscopy with respiratory navigator gating in volunteers. Radiology 245:251–257

    Article  PubMed  Google Scholar 

  14. Schär M (2016) Physiologic motion: dealing with cardiac, respiratory, and other sporadic motion in MRS. eMagRes. Wiley, Chichester, pp 1087–1096

    Google Scholar 

  15. Fuetterer M, Stoeck CT, Kozerke S (2017) Second-order motion compensated PRESS for cardiac spectroscopy. Magn Reson Med 77:57–64

    Article  PubMed  Google Scholar 

  16. Weiss K, Summermatter S, Stoeck CT, Kozerke S (2014) Compensation of signal loss due to cardiac motion in point-resolved spectroscopy of the heart. Magn Reson Med 72:1201–1207

    Article  CAS  PubMed  Google Scholar 

  17. Rial B, Robson MD, Neubauer S, Schneider JE (2011) Rapid quantification of myocardial lipid content in humans using single breath-hold 1H MRS at 3 tesla. Magn Reson Med 66:619–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang Y, Riederer SJ, Ehman RL (1995) Respiratory motion of the heart: kinematics and the implications for the spatial resolution in coronary imaging. Magn Reson Med 33:713–719

    Article  CAS  PubMed  Google Scholar 

  19. Firmin D, Keegan J (2001) Navigator echoes in cardiac magnetic resonance. J Cardiovasc Magn Reson 3:183–193

    Article  CAS  PubMed  Google Scholar 

  20. Manke D, Nehrke K, Börnert P (2003) Novel prospective respiratory motion correction approach for free-breathing coronary MR angiography using a patient-adapted affine motion model. Magn Reson Med 50:122–131

    Article  PubMed  Google Scholar 

  21. Nehrke K, Börnert P, Manke D, Böck JC (2001) Free-breathing cardiac MR imaging: study of implications of respiratory motion—initial results. Radiology 220:810–815

    Article  CAS  PubMed  Google Scholar 

  22. McConnell MV, Khasgiwala VC, Savord BJ, Chen MH, Chuang ML, Edelman RR, Manning WJ (1997) Prospective adaptive navigator correction for breath-hold MR coronary angiography. Magn Reson Med 37:148–152

    Article  CAS  PubMed  Google Scholar 

  23. Taylor A, Keegan J, Jhooti P, Firmin D, Pennell D (1999) Calculation of a subject-specific adaptive motion-correction factor for improved real-time navigator echo-gated magnetic resonance coronary angiography. J Cardiovasc Magn Reson 1:131–138

    Article  CAS  PubMed  Google Scholar 

  24. Nguyen TD, Nuval A, Mulukutla S, Wang Y (2003) Direct monitoring of coronary artery motion with cardiac fat navigator echoes. Magn Reson Med 50:235–241

    Article  PubMed  Google Scholar 

  25. McConnell MV, Khasgiwala VC, Savord BJ, Chen MH, Chuang ML, Edelman RR, Manning WJ (1997) Comparison of respiratory suppression methods and navigator locations for MR coronary angiography. AJR Am J Roentgenol 168:1369–1375

    Article  CAS  PubMed  Google Scholar 

  26. Moghari MH, Hu P, Kissinger KV, Goddu B, Goepfert L, Ngo L, Manning WJ, Nezafat R (2012) Subject-specific estimation of respiratory navigator tracking factor for free-breathing cardiovascular MR. Magn Reson Med 67:1665–1672

    Article  PubMed  Google Scholar 

  27. Haase A, Frahm J, Hänicke W, Matthaei D (1985) 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol 30:341–344

    Article  CAS  PubMed  Google Scholar 

  28. Weiss K, Martini N, Boesiger P, Kozerke S (2013) Cardiac proton spectroscopy using large coil arrays. NMR Biomed 26:276–284

    Article  CAS  PubMed  Google Scholar 

  29. Naressi A, Couturier C, Devos JM, Janssen M, Mangeat C, de Beer R, Graveron-Demilly D (2001) Java-based graphical user interface for the MRUI quantitation package. MAGMA 12:141–152

    Article  CAS  PubMed  Google Scholar 

  30. Reiter U, Reiter G, Dorr K, Greiser A, Maderthaner R, Fuchsjäger M (2014) Normal diastolic and systolic myocardial T 1 values at 1.5-T MR imaging: correlations and blood normalization. Radiology 271:365–372

    Article  PubMed  Google Scholar 

  31. Manke D, Nehrke K, Börnert P, Rösch P, Dössel O (2002) Respiratory motion in coronary magnetic resonance angiography: a comparison of different motion models. J Magn Reson Imaging 15:661–671

    Article  PubMed  Google Scholar 

  32. Ith M, Stettler C, Xu J, Boesch C, Kreis R (2014) Cardiac lipid levels show diurnal changes and long-term variations in healthy human subjects. NMR Biomed 27:1285–1292

    Article  CAS  PubMed  Google Scholar 

  33. White BM, Zhao T, Lamb JM, Bradley JD, Low DA (2013) Physiologically guided approach to characterizing respiratory motion. Med Phys 40:121723

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kawaji K, Spincemaille P, Nguyen TD, Thimmappa N, Cooper MA, Prince MR, Wang Y (2014) Direct coronary motion extraction from a 2D fat image navigator for prospectively gated coronary MR angiography. Magn Reson Med 71:599–607

    Article  PubMed  Google Scholar 

  35. Sarma S, Carrick-Ranson G, Fujimoto N, Adams-Huet B, Bhella PS, Hastings JL, Shafer KM, Shibata S, Boyd K, Palmer D, Szczepaniak EW, Szczepaniak LS, Levine BD (2013) The effects of age and aerobic fitness on myocardial lipid content. Circ Cardiovasc Imaging 6:1048–1055

    Article  PubMed  PubMed Central  Google Scholar 

  36. van der Meer RW, Rijzewijk LJ, Diamant M, Hammer S, Schar M, Bax JJ, Smit JWA, Romijn JA, de Roos A, Lamb HJ (2008) The ageing male heart: myocardial triglyceride content as independent predictor of diastolic function. Eur Heart J 29:1516–1522

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

DFG Research Fellowship (GA 2621/1-1).

Author information

Authors and Affiliations

Authors

Contributions

MG: study conception and design/acquisition of data/drafting the manuscript/analysis and interpretation of the data. SP: acquisition of data/critical revision. MF: acquisition of data/critical revision. FB: critical revision. MK: critical revision. RM: critical revision. SK: study conception and design/drafting the manuscript/analysis and interpretation of the data/critical revision.

Corresponding author

Correspondence to Mareike Gastl.

Ethics declarations

Conflict of interest

Dr. Gastl received a Research Fellowship of the German Research Foundation (GA 2621/1-1). The other authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gastl, M., Peereboom, S.M., Fuetterer, M. et al. Cardiac- versus diaphragm-based respiratory navigation for proton spectroscopy of the heart. Magn Reson Mater Phy 32, 259–268 (2019). https://doi.org/10.1007/s10334-018-0711-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-018-0711-y

Keywords

Navigation