Optimization of diffusion-weighted single-refocused spin-echo EPI by reducing eddy-current artifacts and shortening the echo time

  • Manoj Shrestha
  • Pavel Hok
  • Ulrike Nöth
  • Bianca Lienerth
  • Ralf Deichmann
Research Article



The purpose of this work was to optimize the acquisition of diffusion-weighted (DW) single-refocused spin-echo (srSE) data without intrinsic eddy-current compensation (ECC) for an improved performance of ECC postprocessing. The rationale is that srSE sequences without ECC may yield shorter echo times (TE) and thus higher signal-to-noise ratios (SNR) than srSE or twice-refocused spin-echo (trSE) schemes with intrinsic ECC.

Materials and methods

The proposed method employs dummy scans with DW gradients to drive eddy currents into a steady state before data acquisition. Parameters of the ECC postprocessing algorithm were also optimized. Simulations were performed to obtain minimum TE values for the proposed sequence and sequences with intrinsic ECC. Experimentally, the proposed method was compared with standard DW-trSE imaging, both in vitro and in vivo.


Simulations showed substantially shorter TE for the proposed method than for methods with intrinsic ECC when using shortened echo readouts. Data of the proposed method showed a marked increase in SNR. A dummy scan duration of at least 1.5 s improved performance of the ECC postprocessing algorithm.


Changes proposed for the DW-srSE sequence and for the parameter setting of the postprocessing ECC algorithm considerably reduced eddy-current artifacts and provided a higher SNR.


Diffusion-weighted imaging Eddy-current compensation Short echo time Signal-to-noise ratio 


Authors’ contribution

MS, PH, RD protocol/project development. BL, UN, MS Data collection or management. PH, MS data analysis.

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflict of interest.

Ethical approval

All procedures performed in the vivo study were approved by the local ethics committee of the University Hospital.

Informed consent

Written informed consent was obtained from all healthy participants before scanning.


  1. 1.
    Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13(4):534–546CrossRefPubMedGoogle Scholar
  2. 2.
    Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51(5):527–539CrossRefPubMedGoogle Scholar
  3. 3.
    Lerner A, Mogensen MA, Kim PE, Shiroishi MS, Hwang DH, Law M (2014) Clinical applications of diffusion tensor imaging. World Neurosurg 82(1):96–109CrossRefPubMedGoogle Scholar
  4. 4.
    Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42(1):288–292CrossRefGoogle Scholar
  5. 5.
    Turner R, Le Bihan D, Maier J, Vavrek R, Hedges LK, Pekar J (1990) Echo-planar imaging of intravoxel incoherent motion. Radiology 177(2):407–414CrossRefPubMedGoogle Scholar
  6. 6.
    Jezzard P, Barnett AS, Pierpaoli C (1998) Characterization of and correction for eddy current artifacts in echo planar diffusion imaging. Magn Reson Med 39(5):801–812CrossRefPubMedGoogle Scholar
  7. 7.
    Le Bihan D, Poupon C, Amadon A, Lethimonnier F (2006) Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging 24(3):478–488CrossRefPubMedGoogle Scholar
  8. 8.
    Alexander AL, Tsuruda JS, Parker DL (1997) Elimination of eddy current artifacts in diffusion-weighted echo-planar images: the use of bipolar gradients. Magn Reson Med 38(6):1016–1021CrossRefPubMedGoogle Scholar
  9. 9.
    Finsterbusch J (2009) Eddy-current compensated diffusion weighting with a single refocusing RF pulse. Magn Reson Med 61(3):748–754CrossRefPubMedGoogle Scholar
  10. 10.
    Aliotta E, Moulin K, Ennis DB (2018) Eddy current–nulled convex optimized diffusion encoding (EN-CODE) for distortion-free diffusion tensor imaging with short echo times. Magn Reson Med 79(2):663–672CrossRefPubMedGoogle Scholar
  11. 11.
    Calamante F, Porter DA, Gadian DG, Connelly A (1999) Correction for eddy current induced Bo shifts in diffusion-weighted echo-planar imaging. Magn Reson Med 41(1):95–102CrossRefPubMedGoogle Scholar
  12. 12.
    Boesch C, Gruetter R, Martin E (1991) Temporal and spatial analysis of fields generated by eddy currents in superconducting magnets: optimization of corrections and quantitative characterization of magnet/gradient systems. Magn Reson Med 20(2):268–284CrossRefPubMedGoogle Scholar
  13. 13.
    Heid O (2000). Eddy current-nulled diffusion weighting. In: Proceedings of the 8th annual meeting of ISMRM, Denver, p 799Google Scholar
  14. 14.
    Reese TG, Heid O, Weisskoff RM, Wedeen VJ (2003) Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med 49(1):177–182CrossRefPubMedGoogle Scholar
  15. 15.
    Chan RW, von Deuster C, Giese D, Stoeck CT, Harmer J, Aitken AP, Atkinson D, Kozerke S (2014) Characterization and correction of eddy-current artifacts in unipolar and bipolar diffusion sequences using magnetic field monitoring. J Magn Reson 244:74–84CrossRefPubMedGoogle Scholar
  16. 16.
    Vannesjo SJ, Haeberlin M, Kasper L, Pavan M, Wilm BJ, Barmet C, Pruessmann KP (2013) Gradient system characterization by impulse response measurements with a dynamic field camera. Magn Reson Med 69(2):583–593CrossRefPubMedGoogle Scholar
  17. 17.
    Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM (2012) FSL. NeuroImage 62:782–790CrossRefPubMedGoogle Scholar
  18. 18.
    Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23:S208–S219CrossRefPubMedGoogle Scholar
  19. 19.
    Andersson JLR, Sotiropoulos SN (2016) An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage 125:1063–1078CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210CrossRefPubMedGoogle Scholar
  21. 21.
    Jones DK, Horsfield MA, Simmons A (1999) Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 42(3):515–525CrossRefPubMedGoogle Scholar
  22. 22.
    Andersson JLR, Skare S, Ashburner J (2003) How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 20:870–888CrossRefPubMedGoogle Scholar
  23. 23.
    Mugler JP, Brookeman JR (1990) Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 15(1):152–157CrossRefPubMedGoogle Scholar
  24. 24.
    Deichmann R, Good CD, Josephs O, Ashburner J, Turner R (2000) Optimization of 3-D MP-RAGE sequences for structural brain imaging. NeuroImage 12(1):112–127CrossRefPubMedGoogle Scholar
  25. 25.
    Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155CrossRefPubMedGoogle Scholar
  26. 26.
    Deichmann R (2006) Fast structural brain imaging using an MDEFT sequence with a FLASH–EPI hybrid readout. NeuroImage 33(4):1066–1071CrossRefPubMedGoogle Scholar
  27. 27.
    Constantinides CD, Atalar E, McVeigh ER (1997) Signal-to-noise measurements in magnitude images from NMR phased arrays. Magn Reson Med 38(5):852–857CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Nöth U, Shrestha M, Schüre JR, Deichmann R (2017) Quantitative in vivo T2 mapping using fast spin echo techniques-a linear correction procedure. NeuroImage 157:476–485CrossRefPubMedGoogle Scholar
  29. 29.
    Feinberg DA, Moeller S, Smith SM, Auerbach E, Ramanna S, Gunther M, Glasser MF, Miller KL, Ugurbil K, Yacoub E (2010) Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS One 5(12):e15710CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Spees WM, Buhl N, Sun P, Ackerman JJ, Neil JJ, Garbow JR (2011) Quantification and compensation of eddy-current-induced magnetic-field gradients. J Magn Reson 212(1):116–123CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mohammadi S, Möller HE, Kugel H, Müller DK, Deppe M (2010) Correcting eddy current and motion effects by affine whole-brain registrations: evaluation of three-dimensional distortions and comparison with slicewise correction. Magn Reson Med 64(4):1047–1056CrossRefPubMedGoogle Scholar
  32. 32.
    Horsfield MA (1999) Mapping eddy current induced fields for the correction of diffusion-weighted echo planar images. Magn Reson Imaging 17(9):1335–1345CrossRefPubMedGoogle Scholar

Copyright information

© ESMRMB 2018

Authors and Affiliations

  1. 1.Brain Imaging Center (BIC)Goethe University FrankfurtFrankfurt am MainGermany
  2. 2.Department of NeurologyPalacky University Olomouc and University Hospital OlomoucOlomoucCzech Republic

Personalised recommendations