Skip to main content

Advertisement

Log in

Optimization of diffusion-weighted single-refocused spin-echo EPI by reducing eddy-current artifacts and shortening the echo time

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

The purpose of this work was to optimize the acquisition of diffusion-weighted (DW) single-refocused spin-echo (srSE) data without intrinsic eddy-current compensation (ECC) for an improved performance of ECC postprocessing. The rationale is that srSE sequences without ECC may yield shorter echo times (TE) and thus higher signal-to-noise ratios (SNR) than srSE or twice-refocused spin-echo (trSE) schemes with intrinsic ECC.

Materials and methods

The proposed method employs dummy scans with DW gradients to drive eddy currents into a steady state before data acquisition. Parameters of the ECC postprocessing algorithm were also optimized. Simulations were performed to obtain minimum TE values for the proposed sequence and sequences with intrinsic ECC. Experimentally, the proposed method was compared with standard DW-trSE imaging, both in vitro and in vivo.

Results

Simulations showed substantially shorter TE for the proposed method than for methods with intrinsic ECC when using shortened echo readouts. Data of the proposed method showed a marked increase in SNR. A dummy scan duration of at least 1.5 s improved performance of the ECC postprocessing algorithm.

Conclusion

Changes proposed for the DW-srSE sequence and for the parameter setting of the postprocessing ECC algorithm considerably reduced eddy-current artifacts and provided a higher SNR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13(4):534–546

    Article  PubMed  Google Scholar 

  2. Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51(5):527–539

    Article  PubMed  CAS  Google Scholar 

  3. Lerner A, Mogensen MA, Kim PE, Shiroishi MS, Hwang DH, Law M (2014) Clinical applications of diffusion tensor imaging. World Neurosurg 82(1):96–109

    Article  PubMed  Google Scholar 

  4. Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42(1):288–292

    Article  CAS  Google Scholar 

  5. Turner R, Le Bihan D, Maier J, Vavrek R, Hedges LK, Pekar J (1990) Echo-planar imaging of intravoxel incoherent motion. Radiology 177(2):407–414

    Article  PubMed  CAS  Google Scholar 

  6. Jezzard P, Barnett AS, Pierpaoli C (1998) Characterization of and correction for eddy current artifacts in echo planar diffusion imaging. Magn Reson Med 39(5):801–812

    Article  PubMed  CAS  Google Scholar 

  7. Le Bihan D, Poupon C, Amadon A, Lethimonnier F (2006) Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging 24(3):478–488

    Article  PubMed  Google Scholar 

  8. Alexander AL, Tsuruda JS, Parker DL (1997) Elimination of eddy current artifacts in diffusion-weighted echo-planar images: the use of bipolar gradients. Magn Reson Med 38(6):1016–1021

    Article  PubMed  CAS  Google Scholar 

  9. Finsterbusch J (2009) Eddy-current compensated diffusion weighting with a single refocusing RF pulse. Magn Reson Med 61(3):748–754

    Article  PubMed  Google Scholar 

  10. Aliotta E, Moulin K, Ennis DB (2018) Eddy current–nulled convex optimized diffusion encoding (EN-CODE) for distortion-free diffusion tensor imaging with short echo times. Magn Reson Med 79(2):663–672

    Article  PubMed  CAS  Google Scholar 

  11. Calamante F, Porter DA, Gadian DG, Connelly A (1999) Correction for eddy current induced Bo shifts in diffusion-weighted echo-planar imaging. Magn Reson Med 41(1):95–102

    Article  PubMed  CAS  Google Scholar 

  12. Boesch C, Gruetter R, Martin E (1991) Temporal and spatial analysis of fields generated by eddy currents in superconducting magnets: optimization of corrections and quantitative characterization of magnet/gradient systems. Magn Reson Med 20(2):268–284

    Article  PubMed  CAS  Google Scholar 

  13. Heid O (2000). Eddy current-nulled diffusion weighting. In: Proceedings of the 8th annual meeting of ISMRM, Denver, p 799

  14. Reese TG, Heid O, Weisskoff RM, Wedeen VJ (2003) Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med 49(1):177–182

    Article  PubMed  CAS  Google Scholar 

  15. Chan RW, von Deuster C, Giese D, Stoeck CT, Harmer J, Aitken AP, Atkinson D, Kozerke S (2014) Characterization and correction of eddy-current artifacts in unipolar and bipolar diffusion sequences using magnetic field monitoring. J Magn Reson 244:74–84

    Article  PubMed  CAS  Google Scholar 

  16. Vannesjo SJ, Haeberlin M, Kasper L, Pavan M, Wilm BJ, Barmet C, Pruessmann KP (2013) Gradient system characterization by impulse response measurements with a dynamic field camera. Magn Reson Med 69(2):583–593

    Article  PubMed  Google Scholar 

  17. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM (2012) FSL. NeuroImage 62:782–790

    Article  PubMed  Google Scholar 

  18. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23:S208–S219

    Article  PubMed  Google Scholar 

  19. Andersson JLR, Sotiropoulos SN (2016) An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage 125:1063–1078

    Article  PubMed  PubMed Central  Google Scholar 

  20. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210

    Article  PubMed  Google Scholar 

  21. Jones DK, Horsfield MA, Simmons A (1999) Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 42(3):515–525

    Article  PubMed  CAS  Google Scholar 

  22. Andersson JLR, Skare S, Ashburner J (2003) How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 20:870–888

    Article  PubMed  Google Scholar 

  23. Mugler JP, Brookeman JR (1990) Three-dimensional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magn Reson Med 15(1):152–157

    Article  PubMed  Google Scholar 

  24. Deichmann R, Good CD, Josephs O, Ashburner J, Turner R (2000) Optimization of 3-D MP-RAGE sequences for structural brain imaging. NeuroImage 12(1):112–127

    Article  PubMed  CAS  Google Scholar 

  25. Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155

    Article  PubMed  Google Scholar 

  26. Deichmann R (2006) Fast structural brain imaging using an MDEFT sequence with a FLASH–EPI hybrid readout. NeuroImage 33(4):1066–1071

    Article  PubMed  CAS  Google Scholar 

  27. Constantinides CD, Atalar E, McVeigh ER (1997) Signal-to-noise measurements in magnitude images from NMR phased arrays. Magn Reson Med 38(5):852–857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Nöth U, Shrestha M, Schüre JR, Deichmann R (2017) Quantitative in vivo T2 mapping using fast spin echo techniques-a linear correction procedure. NeuroImage 157:476–485

    Article  PubMed  Google Scholar 

  29. Feinberg DA, Moeller S, Smith SM, Auerbach E, Ramanna S, Gunther M, Glasser MF, Miller KL, Ugurbil K, Yacoub E (2010) Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS One 5(12):e15710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Spees WM, Buhl N, Sun P, Ackerman JJ, Neil JJ, Garbow JR (2011) Quantification and compensation of eddy-current-induced magnetic-field gradients. J Magn Reson 212(1):116–123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Mohammadi S, Möller HE, Kugel H, Müller DK, Deppe M (2010) Correcting eddy current and motion effects by affine whole-brain registrations: evaluation of three-dimensional distortions and comparison with slicewise correction. Magn Reson Med 64(4):1047–1056

    Article  PubMed  Google Scholar 

  32. Horsfield MA (1999) Mapping eddy current induced fields for the correction of diffusion-weighted echo planar images. Magn Reson Imaging 17(9):1335–1345

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MS, PH, RD protocol/project development. BL, UN, MS Data collection or management. PH, MS data analysis.

Corresponding author

Correspondence to Manoj Shrestha.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethical approval

All procedures performed in the vivo study were approved by the local ethics committee of the University Hospital.

Informed consent

Written informed consent was obtained from all healthy participants before scanning.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrestha, M., Hok, P., Nöth, U. et al. Optimization of diffusion-weighted single-refocused spin-echo EPI by reducing eddy-current artifacts and shortening the echo time. Magn Reson Mater Phy 31, 585–597 (2018). https://doi.org/10.1007/s10334-018-0684-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-018-0684-x

Keywords

Navigation