Segmental biventricular analysis of myocardial function using high temporal and spatial resolution tissue phase mapping

  • Marius Menza
  • Daniela Föll
  • Jürgen Hennig
  • Bernd Jung
Research Article



Myocardial dysfunction of the right ventricle (RV) is an important indicator of RV diseases, e.g. RV infarction or pulmonary hypertension. Tissue phase mapping (TPM) has been widely used to determine function of the left ventricle (LV) by analyzing myocardial velocities. The analysis of RV motion is more complicated due to the different geometry and smaller wall thickness. The aim of this work was to adapt and optimize TPM to the demands of the RV.

Materials and methods

TPM measurements were acquired in 25 healthy volunteers using a velocity-encoded phase-contrast sequence and kt-accelerated parallel imaging in combination with optimized navigator strategy and blood saturation. Post processing was extended by a 10-segment RV model and a detailed biventricular analysis of myocardial velocities was performed.


High spatio-temporal resolution (1.0 × 1.0 × 6 mm3, 21.3 ms) and the optimized blood saturation enabled good delineation of the RV and its velocities. Global and segmental velocities, as well as time to peak velocities showed significant differences between the LV and RV. Furthermore, complex timing of the RV could be demonstrated by segmental time to peak analysis.


High spatio-temporal resolution TPM enables a detailed biventricular analysis of myocardial motion and might provide a reliable tool for description and detection of diseases affecting left and right ventricular function.


Right ventricle Tissue Phase Mapping Phase-contrast velocity mapping Biventricular analysis 



We would like to thank Alexandra Mannweiler for recruiting volunteers and Adriana Komancsek for assistance in performing the MR examinations.

Grand support

This research was supported by the Deutsche Forschungsgemeinschaft (DFG), Grant FO 507/3-1.

Author contribution

MM: Protocol/project development, Data collection or management, Data analysis; DF: Protocol/project development, Data collection or management, Data analysis; JH: Protocol/project development; BJ: Protocol/project development, Data collection or management, Data analysis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Apostolakis S, Konstantinides S (2012) The right ventricle in health and disease: insights into physiology, pathophysiology and diagnostic management. Cardiology 121:263–273CrossRefPubMedGoogle Scholar
  2. 2.
    Teske AJ, Cox MG, De Boeck BW, Doevendans PA, Hauer RN, Cramer MJ (2009) Echocardiographic tissue deformation imaging quantifies abnormal regional right ventricular function in arrhythmogenic right ventricular dysplasia/cardiomyopathy. J Am Soc Echocardiogr 22:920–927CrossRefPubMedGoogle Scholar
  3. 3.
    Vitarelli A, Franciosa P, Nguyen BL, Capotosto L, Ciccaglioni A, Conde Y, Iorio G, De Curtis G, Caranci F, Vitarelli M, Lucchetti P, Dettori O, De Cicco V (2011) Additive value of right ventricular dyssynchrony indexes in predicting the success of cardiac resynchronization therapy: a Speckle-Tracking Imaging Study. J Card Fail 17:392–402CrossRefPubMedGoogle Scholar
  4. 4.
    Wang J, Prakasa K, Bomma C, Tandri H, Dalal D, James C, Tichnell C, Corretti M, Bluemke D, Calkins H, Abraham TP (2007) Comparison of novel echocardiographic parameters of right ventricular function with ejection fraction by cardiac magnetic resonance. J Am Soc Echocardiogr 20:1058–1064CrossRefPubMedGoogle Scholar
  5. 5.
    Hennig J, Schneider B, Peschl S, Markl M, Laubenberger TKJ (1998) Analysis of myocardial motion based on velocity measurements with a black blood prepared segmented gradient-echo sequence: methodology and applications to normal volunteers and patients. J Magn Reson Imaging 8:868–877CrossRefPubMedGoogle Scholar
  6. 6.
    Petersen SE, Jung BA, Wiesmann F, Selvanayagam JB, Francis JM, Hennig J, Neubauer S, Robson MD (2006) Myocardial tissue phase mapping with cine phase-contrast MR Imaging: regional wall motion analysis in healthy volunteers. Radiology 238:816–826CrossRefPubMedGoogle Scholar
  7. 7.
    Menza, Marius, Föll D, Hennig J, Jung B (2016) Spiral SPIRIT tissue phase mapping enables the acquisition of myocardial motion with high temporal and spatial resolution during breath-hold. Proc. 24th Annu. Meet. ISMRM. Singapore, p 3131Google Scholar
  8. 8.
    von Knobelsdorff-Brenkenhoff F, Hennig P, Menza M, Dieringer MA, Foell D, Jung B, Schulz-Menger J (2016) Myocardial dysfunction in patients with aortic stenosis and hypertensive heart disease assessed by MR tissue phase mapping. J Magn Reson Imaging 44:168–177CrossRefGoogle Scholar
  9. 9.
    Delfino JG, Bhasin M, Cole R, Eisner RL, Merlino J, Leon AR, Oshinski JN (2006) Comparison of myocardial velocities obtained with magnetic resonance phase velocity mapping and tissue doppler imaging in normal subjects and patients with left ventricular dyssynchrony. J Magn Reson Imaging 24:304–311CrossRefPubMedGoogle Scholar
  10. 10.
    Paelinck BP, de Roos A, Bax JJ, Bosmans JM, van Der Geest RJ, Dhondt D, Parizel PM, Vrints CJ, Lamb HJ (2005) Feasibility of tissue magnetic resonance imaging. J Am Coll Cardiol 45:1109–1116CrossRefPubMedGoogle Scholar
  11. 11.
    Marsan NA, Westenberg JJM, Tops LF, Ypenburg C, Holman ER, Reiber JHC, de Roos A, van der Wall EE, Schalij MJ, Roelandt JR, Bax JJ (2008) Comparison between tissue Doppler imaging and velocity-encoded magnetic resonance imaging for measurement of myocardial Velocities, assessment of left ventricular dyssynchrony, and estimation of left ventricular filling pressures in patients with ischemic cardiomyopathy. Am J Cardiol 102:1366–1372CrossRefPubMedGoogle Scholar
  12. 12.
    Jung B, Schneider B, Markl M, Saurbier B, Geibel A, Hennig J (2004) Measurement of left ventricular velocities: phase contrast MRI velocity mapping versus tissue-Doppler-ultrasound in healthy volunteers. J Cardiovasc Magn Reson 6:777–783CrossRefPubMedGoogle Scholar
  13. 13.
    Sandstede J, Lipke C, Beer M, Hofmann S, Pabst T, Kenn W, Neubauer S, Hahn D (1999) Age- and gender-specific differences in left and right ventricular cardiac function and mass determined by cine magnetic resonance imaging. Eur Radiol 10:438–442CrossRefGoogle Scholar
  14. 14.
    Dong SJ, MacGregor JH, Crawley AP, McVeigh E, Belenkie I, Smith ER, Tyberg JV, Beyar R (1994) Left ventricular wall thickness and regional systolic function in patients with hypertrophic cardiomyopathy. A three-dimensional tagged magnetic resonance imaging study. Circulation 90:1200–1209CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fisher M, von Schulthess G, Higgins C (1985) Multiphasic cardiac magnetic resonance imaging: normal regional left ventricular wall thickening. Am J Roentgenol 145:27–30CrossRefGoogle Scholar
  16. 16.
    Schneider B, Markl M, Geiges C, Winterer J, Thuerl C, Laubenberger J, Hennig J, Langer M (2001) Cardiac phase contrast gradient echo MRI characterization of abnormal left ventricular wall motion in patients with ischemic heart disease. [Miscellaneous Article]. J Comput Assist Tomogr 25:550–557CrossRefPubMedGoogle Scholar
  17. 17.
    Steeden JA, Kowalik GT, Taylor A, Muthurangu V (2014) Tissue phase mapping using breath-hold 4D PCMR. J Cardiovasc Magn Reson 16:W30CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Föll D, Jung B, Staehle F, Schilli E, Bode C, Hennig J, Markl M (2009) Visualization of multidirectional regional left ventricular dynamics by high-temporal-resolution tissue phase mapping. J Magn Reson Imaging 29:1043–1052CrossRefPubMedGoogle Scholar
  19. 19.
    Bauer S, Markl M, Föll D, Russe M, Stankovic Z, Jung B (2013) K-t GRAPPA accelerated phase contrast MRI: improved assessment of blood flow and 3-directional myocardial motion during breath-hold. J Magn Reson Imaging 38:1054–1062CrossRefPubMedGoogle Scholar
  20. 20.
    Föll D, Jung B, Schilli E, Staehle F, Geibel A, Hennig J, Bode C, Markl M (2010) Magnetic resonance tissue phase mapping of myocardial motion new insight in age and gender. Circ Cardiovasc Imaging 3:54–64CrossRefPubMedGoogle Scholar
  21. 21.
    Jung B, Markl M, Föll D, Hennig J (2006) Investigating myocardial motion by MRI using tissue phase mapping. Eur J Cardiothorac Surg 29:S150–S157CrossRefPubMedGoogle Scholar
  22. 22.
    Jung B, Zaitsev M, Hennig J, Markl M (2006) Navigator gated high temporal resolution tissue phase mapping of myocardial motion. Magn Reson Med 55:937–942CrossRefPubMedGoogle Scholar
  23. 23.
    Jung B, Föll D, Böttler P, Petersen S, Hennig J, Markl M (2006) Detailed analysis of myocardial motion in volunteers and patients using high-temporal-resolution MR tissue phase mapping. J Magn Reson Imaging 24:1033–1039CrossRefPubMedGoogle Scholar
  24. 24.
    Simpson R, Keegan J, Firmin D (2013) Efficient and reproducible high resolution spiral myocardial phase velocity mapping of the entire cardiac cycle. J Cardiovasc Magn Reson 15:34CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kayser MDHWM, van der Geest Msc RJ, van der Wall MDEE, Duchateau Msc C, de Roos MDA (2000) Right ventricular function in patients after acute myocardial infarction assessed with phase contrast MR velocity mapping encoded in three directions. J Magn Reson Imaging 11:471–475CrossRefPubMedGoogle Scholar
  26. 26.
    Matsukubo H, Matsuura T, Endo N, Asayama J, Watanabe T (1977) Echocardiographic measurement of right ventricular wall thickness. A new application of subxiphoid echocardiography. Circulation 56:278–284CrossRefPubMedGoogle Scholar
  27. 27.
    Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise J, Solomon S, Spencer KT, Sutton MSJ, Stewart W (2006) Recommendations for chamber quantification. Eur Heart J Cardiovasc Imaging 7:79–108Google Scholar
  28. 28.
    Jurcut R, Giusca S, Gerche AL, Vasile S, Ginghina C, Voigt J-U (2010) The echocardiographic assessment of the right ventricle: what to do in 2010? Eur Heart J Cardiovasc Imaging 11:81–96Google Scholar
  29. 29.
    Lutz A, Bornstedt A, Manzke R, Nienhaus GU, Etyngier P, Rasche V (2011) SAR reduced black-blood cine TPM for increased temporal resolution at 3T. Magn Reson Mater Phy Biol Med 24:127–135CrossRefGoogle Scholar
  30. 30.
    Lutz A, Bornstedt A, Manzke R, Etyngier P, Nienhaus GU, Rottbauer W, Rasche V (2011) Acceleration of tissue phase mapping with sensitivity encoding at 3T. J Cardiovasc Magn Reson 13:59CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Markl M, Schneider B, Hennig J (2002) Fast phase contrast cardiac magnetic resonance imaging: improved assessment and analysis of left ventricular wall motion. J Magn Reson Imaging 15:642–653CrossRefPubMedGoogle Scholar
  32. 32.
    Codreanu I, Pegg TJ, Selvanayagam JB, Robson MD, Rider OJ, Dasanu CA, Jung BA, Taggart DP, Golding SJ, Clarke K, Holloway CJ (2014) Normal values of regional and global myocardial wall motion in young and elderly individuals using navigator gated tissue phase mapping. AGE 36:231–241CrossRefPubMedGoogle Scholar
  33. 33.
    Jung B, Ullmann P, Honal M, Bauer S, Hennig J, Markl M (2008) Parallel MRI with extended and averaged GRAPPA kernels (PEAK-GRAPPA): optimized spatiotemporal dynamic imaging. J Magn Reson Imaging 28:1226–1232CrossRefPubMedGoogle Scholar
  34. 34.
    Markl M, Harloff A, Bley TA, Zaitsev M, Jung B, Weigang E, Langer M, Hennig J, Frydrychowicz A (2007) Time-resolved 3D MR velocity mapping at 3T: improved navigator-gated assessment of vascular anatomy and blood flow. J Magn Reson Imaging 25:824–831CrossRefPubMedGoogle Scholar
  35. 35.
    Walker PG, Cranney GB, Scheidegger MB, Waseleski G, Pohost GM, Yoganathan AP (1993) Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. J Magn Reson Imaging 3:521–530CrossRefPubMedGoogle Scholar
  36. 36.
    Lee ETY (1989) Choosing nodes in parametric curve interpolation. Comput Aided Des 21:363–370CrossRefGoogle Scholar
  37. 37.
    Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS, Imaging AHAWG on MS and R for C (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation 105:539–542CrossRefPubMedGoogle Scholar
  38. 38.
    Schwarz K, Singh S, Dawson D, Frenneaux MP (2013) Right ventricular function in left ventricular disease: pathophysiology and implications. Heart Lung Circ 22:507–511CrossRefPubMedGoogle Scholar
  39. 39.
    Simpson R, Keegan J, Gatehouse P, Hansen M, Firmin D (2014) Spiral tissue phase velocity mapping in a breath-hold with non-cartesian SENSE. Magn Reson Med 72:659–668CrossRefPubMedGoogle Scholar
  40. 40.
    Buckberg G, Hoffman JIE (2014) Right ventricular architecture responsible for mechanical performance: unifying role of ventricular septum. J Thorac Cardiovasc Surg 148(3166–3171):e4Google Scholar
  41. 41.
    Steeden JA, Knight DS, Bali S, Atkinson D, Taylor AM, Muthurangu V (2014) Self-navigated tissue phase mapping using a golden-angle spiral acquisition—proof of concept in patients with pulmonary hypertension. Magn Reson Med 71:145–155CrossRefPubMedGoogle Scholar
  42. 42.
    Nikitin NP, Witte KKA, Thackray SDR, de Silva R, Clark AL, Cleland JGF (2003) Longitudinal ventricular function: normal values of atrioventricular annular and myocardial velocities measured with quantitative two-dimensional color doppler tissue imaging. J Am Soc Echocardiogr 16:906–921CrossRefPubMedGoogle Scholar
  43. 43.
    Lindqvist P, Waldenström A, Henein M, Mörner S, Kazzam E (2005) Regional and global right ventricular function in healthy individuals aged 20–90 years: a pulsed Doppler Tissue Imaging Study Umeå General Population Heart Study. Echocardiography 22:305–314CrossRefPubMedGoogle Scholar
  44. 44.
    Pirat B, McCulloch ML, Zoghbi WA (2006) Evaluation of global and regional right ventricular systolic function in patients with pulmonary hypertension using a novel speckle tracking method. Am J Cardiol 98:699–704CrossRefPubMedGoogle Scholar
  45. 45.
    Fayad ZA, Ferrari VA, Kraitchman DL, Young AA, Palevsky HI, Bloomgarden DC, Axel L (1998) Right ventricular regional function using MR tagging: normals versus chronic pulmonary hypertension. Magn Reson Med 39:116–123CrossRefPubMedGoogle Scholar
  46. 46.
    Khalaf A, Tani D, Tadros S, Madan S (2013) Right- and Left-ventricular strain evaluation in repaired pediatric tetralogy of fallot patients using magnetic resonance tagging. Pediatr Cardiol 34:1206–1211CrossRefPubMedGoogle Scholar
  47. 47.
    Nagao M, Yamasaki Y, Yonezawa M, Matsuo Y, Kamitani T, Yamamura K, Sakamoto I, Abe K, Kawanami S, Honda H (2015) Interventricular dyssynchrony using tagging magnetic resonance imaging predicts right ventricular dysfunction in adult congenital heart disease. Congenit Heart Dis 10:271–280CrossRefPubMedGoogle Scholar
  48. 48.
    Naito H, Arisawa J, Harada K, Yamagami H, Kozuka T, Tamura S (1995) Assessment of right ventricular regional contraction and comparison with the left ventricle in normal humans: a cine magnetic resonance study with presaturation myocardial tagging. Br Heart J 74:186–191CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Auger DA, Zhong X, Epstein FH, Spottiswoode BS (2012) Mapping right ventricular myocardial mechanics using 3D cine DENSE cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:4CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Spottiswoode BS, Zhong X, Lorenz CH, Mayosi BM, Meintjes EM, Epstein FH (2008) 3D myocardial tissue tracking with slice followed cine DENSE MRI. J Magn Reson Imaging 27:1019–1027CrossRefPubMedGoogle Scholar
  51. 51.
    Gilliam AD, Epstein FH (2013) Motion guided segmentation of the right ventricle for 3D cine DENSE MRI. J Cardiovasc Magn Reson 15:P82CrossRefPubMedCentralGoogle Scholar
  52. 52.
    Simpson RM, Keegan J, Firmin DN (2013) MR assessment of regional myocardial mechanics. J Magn Reson Imaging 37:576–599CrossRefPubMedGoogle Scholar
  53. 53.
    Hor KN, Baumann R, Pedrizzetti G, Tonti G, Gottliebson WM, Taylor M, Benson W, Mazur W (2011) Magnetic resonance derived myocardial strain assessment using feature tracking. J Vis Exp. PubMedPubMedCentralGoogle Scholar
  54. 54.
    Moon TJ, Choueiter N, Geva T, Valente AM, Gauvreau K, Harrild DM (2015) Relation of biventricular strain and dyssynchrony in repaired tetralogy of fallot measured by cardiac magnetic resonance to death and sustained ventricular tachycardia. Am J Cardiol 115:676–680CrossRefPubMedGoogle Scholar
  55. 55.
    Schuster A, Hor KN, Kowallick JT, Beerbaum P, Kutty S (2016) Cardiovascular magnetic resonance myocardial feature tracking. Circ Cardiovasc Imaging 9:e004077CrossRefPubMedGoogle Scholar
  56. 56.
    Schuster A, Stahnke V-C, Unterberg-Buchwald C, Kowallick JT, Lamata P, Steinmetz M, Kutty S, Fasshauer M, Staab W, Sohns JM, Bigalke B, Ritter C, Hasenfuß G, Beerbaum P, Lotz J (2015) Cardiovascular magnetic resonance feature-tracking assessment of myocardial mechanics: intervendor agreement and considerations regarding reproducibility. Clin Radiol 70:989–998CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Lindqvist P, Waldenström A, Wikström G, Kazzam E (2007) Potential use of isovolumic contraction velocity in assessment of left ventricular contractility in man: a simultaneous pulsed Doppler tissue imaging and cardiac catheterization study. Eur J Echocardiogr 8:252–258CrossRefPubMedGoogle Scholar
  58. 58.
    Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quiñones MA (1997) Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 30:1527–1533CrossRefPubMedGoogle Scholar
  59. 59.
    Dong S-J, Hees PS, Siu CO, Weiss JL, Shapiro EP (2001) MRI assessment of LV relaxation by untwisting rate: a new isovolumic phase measure of τ. Am J Physiol Heart Circ Physiol 281:H2002–H2009CrossRefPubMedGoogle Scholar
  60. 60.
    Delfino JG, Fornwalt BK, Eisner RL, Leon AR, Oshinski JN (2008) Cross-correlation delay to quantify myocardial dyssynchrony from phase contrast magnetic resonance (PCMR) velocity data. J Magn Reson Imaging 28:1086–1091CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Thorstensen A, Dalen H, Amundsen BH, Støylen A (2011) Peak systolic velocity indices are more sensitive than end-systolic indices in detecting contraction changes assessed by echocardiography in young healthy humans. Eur Heart J Cardiovasc Imaging 12:924–930CrossRefGoogle Scholar
  62. 62.
    Delfino JG, Fornwalt BK, Eisner RL, Leon AR, Oshinski JN (2008) Determination of transmural, endocardial, and epicardial radial strain and strain rate from phase contrast MR velocity data. J Magn Reson Imaging 27:522–528CrossRefPubMedGoogle Scholar
  63. 63.
    Haraldsson H, Wigström L, Lundberg M, Bolger AF, Engvall J, Ebbers T, Kvitting J-PE (2008) Improved estimation and visualization of two-dimensional myocardial strain rate using MR velocity mapping. J Magn Reson Imaging 28:604–611CrossRefPubMedGoogle Scholar
  64. 64.
    Lutz A, Paul J, Bornstedt A, Nienhaus GU, Etyngier P, Bernhardt P, Rottbauer W, Rasche V (2012) Volumetric motion quantification by 3D tissue phase mapped CMR. J Cardiovasc Magn Reson 14:1–13CrossRefGoogle Scholar

Copyright information

© ESMRMB 2017

Authors and Affiliations

  1. 1.Department of Radiology, Medical PhysicsMedical Center - University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
  2. 2.Department of Cardiology and Angiology IHeart Center - University of Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
  3. 3.Institute of Diagnostic, Interventional and Pediatric RadiologyUniversity Hospital BernBernSwitzerland

Personalised recommendations