Highly accelerated intracranial 4D flow MRI: evaluation of healthy volunteers and patients with intracranial aneurysms

  • Jing Liu
  • Louise Koskas
  • Farshid Faraji
  • Evan Kao
  • Yan Wang
  • Henrik Haraldsson
  • Sarah Kefayati
  • Chengcheng Zhu
  • Sinyeob Ahn
  • Gerhard Laub
  • David Saloner
Research Article

Abstract

Objectives

To evaluate an accelerated 4D flow MRI method that provides high temporal resolution in a clinically feasible acquisition time for intracranial velocity imaging.

Materials and methods

Accelerated 4D flow MRI was developed by using a pseudo-random variable-density Cartesian undersampling strategy (CIRCUS) with the combination of k-t, parallel imaging and compressed sensing image reconstruction techniques (k-t SPARSE-SENSE). Four-dimensional flow data were acquired on five healthy volunteers and eight patients with intracranial aneurysms using CIRCUS (acceleration factor of R = 4, termed CIRCUS4) and GRAPPA (R = 2, termed GRAPPA2) as the reference method. Images with three times higher temporal resolution (R = 12, CIRCUS12) were also reconstructed from the same acquisition as CIRCUS4. Qualitative and quantitative image assessment was performed on the images acquired with different methods, and complex flow patterns in the aneurysms were identified and compared.

Results

Four-dimensional flow MRI with CIRCUS was achieved in 5 min and allowed further improved temporal resolution of <30 ms. Volunteer studies showed similar qualitative and quantitative evaluation obtained with the proposed approach compared to the reference (overall image scores: GRAPPA2 3.2 ± 0.6; CIRCUS4 3.1 ± 0.7; CIRCUS12 3.3 ± 0.4; difference of the peak velocities: −3.83 ± 7.72 cm/s between CIRCUS4 and GRAPPA2, −1.72 ± 8.41 cm/s between CIRCUS12 and GRAPPA2). In patients with intracranial aneurysms, the higher temporal resolution improved capturing of the flow features in intracranial aneurysms (pathline visualization scores: GRAPPA2 2.2 ± 0.2; CIRCUS4 2.5 ± 0.5; CIRCUS12 2.7 ± 0.6).

Conclusion

The proposed rapid 4D flow MRI with a high temporal resolution is a promising tool for evaluating intracranial aneurysms in a clinically feasible acquisition time.

Keywords

4D flow Acceleration Undersampling Compressed sensing Intracranial Aneurysm 

Notes

Acknowledgements

This work was supported in part by grants from the NIH K25EB014914 (JL), R56HL133663 (JL) and R01HL114118 (DS).

Authors contribution

Protocol/project development: JL, FF, CZ, SA, GL, DS. Data collection or management: JL, FF, HH, SK, DS. Data analysis: JL, LK, FF, EK, YW, HH, SK, DS

Compliance with ethical standards

Conflict of interest

All authors have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This study was conducted under IRB Approvals (#10-03060) at the University of California San Francisco.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Boussel L, Rayz V, Martin A, Acevedo-Bolton G, Lawton MT, Higashida R, Smith WS, Young WL, Saloner D (2009) Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: comparison with computational fluid dynamics. Magn Reson Med 61:409–417CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Isoda H, Ohkura Y, Kosugi T, Hirano M, Takeda H, Hiramatsu H, Yamashita S, Takehara Y, Alley MT, Bammer R, Pelc NJ, Namba H, Sakahara H (2010) In vivo hemodynamic analysis of intracranial aneurysms obtained by magnetic resonance fluid dynamics (MRFD) based on time-resolved three-dimensional phase-contrast MRI. Neuroradiology 52:921–928CrossRefPubMedGoogle Scholar
  3. 3.
    Wu C, Schnell S, Vakil P, Honarmand AR, Ansari SA, Carr J, Markl M, Prabhakaran S (2017) In vivo assessment of the impact of regional intracranial atherosclerotic lesions on brain arterial 3D hemodynamics. AJNR Am J Neuroradiol 38:515–522CrossRefPubMedGoogle Scholar
  4. 4.
    Schnell S, Ansari SA, Wu C, Garcia J, Murphy IG, Rahman OA, Rahsepar AA, Aristova M, Collins JD, Carr JC, Markl M (2017) Accelerated dual-venc 4D flow MRI for neurovascular applications. J Magn Reson Imaging 46:102–114CrossRefPubMedGoogle Scholar
  5. 5.
    Wetzel S, Meckel S, Frydrychowicz A, Bonati L, Radue EW, Scheffler K, Hennig J, Markl M (2007) In vivo assessment and visualization of intracranial arterial hemodynamics with flow-sensitized 4D MR imaging at 3T. AJNR Am J Neuroradiol 28:433–438PubMedGoogle Scholar
  6. 6.
    Hope TA, Hope MD, Purcell DD, von Morze C, Vigneron DB, Alley MT, Dillon WP (2010) Evaluation of intracranial stenoses and aneurysms with accelerated 4D flow. Magn Reson Imaging 28:41–46CrossRefPubMedGoogle Scholar
  7. 7.
    Ansari SA, Schnell S, Carroll T, Vakil P, Hurley MC, Wu C, Carr J, Bendok BR, Batjer H, Markl M (2013) Intracranial 4D flow MRI: toward individualized assessment of arteriovenous malformation hemodynamics and treatment-induced changes. AJNR Am J Neuroradiol 34:1922–1928CrossRefPubMedGoogle Scholar
  8. 8.
    Wu C, Ansari SA, Honarmand AR, Vakil P, Hurley MC, Bendok BR, Carr J, Carroll TJ, Markl M (2015) Evaluation of 4D vascular flow and tissue perfusion in cerebral arteriovenous malformations: influence of Spetzler-Martin grade, clinical presentation, and AVM risk factors. AJNR Am J Neuroradiol 36:1142–1149CrossRefPubMedGoogle Scholar
  9. 9.
    Hope MD, Purcell DD, Hope TA, von Morze C, Vigneron DB, Alley MT, Dillon WP (2009) Complete intracranial arterial and venous blood flow evaluation with 4D flow MR imaging. AJNR Am J Neuroradiol 30:362–366CrossRefPubMedGoogle Scholar
  10. 10.
    Schuchardt F, Schroeder L, Anastasopoulos C, Markl M, Bauerle J, Hennemuth A, Drexl J, Valdueza JM, Mader I, Harloff A (2015) In vivo analysis of physiological 3D blood flow of cerebral veins. Eur Radiol 25:2371–2380CrossRefPubMedGoogle Scholar
  11. 11.
    Barger AV, Peters DC, Block WF, Vigen KK, Korosec FR, Grist TM, Mistretta CA (2000) Phase-contrast with interleaved undersampled projections. Magn Reson Med 43:503–509CrossRefPubMedGoogle Scholar
  12. 12.
    Gu T, Korosec FR, Block WF, Fain SB, Turk Q, Lum D, Zhou Y, Grist TM, Haughton V, Mistretta CA (2005) PC VIPR: a high-speed 3D phase-contrast method for flow quantification and high-resolution angiography. AJNR Am J Neuroradiol 26:743–749PubMedGoogle Scholar
  13. 13.
    Johnson KM, Lum DP, Turski PA, Block WF, Mistretta CA, Wieben O (2008) Improved 3D phase contrast MRI with off-resonance corrected dual echo VIPR. Magn Reson Med 60:1329–1336CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Park JB, Olcott EW, Nishimura DG (2003) Rapid measurement of time-averaged blood flow using ungated spiral phase-contrast. Magn Reson Med 49:322–328CrossRefPubMedGoogle Scholar
  15. 15.
    Sigfridsson A, Petersson S, Carlhall CJ, Ebbers T (2012) Four-dimensional flow MRI using spiral acquisition. Magn Reson Med 68:1065–1073CrossRefPubMedGoogle Scholar
  16. 16.
    Kadbi M, Negahdar M, Traughber M, Martin P, Amini AA (2013) Assessment of flow and hemodynamics in the carotid artery using a reduced TE 4D flow spiral phase-contrast MRI. Conf Proc IEEE Eng Med Biol Soc 2013:1100–1103PubMedGoogle Scholar
  17. 17.
    Dyvorne H, Knight-Greenfield A, Jajamovich G, Besa C, Cui Y, Stalder A, Markl M, Taouli B (2015) Abdominal 4D flow MR imaging in a breath hold: combination of spiral sampling and dynamic compressed sensing for highly accelerated acquisition. Radiology 275:245–254CrossRefPubMedGoogle Scholar
  18. 18.
    Baltes C, Kozerke S, Hansen MS, Pruessmann KP, Tsao J, Boesiger P (2005) Accelerating cine phase-contrast flow measurements using k-t BLAST and k-t SENSE. Magn Reson Med 54:1430–1438CrossRefPubMedGoogle Scholar
  19. 19.
    Jung B, Stalder AF, Bauer S, Markl M (2011) On the undersampling strategies to accelerate time-resolved 3D imaging using k-t-GRAPPA. Magn Reson Med 66:966–975CrossRefPubMedGoogle Scholar
  20. 20.
    Marshall I (2006) Feasibility of k-t BLAST technique for measuring “seven-dimensional” fluid flow. J Magn Reson Imaging 23:189–196CrossRefPubMedGoogle Scholar
  21. 21.
    Stadlbauer A, van der Riet W, Crelier G, Salomonowitz E (2010) Accelerated time-resolved three-dimensional MR velocity mapping of blood flow patterns in the aorta using SENSE and k-t BLAST. Eur J Radiol 75:e15–e21CrossRefPubMedGoogle Scholar
  22. 22.
    van Ooij P, Guedon A, Marquering HA, Schneiders JJ, Majoie CB, van Bavel E, Nederveen AJ (2012) k-t BLAST and SENSE accelerated time-resolved three-dimensional phase contrast MRI in an intracranial aneurysm. Magn Reson Mater Phy 26:261–270CrossRefGoogle Scholar
  23. 23.
    Carlsson M, Toger J, Kanski M, Bloch KM, Stahlberg F, Heiberg E, Arheden H (2011) Quantification and visualization of cardiovascular 4D velocity mapping accelerated with parallel imaging or k-t BLAST: head to head comparison and validation at 1.5 T and 3 T. J Cardiovasc Magn Reson 13:55CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Schnell S, Markl M, Entezari P, Mahadewia RJ, Semaan E, Stankovic Z, Collins J, Carr J, Jung B (2013) k-t GRAPPA accelerated four-dimensional flow MRI in the aorta: effect on scan time, image quality, and quantification of flow and wall shear stress. Magn Reson Med 72:522–533CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Knobloch V, Boesiger P, Kozerke S (2013) Sparsity transform k-t principal component analysis for accelerating cine three-dimensional flow measurements. Magn Reson Med 70:53–63CrossRefPubMedGoogle Scholar
  26. 26.
    Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195CrossRefPubMedGoogle Scholar
  27. 27.
    Holland DJ, Malioutov DM, Blake A, Sederman AJ, Gladden LF (2010) Reducing data acquisition times in phase-encoded velocity imaging using compressed sensing. J Magn Reson 203:236–246CrossRefPubMedGoogle Scholar
  28. 28.
    Kwak Y, Nam S, Akcakaya M, Basha TA, Goddu B, Manning WJ, Tarokh V, Nezafat R (2012) Accelerated aortic flow assessment with compressed sensing with and without use of the sparsity of the complex difference image. Magn Reson Med 70:851–858CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zhao F, Noll DC, Nielsen JF, Fessler JA (2012) Separate magnitude and phase regularization via compressed sensing. IEEE Trans Med Imaging 31:1713–1723CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Tao Y, Rilling G, Davies M, Marshall I (2013) Carotid blood flow measurement accelerated by compressed sensing: validation in healthy volunteers. Magn Reson Imaging 31:1485–1491CrossRefPubMedGoogle Scholar
  31. 31.
    Hutter J, Schmitt P, Saake M, Stubinger A, Grimm R, Forman C, Greiser A, Hornegger J, Maier A (2015) Multi-dimensional flow-preserving compressed sensing (MuFloCoS) for time-resolved velocity-encoded phase contrast MRI. IEEE Trans Med Imaging 34:400–414CrossRefPubMedGoogle Scholar
  32. 32.
    Kim D, Dyvorne HA, Otazo R, Feng L, Sodickson DK, Lee VS (2012) Accelerated phase-contrast cine MRI using k-t SPARSE-SENSE. Magn Reson Med 67:1054–1064CrossRefPubMedGoogle Scholar
  33. 33.
    Hsiao A, Lustig M, Alley MT, Murphy MJ, Vasanawala SS (2012) Evaluation of valvular insufficiency and shunts with parallel-imaging compressed-sensing 4D phase-contrast MR imaging with stereoscopic 3D velocity-fusion volume-rendered visualization. Radiology 265:87–95CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Vasanawala SS, Alley MT, Hargreaves BA, Barth RA, Pauly JM, Lustig M (2010) Improved pediatric MR imaging with compressed sensing. Radiology 256:607–616CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kecskemeti S, Johnson K, Wu Y, Mistretta C, Turski P, Wieben O (2012) High resolution three-dimensional cine phase contrast MRI of small intracranial aneurysms using a stack of stars k-space trajectory. J Magn Reson Imaging 35:518–527CrossRefPubMedGoogle Scholar
  36. 36.
    Sekine T, Amano Y, Takagi R, Matsumura Y, Murai Y, Kumita S (2014) Feasibility of 4D flow MR imaging of the brain with either Cartesian yz radial sampling or k-t SENSE: comparison with 4D Flow MR imaging using SENSE. Magn Reson Med Sci 13:15–24CrossRefPubMedGoogle Scholar
  37. 37.
    Dyverfeldt P, Bissell M, Barker AJ, Bolger AF, Carlhall CJ, Ebbers T, Francios CJ, Frydrychowicz A, Geiger J, Giese D, Hope MD, Kilner PJ, Kozerke S, Myerson S, Neubauer S, Wieben O, Markl M (2015) 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson 17:72CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Liu J, Saloner D (2014) Accelerated MRI with CIRcular Cartesian UnderSampling (CIRCUS): a variable density Cartesian sampling strategy for compressed sensing and parallel imaging. Quant Imaging Med Surg 4:57–67PubMedPubMedCentralGoogle Scholar
  39. 39.
    Cook RL (1986) Stochastic sampling in computer-graphics. Acm Trans Gr 5:51–72CrossRefGoogle Scholar
  40. 40.
    Dunbar D, Humphreys G (2006) A spatial data structure for fast Poisson-disk sample generation. ACM SIGGRAPH 25:503–508CrossRefGoogle Scholar
  41. 41.
    Vasanawala SS, Murphy MJ, Alley MT, Lai P, Keutzer K, Pauly JM, Lustig M (2011) Practical parallel imaging compressed sensing MRI: summary of two years of experience in accelerating body MRI of pediatric patients. IEEE International Symposium on Biomedical Imaging: from Nano to Macro, pp 1039–1043Google Scholar
  42. 42.
    Liu J, Feng L, Shen HW, Zhu C, Wang Y, Mukai K, Brooks GC, Ordovas K, Saloner D (2017) Highly-accelerated self-gated free-breathing 3D cardiac cine MRI: validation in assessment of left ventricular function. Magn Reson Mater Phy 30:337–346CrossRefGoogle Scholar
  43. 43.
    Liu J, Pedoia V, Heilmeier U, Ku E, Su F, Khanna S, Imboden J, Graf J, Link T, Li X (2016) High-temporospatial-resolution dynamic contrast-enhanced (DCE) wrist MRI with variable-density pseudo-random circular Cartesian undersampling (CIRCUS) acquisition: evaluation of perfusion in rheumatoid arthritis patients. NMR Biomed 29:15–23CrossRefPubMedGoogle Scholar
  44. 44.
    Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210CrossRefPubMedGoogle Scholar
  45. 45.
    Otazo R, Kim D, Axel L, Sodickson DK (2010) Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI. Magn Reson Med 64:767–776CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Feng L, Srichai MB, Lim RP, Harrison A, King W, Adluru G, Dibella EV, Sodickson DK, Otazo R, Kim D (2013) Highly accelerated real-time cardiac cine MRI using k-t SPARSE-SENSE. Magn Reson Med 70:64–74CrossRefPubMedGoogle Scholar
  47. 47.
    Boussel L, Rayz V, McCulloch C, Martin A, Acevedo-Bolton G, Lawton M, Higashida R, Smith WS, Young WL, Saloner D (2008) Aneurysm growth occurs at region of low wall shear stress patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke 39:2997–3002CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Bock J, Frydrychowicz A, Stalder AF, Bley TA, Burkhardt H, Hennig J, Markl M (2010) 4D phase contrast MRI at 3 T: effect of standard and blood-pool contrast agents on SNR, PC-MRA, and blood flow visualization. Magn Reson Med 63:330–338CrossRefPubMedGoogle Scholar
  49. 49.
    Hess AT, Bissell MM, Ntusi NA, Lewis AJ, Tunnicliffe EM, Greiser A, Stalder AF, Francis JM, Myerson SG, Neubauer S, Robson MD (2015) Aortic 4D flow: quantification of signal-to-noise ratio as a function of field strength and contrast enhancement for 1.5 T, 3 T, and 7 T. Magn Reson Med 73:1864–1871CrossRefPubMedGoogle Scholar
  50. 50.
    Nilsson A, Bloch KM, Carlsson M, Heiberg E, Stahlberg F (2012) Variable velocity encoding in a three-dimensional, three-directional phase contrast sequence: evaluation in phantom and volunteers. J Magn Reson Imaging 36:1450–1459CrossRefPubMedGoogle Scholar
  51. 51.
    Giese D, Kabbasch C, Hedderich D, Maintz D, Liebig T, Bunck A (2014) Hemodynamics in a cerebral aneurysm model treated with different flow diverting stent configurations: assessment using highly accelerated dual-velocity encoded 3D phase-contrast MRI. In: Proceedings of the 22nd Annual Meeting of ISMRM, Milan, Italy, p 3852Google Scholar
  52. 52.
    Zwart NR, Pipe JG (2013) Multidirectional high-moment encoding in phase contrast MRI. Magn Reson Med 69:1553–1563CrossRefPubMedGoogle Scholar

Copyright information

© ESMRMB 2017

Authors and Affiliations

  1. 1.Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoUSA
  2. 2.Siemens HealthcareCaliforniaUSA
  3. 3.Radiology ServiceVA Medical CenterSan FranciscoUSA

Personalised recommendations