Advertisement

Single-breath-hold 3-D CINE imaging of the left ventricle using Cartesian sampling

  • Jens Wetzl
  • Michaela Schmidt
  • François Pontana
  • Benjamin Longère
  • Felix Lugauer
  • Andreas Maier
  • Joachim Hornegger
  • Christoph Forman
Research Article

Abstract

Objectives

Our objectives were to evaluate a single-breath-hold approach for Cartesian 3-D CINE imaging of the left ventricle with a nearly isotropic resolution of \(1.9 \times 1.9 \times 2.5\,{\text {mm}^3}\) and a breath-hold duration of \(\sim \)19 s against a standard stack of 2-D CINE slices acquired in multiple breath-holds. Validation is performed with data sets from ten healthy volunteers.

Materials and methods

A Cartesian sampling pattern based on the spiral phyllotaxis and a compressed sensing reconstruction method are proposed to allow 3-D CINE imaging with high acceleration factors. The fully integrated reconstruction uses multiple graphics processing units to speed up the reconstruction. The 2-D CINE and 3-D CINE are compared based on ventricular function parameters, contrast-to-noise ratio and edge sharpness measurements.

Results

Visual comparisons of corresponding short-axis slices of 2-D and 3-D CINE show an excellent match, while 3-D CINE also allows reformatting to other orientations. Ventricular function parameters do not significantly differ from values based on 2-D CINE imaging. Reconstruction times are below 4 min.

Conclusion

We demonstrate single-breath-hold 3-D CINE imaging in volunteers and three example patient cases, which features fast reconstruction and allows reformatting to arbitrary orientations.

Keywords

3-D CINE imaging Compressed sensing Ventricular function 

Notes

Acknowledgements

The authors gratefully acknowledge funding of the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German Research Foundation (DFG) in the framework of the German excellence initiative.

Author contributions

JW: protocol and project development, data collection and analysis. MS: protocol development, data collection and analysis. FP: data collection and analysis. BL: data collection and analysis. FL: data collection and management. AM: project development. JH: project development. CF: protocol and project development, data collection and analysis

Compliance with ethical standards

Conflict of interest

Jens Wetzl and Felix Lugauer receive project funding from Siemens Healthcare GmbH. Michaela Schmidt and Christoph Forman are employees of Siemens Healthcare GmbH. François Pontana receives research support from Siemens Healthcare GmbH.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962CrossRefPubMedGoogle Scholar
  2. 2.
    Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47(6):1202–1210CrossRefPubMedGoogle Scholar
  3. 3.
    Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58(6):1182–1195CrossRefPubMedGoogle Scholar
  4. 4.
    Lustig M, Donoho DL, Santos JM, Pauly JM (2008) Compressed sensing MRI. IEEE Signal Process Mag 25(2):72–82CrossRefGoogle Scholar
  5. 5.
    Vincenti G, Monney P, Chaptinel J, Rutz T, Coppo S, Zenge MO, Schmidt M, Nadar MS, Piccini D, Chèvre P, Stuber M, Schwitter J (2014) Compressed sensing single-breath-hold CMR for fast quantification of LV function, volumes, and mass. JACC Cardiovasc Imaging 7(9):882–892CrossRefPubMedGoogle Scholar
  6. 6.
    Kressler B, Spincemaille P, Nguyen TD, Cheng L, Xi Hai Z, Prince MR, Wang Y (2007) Three-dimensional cine imaging using variable-density spiral trajectories and SSFP with application to coronary artery angiography. Magn Reson Med 58(3):535–543CrossRefPubMedGoogle Scholar
  7. 7.
    Barkauskas KJ, Rajiah P, Ashwath R, Hamilton JI, Chen Y, Ma D, Wright KL, Gulani V, Griswold MA, Seiberlich N (2014) Quantification of left ventricular functional parameter values using 3D spiral bSSFP and through-time Non-Cartesian GRAPPA. J Cardiovasc Magn Reson 16:65CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Makowski MR, Wiethoff AJ, Jansen CH, Uribe S, Parish V, Schuster A, Botnar RM, Bell A, Kiesewetter C, Razavi R, Schaeffter T, Greil GF (2012) Single breath-hold assessment of cardiac function using an accelerated 3D single breath-hold acquisition technique - comparison of an intravascular and extravascular contrast agent. J Cardiovasc Magn Reson 14:53CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wech T, Pickl W, Tran-Gia J, Ritter C, Beer M, Hahn D, Köstler H (2014) Whole-heart cine MRI in a single breath-hold—a compressed sensing accelerated 3D acquisition technique for assessment of cardiac function. Fortschr Röntgenstrahlung 186:37–41Google Scholar
  10. 10.
    Uribe S, Muthurangu V, Boubertakh R, Schaeffter T, Razavi R, Hill DL, Hansen MS (2007) Whole-heart cine MRI using real-time respiratory self-gating. Magn Reson Med 57(3):606–613CrossRefPubMedGoogle Scholar
  11. 11.
    Usman M, Ruijsink B, Nazir M, Cruz G, Prieto C (2016) Free breathing whole-heart 3D CINE MRI with self-gated Cartesian trajectory. Magn Reson Imaging 38:129–137CrossRefPubMedGoogle Scholar
  12. 12.
    Liu J, Spincemaille P, Codella NCF, Nguyen TD, Prince MR, Wang Y (2010) Respiratory and cardiac self-gated free-breathing cardiac CINE imaging with multiecho 3D hybrid radial SSFP acquisition. Magn Reson Med 63(5):1230–1237CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Han F, Rapacchi S, Khan S, Ayad I, Salusky I, Gabriel S, Plotnik A, Finn JP, Hu P (2015) Four-dimensional, multiphase, steady-state imaging with contrast enhancement (MUSIC) in the heart: a feasibility study in children. Magn Reson Med 74(4):1042–1049CrossRefPubMedGoogle Scholar
  14. 14.
    Han F, Zhou Z, Han E, Gao Y, Nguyen KL, Finn JP, Hu P (2016) Self-gated 4D multiphase, steady-state imaging with contrast enhancement (MUSIC) using rotating cartesian K-space (ROCK): validation in children with congenital heart disease. Magn Reson Med. doi: 10.1002/mrm.26376
  15. 15.
    Pang J, Sharif B, Fan Z, Bi X, Arsanjani R, Berman DS, Li D (2014) ECG and navigator-free four-dimensional whole-heart coronary MRA for simultaneous visualization of cardiac anatomy and function. Magn Reson Med 72(5):1208–1217CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Coppo S, Piccini D, Bonanno G, Chaptinel J, Vincenti G, Feliciano H, van Heeswijk RB, Schwitter J, Stuber M (2015) Free-running 4D whole-heart self-navigated golden angle MRI: initial results. Magn Reson Med 74(5):1306–1316CrossRefPubMedGoogle Scholar
  17. 17.
    Odille F, Bustin A, Chen B, Vuissoz PA, Felblinger J (2015) Motion-corrected, super-resolution reconstruction for high-resolution 3D cardiac cine MRI. In: Navab N, Hornegger J, Wells MW, Frangi FA (eds) Medical image computing and computer-assisted intervention—MICCAI 2015: 18th international conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III. Springer, pp 435–442Google Scholar
  18. 18.
    Vogel H (1979) A better way to construct the sunflower head. Math Biosci 44(3–4):179–189CrossRefGoogle Scholar
  19. 19.
    Forman C, Piccini D, Grimm R, Hutter J, Hornegger J, Zenge MO (2014) High-resolution 3D whole-heart coronary MRA: a study on the combination of data acquisition in multiple breath-holds and 1D residual respiratory motion compensation. Magn Reson Mater Phy Biol Med 27(5):435–443CrossRefGoogle Scholar
  20. 20.
    Uecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM, Vasanawala SS, Lustig M (2014) ESPIRiT—an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med 71(3):990–1001CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Liu J, Rapin J, Chang T, Lefebvre A, Zenge M, Mueller E, Nadar MS (2012) Dynamic cardiac MRI reconstruction with weighted redundant Haar wavelets. In: Proceedings of the 20th scientific meeting, International Society for magnetic resonance in medicine, Melbourne, p 178Google Scholar
  22. 22.
    Wetzl J, Schmidt M, Zenge M, Lugauer F, Lazar L, Nadar MS, Maier A, Hornegger J, Forman C (2015) Isotropic 3-D CINE imaging with sub-2mm resolution in a single breath-hold. In: Proceedings of the 23rd scientific meeting, International Society for magnetic resonance in medicine, Toronto, p 1011Google Scholar
  23. 23.
    Chambolle A, Pock T (2010) A first-order primal-dual algorithm for convex problems with applications to imaging. J Math Imaging Vis 40(1):120–145CrossRefGoogle Scholar
  24. 24.
    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327(8476):307–310CrossRefGoogle Scholar
  25. 25.
    Taubmann O, Wetzl J, Lauritsch G, Maier A, Hornegger J (2015) Sharp as a Tack. In: Handels H, Deserno TM, Meinzer HP, Tolxdorff T (eds), Bildverarbeitung für die Medizin 2015, Informatik aktuell. Springer, Berlin, pp 425–430Google Scholar
  26. 26.
    Shea SM, Kroeker RM, Deshpande V, Laub G, Zheng J, Finn JP, Li D (2001) Coronary artery imaging: 3D segmented k-space data acquisition with multiple breath-holds and real-time slab following. J Magn Reson Imaging 13(2):301–307CrossRefPubMedGoogle Scholar
  27. 27.
    Li D, Carr JC, Shea SM, Zheng J, Deshpande VS, Wielopolski PA, Finn JP (2001) Coronary arteries: magnetization-prepared contrast-enhanced three-dimensional volume-targeted breath-hold MR angiography. Radiology 219(1):270–277CrossRefPubMedGoogle Scholar
  28. 28.
    Larson AC, Kellman P, Arai A, Hirsch GA, McVeigh E, Li D, Simonetti OP (2005) Preliminary investigation of respiratory self-gating for free-breathing segmented cine MRI. Magn Reson Med 53(1):159–168CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Niederreither H (1988) Low-discrepancy and low-dispersion sequences. J Number Theory 30:51–70CrossRefGoogle Scholar
  30. 30.
    Hansen P (2000) The L-curve and its use in the numerical treatment of inverse problems. WIT PressGoogle Scholar
  31. 31.
    Nam S, Akçakaya M, Basha T, Stehning C, Manning WJ, Tarokh V, Nezafat R (2013) Compressed sensing reconstruction for whole-heart imaging with 3D radial trajectories: a graphics processing unit implementation. Magn Reson Med 69(1):91–102CrossRefPubMedGoogle Scholar
  32. 32.
    Knoll F, Unger M, Diwoky C, Clason C, Pock T, Stollberger R (2010) Fast reduction of undersampling artifacts in radial MR angiography with 3D total variation on graphics hardware. Magn Reson Mater Phy Biol Med 23(2):103–114CrossRefGoogle Scholar
  33. 33.
    Zhang T, Pauly JM, Vasanawala SS, Lustig M (2013) Coil compression for accelerated imaging with Cartesian sampling. Magn Reson Med 69(2):571–582CrossRefPubMedGoogle Scholar
  34. 34.
    Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E (2008) Standardized cardiovascular magnetic resonance imaging (CMR) protocols, society for cardiovascular magnetic resonance: board of trustees task force on standardized protocols. J Cardiovasc Magn Reson 10(1):1–10CrossRefGoogle Scholar
  35. 35.
    Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E (2013) Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson 15(1):1–10CrossRefGoogle Scholar
  36. 36.
    Wang Y, Ying L (2014) Compressed sensing dynamic cardiac cine MRI using learned spatiotemporal dictionary. IEEE Trans Biomed Eng 61(4):1109–1120CrossRefPubMedGoogle Scholar
  37. 37.
    Kunz RP, Oellig F, Krummenauer F, Oberholzer K, Romaneehsen B, Vomweg TW, Horstick G, Hayes C, Thelen M, Kreitner KF (2005) Assessment of left ventricular function by breath-hold cine MR imaging: comparison of different steady-state free precession sequences. Magn Reson Imaging 21(2):140–148CrossRefGoogle Scholar

Copyright information

© ESMRMB 2017

Authors and Affiliations

  1. 1.Pattern Recognition Lab, Department of Computer ScienceFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Erlangen Graduate School in Advanced Optical Technologies (SAOT)Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  3. 3.Siemens Healthcare GmbHErlangenGermany
  4. 4.Department of Cardiovascular ImagingCHU Lille and Univ. LilleLilleFrance

Personalised recommendations