Skip to main content
Log in

Optical tracking with two markers for robust prospective motion correction for brain imaging

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

Prospective motion correction (PMC) during brain imaging using camera-based tracking of a skin-attached marker may suffer from problems including loss of marker visibility due to the coil and false correction due to non-rigid-body facial motion, such as frowning or squinting. A modified PMC system is introduced to mitigate these problems and increase the robustness of motion correction.

Materials and methods

The method relies on simultaneously tracking two markers, each providing six degrees of freedom, that are placed on the forehead. This allows us to track head motion when one marker is obscured and detect skin movements to prevent false corrections. Experiments were performed to compare the performance of the two-marker motion correction technique to the previous single-marker approach.

Results

Experiments validate the theory developed for adaptive marker tracking and skin movement detection, and demonstrate improved image quality during obstruction of the line-of-sight of one marker when subjects squint or when subjects squint and move simultaneously.

Conclusion

The proposed methods eliminate two common failure modes of PMC and substantially improve the robustness of PMC, and they can be applied to other optical tracking systems capable of tracking multiple markers. The methods presented can be adapted to the use of more than two markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Anderson AG 3rd, Velikina J, Block W, Wieben O, Samsonov A (2013) Adaptive retrospective correction of motion artifacts in cranial MRI with multicoil three-dimensional radial acquisitions. Magn Reson Med 69(4):1094–1103. doi:10.1002/mrm.24348

    Article  PubMed  Google Scholar 

  2. Vaillant G, Prieto C, Kolbitsch C, Penney G, Schaeffter T (2013) Retrospective rigid motion correction in k-space for segmented radial MRI. IEEE Trans Med Imaging. doi:10.1109/TMI.2013.2268898

    PubMed  Google Scholar 

  3. Maclaren J, Herbst M, Speck O, Zaitsev M (2013) Prospective motion correction in brain imaging: a review. Magn Reson Med 69(3):621–636. doi:10.1002/mrm.24314

    Article  PubMed  Google Scholar 

  4. Speck O, Hennig J, Zaitsev M (2006) Prospective real-time slice-by-slice motion correction for fMRI in freely moving subjects. Magn Reson Mater Phy 19(2):55–61. doi:10.1007/s10334-006-0027-1

    Article  CAS  Google Scholar 

  5. Zaitsev M, Dold C, Sakas G, Hennig J, Speck O (2006) Magnetic resonance imaging of freely moving objects: prospective real-time motion correction using an external optical motion tracking system. Neuroimage 31(3):1038–1050. doi:10.1016/j.neuroimage.2006.01.039

    Article  CAS  PubMed  Google Scholar 

  6. Qin L, van Gelderen P, Derbyshire JA, Jin F, Lee J, de Zwart JA, Tao Y, Duyn JH (2009) Prospective head-movement correction for high-resolution MRI using an in-bore optical tracking system. Magn Reson Med 62(4):924–934. doi:10.1002/mrm.22076

    Article  PubMed Central  PubMed  Google Scholar 

  7. Andrews-Shigaki BC, Armstrong BS, Zaitsev M, Ernst T (2011) Prospective motion correction for magnetic resonance spectroscopy using single camera Retro-Grate reflector optical tracking. J Magn Reson Imaging JMRI 33(2):498–504

    Article  PubMed  Google Scholar 

  8. Schulz J, Siegert T, Reimer E, Labadie C, Maclaren J, Herbst M, Zaitsev M, Turner R (2012) An embedded optical tracking system for motion-corrected magnetic resonance imaging at 7T. Magn Reson Mater Phy 25(6):443–453. doi:10.1007/s10334-012-0320-0

    Article  Google Scholar 

  9. Lange T, Maclaren J, Herbst M, Lovell-Smith C, Izadpanah K, Zaitsev M (2013) Knee cartilage MRI with in situ mechanical loading using prospective motion correction. Magn Reson Med. doi:10.1002/mrm.24679

    PubMed  Google Scholar 

  10. Herbst M, Maclaren J, Lovell-Smith C, Sostheim R, Egger K, Harloff A, Korvink J, Hennig J, Zaitsev M (2014) Reproduction of motion artifacts for performance analysis of prospective motion correction in MRI. Magn Reson Med 71(1):182–190. doi:10.1002/mrm.24645

    Article  PubMed  Google Scholar 

  11. Aksoy M, Forman C, Straka M, Skare S, Holdsworth S, Hornegger J, Bammer R (2011) Real-time optical motion correction for diffusion tensor imaging. Magn Reson Med 66(2):366–378. doi:10.1002/mrm.22787

    Article  PubMed Central  PubMed  Google Scholar 

  12. Mugler JP, Brookeman JR (1991) Rapid 3-dimensional T1-weighted Mr imaging with the Mp-rage sequence. JMRI-J Magn Reson Imaging 1(5):561–567. doi:10.1002/jmri.1880010509

    Article  Google Scholar 

  13. Pannetier NA, Stavrinos T, Ng P, Herbst M, Zaitsev M, Young K, Matson G, Schuff N (2015) Quantitative framework for prospective motion correction evaluation. Magn Reson Med. doi:10.1002/mrm.25580

    Google Scholar 

  14. Forman C, Aksoy M, Hornegger J, Bammer R (2011) Self-encoded marker for optical prospective head motion correction in MRI. Med Image Anal 15(5):708–719. doi:10.1016/j.media.2011.05.018

    Article  PubMed Central  PubMed  Google Scholar 

  15. Sengupta S, Tadanki S, Gore JC, Welch EB (2013) Prospective real-time head motion correction using inductively coupled wireless NMR probes. Magn Reson Med. doi:10.1002/mrm.25001

    PubMed Central  PubMed  Google Scholar 

  16. Ooi MB, Krueger S, Thomas WJ, Swaminathan SV, Brown TR (2009) Prospective real-time correction for arbitrary head motion using active markers. Magn Reson Med 62(4):943–954. doi:10.1002/mrm.22082

    Article  PubMed Central  PubMed  Google Scholar 

  17. Herbst M, Zahneisen B, Knowles B, Zaitsev M, Ernst T (2014) Prospective motion correction of segmented diffusion weighted EPI. Magn Reson Med. doi:10.1002/mrm.25547

    Google Scholar 

  18. Herbst M (2014) Prospective motion correction in MRI. Microsystem simulation, design and manufacture, IMTEK Freiburg, vol 11, neue Ausg edn. Der Andere Verlag, Uelvesbüll

  19. Jin X, Mulnix T, Gallezot JD, Carson RE (2013) Evaluation of motion correction methods in human brain PET imaging–a simulation study based on human motion data. Med Phys 40(10):102503. doi:10.1118/1.4819820

    Article  PubMed Central  PubMed  Google Scholar 

  20. Lopresti BJ, Russo A, Jones WF, Fisher T, Crouch DG, Altenburger DE, Townsend DW (1999) Implementation and performance of an optical motion tracking system for high resolution brain PET imaging. IEEE Trans Nucl Sci 46(6):2059–2067. doi:10.1109/23.819283

    Article  Google Scholar 

  21. Mourik JE, Lubberink M, van Velden FH, Lammertsma AA, Boellaard R (2009) Off-line motion correction methods for multi-frame PET data. Eur J Nucl Med Mol Imaging 36(12):2002–2013. doi:10.1007/s00259-009-1193-y

    Article  PubMed Central  PubMed  Google Scholar 

  22. Olesen OV, Paulsen RR, Hojgaard L, Roed B, Larsen R (2012) Motion tracking for medical imaging: a nonvisible structured light tracking approach. IEEE Trans Med Imaging 31(1):79–87. doi:10.1109/TMI.2011.2165157

    Article  PubMed  Google Scholar 

  23. Picard Y, Thompson CJ (1997) Motion correction of PET images using multiple acquisition frames. IEEE Trans Med Imaging 16(2):137–144. doi:10.1109/42.563659

    Article  CAS  PubMed  Google Scholar 

  24. Ullisch MG, Scheins JJ, Weirich C, Rota Kops E, Celik A, Tellmann L, Stocker T, Herzog H, Shah NJ (2012) MR-based PET motion correction procedure for simultaneous MR-PET neuroimaging of human brain. PLoS One 7(11):e48149. doi:10.1371/journal.pone.0048149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Huang C, Ackerman JL, Petibon Y, Brady TJ, El Fakhri G, Ouyang J (2014) MR-based motion correction for PET imaging using wired active MR microcoils in simultaneous PET-MR: phantom study. Med Phys 41(4):041910. doi:10.1118/1.4868457

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health under grants R01-DA021146, R01-DA021146-06S1, U54-NS 56883; K24-DA16170-10, and G12 MD007601.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya Singh.

Ethics declarations

Conflict of interest

Aditya Singh is a consultant for a company KinetiCor Inc. Maxim Zaitsev is a member of the scientific advisory board for KinetiCor Inc. and Thomas Ernst owns equity in KinetiCor Inc. The other authors declare that they have no conflict of interest.

Ethical standard

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Zahneisen, B., Keating, B. et al. Optical tracking with two markers for robust prospective motion correction for brain imaging. Magn Reson Mater Phy 28, 523–534 (2015). https://doi.org/10.1007/s10334-015-0493-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-015-0493-4

Keywords

Navigation