Identification and phylogenetic analysis of Burkholderia cepacia complex bacteria isolated from rot of onion bulbs in Tohoku region of Japan

Abstract

Burkholderia cepacia complex (Bcc) bacterial isolates from onion bulbs with rot in the Tohoku region of Japan were identified using a pathogenicity test, phenotypic characterization, restriction fragment length polymorphism (RFLP) analysis, and phylogenetic analyses based on 16S rRNA and housekeeping genes. Onion isolates caused a rot on onion bulbs similar to the field rot. Phenotypic properties of onion isolates were consistent with those of Bcc strains reported previously. The RFLP analysis using recA gene PCR amplicon from the onion isolates showed five distinct banding patterns. On the basis of phylogenetic analyses using 16S rRNA gene and housekeeping genes gyrB, rpoD, and recA, onion isolates were identified as B. cepacia, B. cenocepacia, B. ambifaria, and B. pyrrocinia, members of Bcc. In the phylogenetic tree constructed using the housekeeping gene sequences, onion isolates and reference strains producing a purple nondiffusible pigment formed a group in the B. cepacia branch. B. ambifaria and B. pyrrocinia caused rot symptoms on onion the same as those caused by B. cepacia and B. cenocepacia strains.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bach E, Sant’Anna FH, Balsanelli E, de Baura VA, Pedrosa FDO, de Souza EM, Passaglia LMP (2017) Detection of misidentifications of species from the Burkholderia cepacia complex and description of a new member, the soil bacterium Burkholderia catarinensis sp nov. Pathog Dis 7:5–76

    Google Scholar 

  2. Balandreau J, Viallard V, Cournoyer B, Coenye T, Laevens S, Vandamme P (2001) Burkholderia cepacia genomovar III is a common plant-associated bacterium. Appl Environ Microbiol 67:982–985

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Baldwin A, Mahenthiralingam E, Thickett KM, Honeybourne D, Maiden MC, Govan JR, Speert DP, Lipuma JJ, Vandamme P, Dowson CG (2005) Multilocus sequence typing scheme that provides both species and strain differentiation for the Burkholderia cepacia complex. J Clin Microbiol 43:4665–4673

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Baldwin A, Mahenthiralingam E, Drevinek P, Vandamme P, Govan JR, Waine DJ, LiPuma JJ, Chiarini L, Dalmastri C, Henry DA, Speert DP, Honeybourne D, Maiden MC, Dowson CG (2007) Environmental Burkholderia cepacia complex isolates from human infections. Emerg Infect Dis 13:458–461

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bevivino A, Dalmastri C, Tabacchioni S, Chiarini L, Belli ML, Piana S, Materazzo A, Vandamme P, Manno G (2002) Burkholderia cepacia complex bacteria from clinical and environmental sources in Italy: genomovar status and distribution of traits related to virulence and transmissibility. J Clin Microbiol 40:846–851

    PubMed  PubMed Central  Google Scholar 

  6. Burkholder WH (1950) Sour skin, a bacterial rot of onion bulbs. Phytopathology 40:115–117

    Google Scholar 

  7. Chernish RN, Aaron SD (2003) Approach to resistant gram-negative bacterial pulmonary infections in patients with cystic fibrosis. Curr Opin Pulm Med 9:509–515

    PubMed  Google Scholar 

  8. Coenye T, Vandamme P (2003) Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5:719–729

    CAS  PubMed  Google Scholar 

  9. Coenye T, LiPuma JJ, Henry D, Hoste B, Vandemeulebroecke K, Gillis M, Speert DP, Vandamme P (2001a) Burkholderia cepacia genomovar VI, a new member of the Burkholderia cepacia complex isolated from cystic fibrosis patients. Int J Syst Evol Microbiol 51:271–279

    CAS  PubMed  Google Scholar 

  10. Coenye T, Mahenthiralingam E, Henry D, LiPuma JJ, Laevens S, Gillis M, Speert DP, Vandamme P (2001b) Burkholderia ambifaria sp. nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. Int J Syst Evol Microbiol 51:1481–1490

    CAS  PubMed  Google Scholar 

  11. Dalmastri C, Baldwin A, Tabacchioni S, Bevivino A, Mahenthiralingam E, Chiarini L, Dowson C (2007) Investigating Burkholderia cepacia complex populations recovered from Italian maize rhizosphere by multilocus sequence typing. Environ Microbiol 9:1632–1639

    CAS  PubMed  Google Scholar 

  12. De Smet B, Mayo M, Peeters C, Zlosnik JEA, Spilker T, Hird TJ, LiPuma JJ, Kidd TJ, Kaestli M, Ginther JL, Wagner DM, Keim P, Bell SC, Jacobs JA, Currie BJ, Vandamme P (2015) Burkholderia stagnalis sp. nov. and Burkholderia territorii sp. nov., two novel Burkholderia cepacia complex species from environmental and human sources. Int J Syst Evol Microbiol 65:2265–2271

    PubMed  Google Scholar 

  13. Fiore A, Laevens S, Bevivino A, Dalmastri C, Tabacchioni S, Vandamme P, Chiarini L (2001) Burkholderia cepacia complex: distribution of genomovars among isolates from the maize rhizosphere in Italy. Environ Microbiol 3:137–143

    CAS  PubMed  Google Scholar 

  14. Gillis M, Van Van T, Bardin R, Goor M, Hebbar P, Willems A, Segers P, Kersters K, Heulin T, Fernandez MP (1995) Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. Int J Syst Evol Microbiol 45:274–289

    CAS  Google Scholar 

  15. Govan JR, Deretic V (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60:539–574

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Henry DA, Mahenthiralingam E, Vandamme P, Coenye T, Speert DP (2001) Phenotypic methods for determining genomovar status of the Burkholderia cepacia complex. J Clin Microbiol 39:1073–1078

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Jacobs JL, Fasi AC, Ramette A, Smith JJ, Hammerschmidt R, Sundin GW (2008) Identification and onion pathogenicity of Burkholderia cepacia complex isolates from the onion rhizosphere and onion field soil. Appl Environ Microbiol 74:3121–3129

    CAS  PubMed  PubMed Central  Google Scholar 

  18. King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307

    CAS  PubMed  Google Scholar 

  19. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kusumoto S, Aeny TN, Mujimu S, Ginting C, Tsuge T, Tsuyumu S, Takikawa Y (2004) Occurrence of blood disease of banana in Sumatra, Indonesia. J Gen Plant Pathol 70:45–49

    Google Scholar 

  21. Maeda Y, Shinohara H, Kiba A, Ohnishi K, Furuya N, Kawamura Y, Ezaki T, Vandamme P, Tsushima S, Hikichi Y (2006) Phylogenetic study and multiplex PCR-based detection of Burkholderia plantarii, Burkholderia glumae and Burkholderia gladioli using gyrB and rpoD sequences. Int J Syst Evol Microbiol 56:1031–1038

    CAS  PubMed  Google Scholar 

  22. Mahenthiralingam E, Simpson DA, Speert DP (1997) Identification and characterization of a novel DNA marker associated with epidemic Burkholderia cepacia strains recovered from patients with cystic fibrosis. J Clin Microbiol 35:808–816

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mahenthiralingam E, Bischof J, Byrne SK, Radomski C, Davies JE, Av-Gay Y, Vandamme P (2000) DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovars I and III. J Clin Microbiol 38:3165–3173

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mahenthiralingam E, Urban TA, Goldberg JB (2005) The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3:144–156

    CAS  Google Scholar 

  25. Mahenthiralingam E, Baldwin A, Drevinek P, Vanlaere E, Vandamme P, LiPuma JJ, Dowson CG (2006) Multilocus sequence typing breathes life into a microbial metagenome. PLoS ONE 1:e17

    PubMed  PubMed Central  Google Scholar 

  26. Mahenthiralingam E, Baldwin A, Dowson CG (2008) Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol 104:1539–1551

    CAS  PubMed  Google Scholar 

  27. Martina P, Leguizamon M, Prieto CI, Sousa SA, Montanaro P, Draghi WO, Stämmler M, Bettiol M, de Carvalho CCCR, Palau J, Figoli C, Alvarez F, Benetti S, Lejona S, Vescina C, Ferreras J, Lasch P, Lagares A, Zorreguieta A, Leitão JH, Yantorno OM, Bosch A (2018) Burkholderia puraquae sp. nov., a novel species of the Burkholderia cepacia complex isolated from hospital settings and agricultural soils. Int J Syst Evol Microbiol 68:14–20

    CAS  PubMed  Google Scholar 

  28. Miller SC, LiPuma JJ, Parke JL (2002) Culture-based and non-growth-dependent detection of the Burkholderia cepacia complex in soil environments. Appl Environ Microbiol 68:3750–3758

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nishiyama K (1978) The tentative plan of simple identification method of plant pathogenic bacteria (in Japanese). Plant Prot (Shokubutsu Boeki) 32:283–288

    Google Scholar 

  30. Nishiyama K (1997) Phytopathogenic bacteria diagnostic tables based on API20NE kit and 11 other bacteriological properties (in Japanese). Bull Natl Inst Agro-Environ Sci 14:1–35

    Google Scholar 

  31. Noguchi M, Yoshida T, Someya N, Tsuchiya K (2006) Antifungal activity and population behavior in soybean rhizosphere of Burkholderia cepacia complex isolated from clinical and environmental sources (Abstract in Japanese). Jpn J Phytopathol 72:307–308

    Google Scholar 

  32. Nonaka R, Yamanishi H (2012) Hygiene indicator bacteria testing of students’ practice cooking and commercially available vegetables with particular focus on Burkholderia cepacia contamination (in Japanese). Medicine Biol 156:559–568

    Google Scholar 

  33. Nzula S, Vandamme P, Govan JR (2002) Influence of taxonomic status on the in vitro antimicrobial susceptibility of the Burkholderia cepacia complex. J Antimicrob Chemother 50:265–269

    CAS  PubMed  Google Scholar 

  34. Oie S, Kiyonaga H, Matsuzaka Y, Maeda K, Masuda Y, Tasaka K, Aritomi S, Yamashita A, Kamiya A (2008) Microbial contamination of fruit and vegetables and their disinfection. Biol Pharm Bull 31:1902–1905

    CAS  PubMed  Google Scholar 

  35. Ryu E (1940) A simple method of differentiation between gram-positive and gram-negative organisms without staining. Kitasato Arch Exp Med 17:58–63

    Google Scholar 

  36. Seo ST, Tsuchiya K (2004) PCR-based identification and characterization of Burkholderia cepacia complex bacteria from clinical and environmental sources. Lett Appl Microbiol 39:413–419

    CAS  PubMed  Google Scholar 

  37. Society of American Bacteriologists (1957) Manual of microbiological methods. McGraw-Hill, New York, p 54

    Google Scholar 

  38. Sotokawa N, Takikawa Y (2004) Occurrence of bacterial rot of onion bulbs caused by Burkholderia cepacia in Japan. J Gen Plant Pathol 70:348–352

    Google Scholar 

  39. Storms V, Van Den Vreken N, Coenye T, Mahenthiralingam E, LiPuma JJ, Gillis M, Vandamme P (2004) Polyphasic characterisation of Burkholderia cepacia-like isolates leading to the emended description of Burkholderia pyrrocinia. Syst Appl Microbiol 27:517–526

    CAS  PubMed  Google Scholar 

  40. Suzuki A, Togawa M, Ohta K, Takikawa Y (2003) Occurrence of white top of pea caused by a new strain of Pseudomonas syringae pv. pisi. Plant Dis 87:1404–1410

    CAS  PubMed  Google Scholar 

  41. Takahashi F, Ogiso H, Fujinaga M, Ishiyama Y, Inoue Y, Shirakawa T, Takikawa Y (2013) First report of bacterial blight of crucifers caused by Pseudomonas cannabina pv. alisalensis in Japan. J Gen Plant Pathol 79:260–269

    CAS  Google Scholar 

  42. Takikawa Y, Serizawa S, Ichikawa T, Tsuyumu S, Goto M (1989) Pseudomonas syringae pv. actinidiae nov.: the causal bacterium of canker of kiwifruit in Japan. Ann Phytopathol Soc Jpn 55:437–444

    Google Scholar 

  43. Tsuchiya K, Akhter T, Takasaki T, Tanaka S, Wakimoto S (1986) Bacterial brown spot disease of Cymbidium spp. caused by Pseudomonas cepacia. Ann Phytopath Soc Japan 52:825–834

    Google Scholar 

  44. Tsuji M, Nagasaka A (2018) Identification of the causal agent of bacterial rot of onion, occurred in the Tohoku region of Japan (Abstract in Japanese). Jpn J Phytopathol 84:203–204

    Google Scholar 

  45. Tsuji M, Ohta K, Tanaka K, Takikawa Y (2017) Comparison among Japanese isolates of Pseudomonas savastanoi pv. savastanoi, causal agent of olive knot disease. J Gen Plant Pathol 83:152–161

    CAS  Google Scholar 

  46. Tsuji M, Nagasaka A, Kadota I (2019) Causal agent of bacterial rot of onion (Allium cepa) bulbs in the Tohoku region of Japan (in Japanese). Jpn J Phytopathol 85:205–210

    Google Scholar 

  47. Vandamme P, Pot B, Gillis M, de Vos P, Kersters K, Swings J (1996) Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Vandamme P, Holmes B, Vancanneyt M, Coenye T, Hoste B, Coopman R, Revets H, Lauwers S, Gillis M, Kersters K, Govan JRW (1997) Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int J Syst Bacteriol 47:1188–1200

    CAS  PubMed  Google Scholar 

  49. Vandamme P, Henry D, Coenye T, Nzula S, Vancanneyt M, LiPuma JJ, Speert DP, Govan JRW, Mahenthiralingam E (2002) Burkholderia anthina sp. nov. and Burkholderia pyrrocinia, two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools. FEMS Immunol Med Microbiol 33:143–149

    CAS  PubMed  Google Scholar 

  50. Vandamme P, Verheyde B, Peeters C, Dawyndt P (2014) Genomic taxonomy and biodiversity of the Burkholderia cepacia complex. In: Coenye T, Mahenthiralingam E (eds) Burkholderia: from genomes to function. Caister Academic Press, Norfolk, UK, pp 15–29

    Google Scholar 

  51. Vanlaere E, LiPuma JJ, Baldwin A, Henry D, De Brandt E, Mahenthiralingam E, Speert D, Dowson C, Vandamme P (2008) Burkholderia latens sp. nov., Burkholderia diffusa sp. nov., Burkholderia arboris sp. nov., Burkholderia seminalis sp. nov. and Burkholderia metallica sp. nov., novel species within the Burkholderia cepacia complex. Int J Syst Evol Microbiol 58:1580–1590

    CAS  PubMed  Google Scholar 

  52. Vanlaere E, Baldwin A, Gevers D, Henry D, De Brandt E, LiPuma JJ, Mahenthiralingam E, Speert DP, Dowson C, Vandamme P (2009) Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov. Int J Syst Evol Microbiol 59:102–111

    CAS  PubMed  Google Scholar 

  53. Viallard V, Poirier I, Cournoyer B, Haurat J, Wiebkin S, Ophel-Keller K, Balandreau J (1998) Burkholderia graminis sp. nov., a rhizospheric Burkholderia species, and reassessment of [Pseudomonas] phenazinium, [Pseudomonas] pyrrocinia and [Pseudomonas] glathei as Burkholderia. Int J Syst Evol Microbiol 48:549–563

    CAS  Google Scholar 

  54. Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M (1992) Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 36:1251–1275

    CAS  PubMed  Google Scholar 

  55. Yamamoto S, Bouvet PJM, Harayama S (1999) Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA–DNA hybridization. Int J Syst Bacteriol 49:87–95

    CAS  PubMed  Google Scholar 

  56. Yokoyama K (2013) Changes in bacterial flora during manufacturing of vegetable salad (in Japanese with English summary). J Int Study Dietary Habits 24:21–27

    CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank Dr. Yuichi Takikawa (Laboratory of Plant Pathology, Graduate School of Science and Technology, Shizuoka University) for kindly supplying precious strains of Shizuoka University Plant Pathology collections and Dr. Takashi Nakajima (Headquarters, National Agriculture and Food Research Organization) for his supportive and constructive suggestions. We also thank Dr. Atsushi Nagasaka and Ms. Akiko Muroyama (Tohoku Agricultural Research Center, National Agriculture and Food Research Organization) for supplying preserved strains and kind assistance with many experiments in our laboratory. This research was supported by grants from the Project of the NARO Bio-oriented Technology Research Advancement Institution (special scheme project on vitalizing management entities of agriculture, forestry and fisheries).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mizue Tsuji.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 246 kb)

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsuji, M., Kadota, I. Identification and phylogenetic analysis of Burkholderia cepacia complex bacteria isolated from rot of onion bulbs in Tohoku region of Japan. J Gen Plant Pathol (2020). https://doi.org/10.1007/s10327-020-00937-z

Download citation

Keywords

  • Burkholderia ambifaria
  • B. cenocepacia
  • B. cepacia
  • B. pyrrocinia
  • Multilocus sequence analysis
  • Onion