Interfamily transfer of Arabidopsis lectin-mediated antiviral gene confers resistance to pepino mosaic virus in tomato

Abstract

In plant antiviral breeding, R genes encoding nucleotide-binding site and leucine-rich repeat (NB-LRR) proteins serve as major genetic resources to introduce antiviral traits to crop cultivars. However, interfamily transfer—heterologous expression in a plant belonging to a taxonomically different family from the source plant of the transferred gene—of an NB-LRR gene is difficult because it often leads to inappropriate autoimmunity that results in inhibition of plant growth or lack of resistance. We previously identified a non-NB-LRR-type resistance gene, JACALIN-TYPE LECTIN REQUIRED FOR POTEXVIRUS RESISTANCE1 (JAX1), from Arabidopsis thaliana (Brassicaceae). Here, we used a transient expression assay to demonstrate that JAX1 confers broad resistance to potexviruses including pepino mosaic virus (PepMV), which causes severe damage to greenhouse tomato production worldwide. JAX1-transgenic Nicotiana benthamiana and tomato plants in the Solanaceae family exhibited broad and a high level resistance to multiple PepMV isolates. Our results suggest that non-NB-LRR-type resistance genes, especially lectin-family genes, will be useful for interfamily transfer and are promising genetic resources for producing virus-resistant crop cultivars.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alfaro-Fernández A, Sánchez-Navarro J, Cebrián M, Córdoba-Sellés M, Pallás V, Jordá C (2009) Simultaneous detection and identification of Pepino mosaic virus (PepMV) isolates by multiplex one-step RT-PCR. Eur J Plant Pathol 125:143–158

    Article  Google Scholar 

  2. Anonymous (2019) EPPO Global Database 2019 (available online). https://gd.eppo.int. Cited 7 Aug 2019

  3. Bouwmeester K, Han M, Blanco-Portales R, Song W, Weide R, Guo LY, van der Vossen EA, Govers F (2014) The Arabidopsis lectin receptor kinase LecRK-I.9 enhances resistance to Phytophthora infestans in Solanaceous plants. Plant Biotechnol J 12:10–16

    CAS  Article  Google Scholar 

  4. Candresse T, Marais A, Faure C, Dubrana MP, Gombert J, Bendahmane A (2010) Multiple coat protein mutations abolish recognition of Pepino mosaic potexvirus (PepMV) by the potato Rx resistance gene in transgenic tomatoes. Mol Plant Microbe Interact 23:376–383

    CAS  Article  Google Scholar 

  5. Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    CAS  Article  Google Scholar 

  6. Cosson P, Schurdi-Levraud V, Le QH, Sicard O, Caballero M, Roux F, Le Gall O, Candresse T, Revers F (2012) The RTM resistance to potyviruses in Arabidopsis thaliana: natural variation of the RTM genes and evidence for the implication of additional genes. PLoS One 7:e39169

    CAS  Article  Google Scholar 

  7. de Ronde D, Butterbach P, Kormelink R (2014) Dominant resistance against plant viruses. Front Plant Sci 5:307

    Article  Google Scholar 

  8. Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413–426

    CAS  Article  Google Scholar 

  9. Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song KM, Pikaard CS (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant J 45:616–629

    CAS  Article  Google Scholar 

  10. Hanssen IM, Thomma BP (2010) Pepino mosaic virus: a successful pathogen that rapidly evolved from emerging to endemic in tomato crops. Mol Plant Pathol 11:179–189

    CAS  Article  Google Scholar 

  11. Hanssen IM, Paeleman A, Vandewoestijne E, Van Bergen L, Bragard C, Lievens B, Vanachter A, Thomma B (2009) Pepino mosaic virus isolates and differential symptomatology in tomato. Plant Pathol 58:450–460

    CAS  Article  Google Scholar 

  12. Hanssen IM, Lapidot M, Thomma BP (2010) Emerging viral diseases of tomato crops. Mol Plant Microbe Interact 23:539–548

    CAS  Article  Google Scholar 

  13. Himeno M, Maejima K, Komatsu K, Ozeki J, Hashimoto M, Kagiwada S, Yamaji Y, Namba S (2010) Significantly low level of small RNA accumulation derived from an encapsidated mycovirus with dsRNA genome. Virology 396:69–75

    CAS  Article  Google Scholar 

  14. Hoshi A, Oshima K, Kakizawa S, Ishii Y, Ozeki J, Hashimoto M, Komatsu K, Kagiwada S, Yamaji Y, Namba S (2009) A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proc Natl Acad Sci USA 106:6416–6421

    CAS  Article  Google Scholar 

  15. Huang PY, Yeh YH, Liu AC, Cheng CP, Zimmerli L (2014) The Arabidopsis LecRK-VI.2 associates with the pattern-recognition receptor FLS2 and primes Nicotiana benthamiana pattern-triggered immunity. Plant J 79:243–255

    CAS  Article  Google Scholar 

  16. Ishibashi K, Masuda K, Naito S, Meshi T, Ishikawa M (2007) An inhibitor of viral RNA replication is encoded by a plant resistance gene. Proc Natl Acad Sci USA 104:13833–13838

    CAS  Article  Google Scholar 

  17. Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    CAS  Article  Google Scholar 

  18. Jones RAC, Koenig R, Lesemann DE (1980) Pepino mosaic virus, a new potexvirus from pepino (Solanum muricatum). Ann Appl Biol 94:61–68

    CAS  Article  Google Scholar 

  19. Joshi RK, Nayak S (2011) Functional characterization and signal transduction ability of nucleotide-binding site-leucine-rich repeat resistance genes in plants. Genet Mol Res 10:2637–2652

    CAS  Article  Google Scholar 

  20. Komatsu K, Hashimoto M, Ozeki J, Yamaji Y, Maejima K, Senshu H, Himeno M, Okano Y, Kagiwada S, Namba S (2010) Viral-induced systemic necrosis in plants involves both programmed cell death and the inhibition of viral multiplication, which are regulated by independent pathways. Mol Plant Microbe Interact 23:283–293

    CAS  Article  Google Scholar 

  21. Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D, van Esse HP, Smoker M, Rallapalli G, Thomma B, Staskawicz B, Jones JDG, Zipfel C (2010) Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nat Biotechnol 28:365–369

    CAS  Article  Google Scholar 

  22. Maejima K, Himeno M, Netsu O, Ishikawa K, Yoshida T, Fujita N, Hashimoto M, Komatsu K, Yamaji Y, Namba S (2014) Development of an on-site plum pox virus detection kit based on immunochromatography. J Gen Plant Pathol 80:176–183

    CAS  Article  Google Scholar 

  23. Mahajan SK, Chisholm ST, Whitham SA, Carrington JC (1998) Identification and characterization of a locus (RTM1) that restricts long-distance movement of tobacco etch virus in Arabidopsis thaliana. Plant J 14:177–186

    CAS  Article  Google Scholar 

  24. Moffett P (2009) Mechanisms of recognition in dominant R gene mediated resistance. Adv Virus Res 75:1–33

    CAS  Article  Google Scholar 

  25. Okano Y, Senshu H, Hashimoto M, Neriya Y, Netsu O, Minato N, Yoshida T, Maejima K, Oshima K, Komatsu K, Yamaji Y, Namba S (2014) In planta recognition of a double-stranded RNA synthesis protein complex by a potexviral RNA silencing suppressor. Plant Cell 26:2168–2183

    CAS  Article  Google Scholar 

  26. Ozeki J, Takahashi S, Komatsu K, Kagiwada S, Yamashita K, Mori T, Hirata H, Yamaji Y, Ugaki M, Namba S (2006) A single amino acid in the RNA-dependent RNA polymerase of Plantago asiatica mosaic virus contributes to systemic necrosis—brief report. Arch Virol 151:2067–2075

    CAS  Article  Google Scholar 

  27. Ranf S, Gisch N, Schaffer M, Illig T, Westphal L, Knirel YA, Sánchez-Carballo PM, Zahringer U, Huckelhoven R, Lee J, Scheel D (2015) A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nat Immunol 16:426–433

    CAS  Article  Google Scholar 

  28. Ratcliff FG, MacFarlane SA, Baulcombe DC (1999) Gene silencing without DNA: RNA-mediated cross-protection between viruses. Plant Cell 11:1207–1215

    CAS  Article  Google Scholar 

  29. Rodriguez-Moreno L, Song Y, Thomma BPHJ (2017) Transfer and engineering of immune receptors to improve recognition capacities in crops. Curr Opin Plant Biol 38:42–49

    CAS  Article  Google Scholar 

  30. Soosaar JL, Burch-Smith TM, Dinesh-Kumar SP (2005) Mechanisms of plant resistance to viruses. Nat Rev Microbiol 3:789–798

    CAS  Article  Google Scholar 

  31. Spence NJ, Basham J, Mumford RA, Hayman G, Edmondson R, Jones DR (2006) Effect of Pepino mosaic virus on the yield and quality of glasshouse-grown tomatoes in the UK. Plant Pathol 55:595–606

    Article  Google Scholar 

  32. Sun HJ, Uchii S, Watanabe S, Ezura H (2006) A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol 47:426–431

    CAS  Article  Google Scholar 

  33. Takahashi S, Komatsu K, Kagiwada S, Ozeki J, Mori T, Hirata H, Yamaji Y, Ugaki M, Namba S (2006) The efficiency of interference of Potato virus X infection depends on the target gene. Virus Res 116:214–217

    CAS  Article  Google Scholar 

  34. van der Vlugt RAA, Stijger CCMM, Verhoeven JTJ, Lesemann DE (2000) First report of Pepino mosaic virus on tomato. Plant Dis 84:103

    Article  Google Scholar 

  35. Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956

    CAS  Article  Google Scholar 

  36. Whitham SA, Yamamoto ML, Carrington JC (1999) Selectable viruses and altered susceptibility mutants in Arabidopsis thaliana. Proc Natl Acad Sci USA 96:772–777

    CAS  Article  Google Scholar 

  37. Yamaji Y, Maejima K, Ozeki J, Komatsu K, Shiraishi T, Okano Y, Himeno M, Sugawara K, Neriya Y, Minato N, Miura C, Hashimoto M, Namba S (2012) Lectin-mediated resistance impairs plant virus infection at the cellular level. Plant Cell 24:778–793

    CAS  Article  Google Scholar 

  38. Yoshida T, Shiraishi T, Hagiwara-Komoda Y, Komatsu K, Maejima K, Okano Y, Fujimoto Y, Yusa A, Yamaji Y, Namba S (2019) The plant non-canonical antiviral resistance protein JAX1 inhibits potexviral replication by targeting the viral RNA-dependent RNA polymerase. J Virol 93:e01506–18

    Article  Google Scholar 

  39. Yusa A, Neriya Y, Hashimoto M, Yoshida T, Fujimoto Y, Hosoe N, Keima T, Tokumaru K, Maejima K, Netsu O, Yamaji Y, Namba S (2019) Functional conservation of EXA1 among diverse plant species for the infection by a family of plant viruses. Sci Rep 9:12

    Article  Google Scholar 

  40. Ziebell H, Carr JP (2010) Cross-protection: a century of mystery. In: Carr JP, Loebenstein G (eds) Advances in virus research, vol 76. Academic Press, San Diego, pp 211–264

    Google Scholar 

Download references

Acknowledgements

This research was supported by Grants-in-Aid for Scientific Research (16K14848, 17H03770 and 25221201) from the Japan Society for the Promotion of Science, the Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries and Food Industry (28009A) from MAFF of Japan and Mishima Kaiun Memorial Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yasuyuki Yamaji.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 1546 kb)

About this article

Verify currency and authenticity via CrossMark

Cite this article

Okano, Y., Maejima, K., Yoshida, T. et al. Interfamily transfer of Arabidopsis lectin-mediated antiviral gene confers resistance to pepino mosaic virus in tomato. J Gen Plant Pathol 86, 274–282 (2020). https://doi.org/10.1007/s10327-020-00917-3

Download citation

Keywords

  • Pepino mosaic virus
  • Resistance
  • Transgenic plants