Skip to main content
Log in

Cell biology in phytopathogenic fungi during host infection: commonalities and differences

  • Review
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

During infection of the host plant, various biological processes facilitate host invasion, including the physical invasion of the host, and subsequent adaptation to the host’s internal environment. During these processes, cellular biological changes result in host adhesion, morphogenetic differentiation via the sensing of plant-derived signals, and maturation of infection structures via reorientation of the cytoskeleton. Changes in lipid and sugar metabolism in fungi generate energy for survival, turgor pressure, and melanin synthesis. Moreover, phytopathogenic fungi produce numerous types of effectors used in the evasion of host defense systems and to establish a suitable environment for nutrient exploitation. However, infection systems seem to vary between fungal species because of differences in their evolutionary origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adachi K, Hamer JE (1998) Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea. Plant Cell 10:1361–1374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adl SM, Simpson AG, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, Le Gall L, Lynn DH, McManus H, Mitchell EA, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick L, Schoch CL, Smirnov A, Spiegel FW (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–493

    PubMed  PubMed Central  Google Scholar 

  • Asakura M, Ninomiya S, Sugimoto M, Oku M, Yamashita S, Okuno T, Sakai Y, Takano Y (2009) Atg26-mediated pexophagy is required for host invasion by the plant pathogenic fungus Colletotrichum orbiculare. Plant Cell 21:1291–1304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bae CY, Kim S, Choi WB, Lee YH (2007) Involvement of extracellular matrix and integrin-like proteins on conidial adhesion and appressorium differentiation in Magnaporthe oryzae. J Microbiol Biotechnol 17:1198–1203

    CAS  PubMed  Google Scholar 

  • Bell AA, Wheeler MH (1986) Biosynthesis and functions of fungal melanins. Annu Rev Phytopathol 24:411–451

    CAS  Google Scholar 

  • Bellincampi D, Cervone F, Lionetti V (2014) Plant cell wall dynamics and wall-related susceptibility in plant–pathogen interactions. Front Plant Sci 5:228

    PubMed  PubMed Central  Google Scholar 

  • Birch PRJ, Boevink PC, Gilroy EM, Hein I, Pritchard L, Whisson SC (2008) Oomycete RXLR effectors: delivery, functional redundancy and durable disease resistance. Curr Opin Plant Biol 11:373–379

    CAS  PubMed  Google Scholar 

  • Boenisch MJ, Schäfer W (2011) Fusarium graminearum forms mycotoxin producing infection structures on wheat. BMC Plant Biol 11:110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Braun EJ, Howard RJ (1994) Adhesion of fungal spores and germlings to host plant surfaces. Protoplasma 181:202–212

    Google Scholar 

  • Brun S, Malagnac F, Bidard F, Lalucque H, Silar P (2009) Functions and regulation of the Nox family in the filamentous fungus Podospora anserina: a new role in cellulose degradation. Mol Microbiol 74:480–496

    CAS  PubMed  Google Scholar 

  • Bruno KS, Tenjo F, Li L, Hamer JE, Xu JR (2004) Cellular localization and role of kinase activity of PMK1 in Magnaporthe grisea. Eukaryot Cell 3:1525–1532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Q, Qiao L, Wang M, He B, Lin FM, Palmquist J, Huang SD, Jin H (2018) Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360:1126–1129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carver TLW, Bushnell WR (1983) The probable role of primary germ tubes in water uptake before infection by Erysiphe graminis. Physiol Plant Pathol 23:229–240

    Google Scholar 

  • Celerin M, Ray JM, Schisler NJ, Day AW, Steter-Stevenson WG, Laudenbach DE (1996) Fungal fimbriae are composed of collagen. EMBO J 15:4445–4453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chanclud E, Kisiala A, Emery NRJ, Chalvon V, Ducasse A, Romiti-Michel C, Gravot A, Kroj T, Morel JB (2016) Cytokinin production by the rice blast fungus is a pivotal requirement for full virulence. PLoS Pathog 12:e1005457

    PubMed  PubMed Central  Google Scholar 

  • Chang HX, Miller LA, Hartman GL (2014) Melanin-independent accumulation of turgor pressure in appressoria of Phakopsora pachyrhizi. Phytopathology 104:977–984

    PubMed  Google Scholar 

  • Chen XL, Wang Z, Liu C (2016) Roles of peroxisomes in the rice blast fungus. Biomed Res Int 2016:9343417

    PubMed  PubMed Central  Google Scholar 

  • Cho Y, Cramer RA Jr, Kim KH, Davis J, Mitchell TK, Figuli P, Pryor BM, Lemasters E, Lawrence CB (2007) The Fus3/Kss1 MAP kinase homolog Amk1 regulates the expression of genes encoding hydrolytic enzymes in Alternaria brassicicola. Fungal Genet Biol 44:543–553

    CAS  PubMed  Google Scholar 

  • Choi W, Dean RA (1997) The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell 9:1973–1983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corrêa A, Staples RC, Hoch HC (1996) Inhibition of thigmostimulated cell differentiation with RGD-peptides in Uromyces germlings. Protoplasma 194:91–102

    Google Scholar 

  • Dagdas YF, Yoshino K, Dagdas G, Ryder LS, Bielska E, Steinberg G, Talbot NJ (2012) Septin-mediated plant cell invasion by the rice blast fungus, Magnaporthe oryzae. Science 336:1590–1595

    CAS  PubMed  Google Scholar 

  • Davis DJ, Burlak C, Money NP (2000) Osmotic pressure of fungal compatible osmolytes. Mycol Res 104:800–804

    CAS  Google Scholar 

  • de Jong JC, McCormack BJ, Smirnoff N, Talbot NJ (1997) Glycerol generates turgor in rice blast. Nature 389:244–245

    Google Scholar 

  • de Guillen K, Ortiz-Vallejo D, Gracy J, Fournier E, Kroj T, Padilla A (2015) Structure analysis uncovers a highly diverse but structurally conserved effector family in phytopathogenic fungi. PLoS Pathog 11:e1005228

    PubMed  PubMed Central  Google Scholar 

  • DeZwaan TM, Carroll AM, Valent B, Sweigard JA (1999) Magnaporthe grisea Pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell 11:2013–2030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dean RA, Lee YH, Mitchell TK, Whitehead DS (1994) Signalling systems and gene expression regulating appressorium formation in Magnaporthe grisea. In: Zeigler RS et al (eds) Rice blast disease. CAB International, Wallingford, pp 23–34

    Google Scholar 

  • Ding SL, Liu W, Iliuk A, Ribot C, Vallet J, Tao A, Wang Y, Lubrun MH, Xu JR (2010) The Tig1 histone deacetylase complex regulates infectious growth in the rice blast fungus Magnaporthe oryzae. Plant Cell 22:2495–2508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon KP, Xu JR, Smirnoff N, Talbot NJ (1999) Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell 11:2045–2058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Egan MJ, Wang ZY, Jones MA, Smirnoff N, Talbot NJ (2007) Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc Natl Acad Sci USA 104:11772–11777

    CAS  PubMed  PubMed Central  Google Scholar 

  • El Gueddari NE, Rauchhaus U, Moerschbacher BM, Deising HB (2002) Developmentally regulated conversion of surface-exposed chitin to chitosan in cell walls of plant pathogenic fungi. New Phytol 156:103–112

    Google Scholar 

  • Ellis JG, Rafiqi M, Gan P, Chakrabarti A, Dodds PN (2009) Recent progress in discovery and functional analysis of effector proteins of fungal and oomycete plant pathogens. Curr Opin Plant Biol 12:399–405

    CAS  PubMed  Google Scholar 

  • Emmett RW, Parbery DG (1975) Appressoria. Annu Rev Phytopathol 13:147–167

    Google Scholar 

  • Fujikawa T, Kuga Y, Yano S, Yoshimi A, Tachiki T, Abe K, Nishimura M (2009) Dynamics of cell wall components of Magnaporthe grisea during infectious structure development. Mol Microbiol 73:553–570

    CAS  PubMed  Google Scholar 

  • Fukada F, Kubo Y (2015) Colletotrichum orbiculare regulates cell cycle G1/S progression via a two-component GAP and a GTPase to establish plant infection. Plant Cell 27:2530–2544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galhano R, Illana A, Ryder LS, Rodríguez-Romero J, Demuez M, Badaruddin M, Martinez-Rocha AL, Soanes DM, Studholme DJ, Talbot NJ, Sesma A (2017) Tpc1 is an important Zn(II)2Cys6 transcriptional regulator required for polarized growth and virulence in the rice blast fungus. PLoS Pathog 13:1006516

    Google Scholar 

  • Gilbert RD, Johnson AM, Dean RA (1996) Chemical signals responsible for appressorium formation in the rice blast fungus Magnaporthe grisea. Physiol Mol Plant Pathol 48:335–346

    CAS  Google Scholar 

  • Giraldo MC, Valent B (2013) Filamentous plant pathogen effectors in action. Nat Rev Microbiol 11:800–814

    CAS  PubMed  Google Scholar 

  • Giraldo MC, Dagdas YF, Gupta YK, Mentlak TA, Yi M, Martinez-Rocha AL, Saitoh H, Terauchi R, Talbot NJ, Valent B (2013) Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nat Commun 4:1996

    PubMed  Google Scholar 

  • Hamer JE, Howard RJ, Chumley FG, Valent B (1988) A mechanism for surface attachment in spores of a plant pathogenic fungus. Science 239:288–290

    CAS  PubMed  Google Scholar 

  • Harata K, Nishiuchi T, Kubo Y (2016) Colletotrichum orbiculare WHI2, a yeast stress-response regulator homolog, controls the biotrophic stage of hemibiotrophic infection through TOR signaling. Mol Plant Microbe Interact 29:468–483

    CAS  PubMed  Google Scholar 

  • He M, Kershaw MJ, Soanes DM, Xia Y, Talbot NJ (2009) Infection-associated nuclear degeneration in the rice blast fungus Magnaporthe oryzae requires non-selective macro-autophagy. PLoS One 7:e33270

    Google Scholar 

  • Hou Z, Xue C, Peng Y, Katan T, Kistler HC, Xu JR (2002) A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Mol Plant Microbe Interact 15:1119–1127

    CAS  PubMed  Google Scholar 

  • Howard RJ, Ferrari MA, Roach DH, Money NP (1991) Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci USA 88:11281–11284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang K, Czymmek KJ, Caplan JL, Sweigard JA, Donofrio NM (2011) HYR-mediated detoxification of reactive oxygen species is required for full virulence in the rice blast fungus. PLoS Pathog 7:e1001335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue K, Suzuki T, Ikeda K, Jiang S, Hosogi N, Hyon GS, Hida S, Yamada T, Park P (2007) Extracellular matrix of Magnaporthe oryzae may have a role in host adhesion during fungal penetration and is digested by matrix metalloproteinases. J Gen Plant Pathol 73:388–398

    Google Scholar 

  • Inoue K, Kitaoka H, Park P, Ikeda K (2016) Novel aspects of hydrophobins in wheat isolate of Magnaporthe oryzae Mpg1, but not Mhp1, is essential for adhesion and pathogenicity. J Gen Plant Pathol 82:18–28

    Google Scholar 

  • Inoue K, Onoe T, Park P, Ikeda K (2011) Enzymatic detachment of spore germlings in Magnaporthe oryzae. FEMS Microbiol Lett 323:13–19

    CAS  PubMed  Google Scholar 

  • Irieda H, Maeda H, Akiyama K, Hagiwara A, Saitoh H, Uemura A, Terauchi R, Takano Y (2014) Colletotrichum orbiculare secretes virulence effectors to a biotrophic interface at the primary hyphal neck via exocytosis coupled with SEC22-mediated traffic. Plant Cell 26:2265–2281

    CAS  PubMed  PubMed Central  Google Scholar 

  • Irieda H, Inoue Y, Mori M, Yamada K, Oshikawa Y, Saitoh H, Uemura A, Terauchi R, Kitakura S, Kosaka A, Singkaravanit-Ogawa S, Takano Y (2019) Conserved fungal effector suppresses PAMP-triggered immunity by targeting plant immune kinases. Proc Natl Acad Sci USA 116:496–505

    CAS  PubMed  Google Scholar 

  • Izumitsu K, Kimura S, Kobayashi H, Morita A, Saitoh Y, Tanaka C (2010) Class I hydrophobin BcHpb1 is important for adhesion but not for later infection of Botrytis cinerea. J Gen Plant Pathol 76:254–260

    CAS  Google Scholar 

  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schüßler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818–822

    CAS  PubMed  Google Scholar 

  • Kankanala P, Czymmek K, Valent B (2007) Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19:706–724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kayano Y, Tanaka A, Takemoto D (2018) Two closely related Rho GTPases, Cdc42 and RacA, of the endophytic fungus Epichloë festucae have contrasting roles for ROS production and symbiotic infection synchronized with the host plant. PLoS Pathog 14:e1006840

    PubMed  PubMed Central  Google Scholar 

  • Kershaw MJ, Talbot NJ (2009) Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Proc Natl Acad Sci USA 106:15967–15972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khang CH, Berruyer R, Giraldo MC, Kankanala P, Park SY, Czymmek K, Kang S, Valent B (2010) Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to cell movement. Plant Cell 22:1388–1403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Ahn IP, Rho HS, Lee YH (2005) MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Mol Microbiol 57:1224–1237

    CAS  PubMed  Google Scholar 

  • Kitagawa H, Shimoi S, Inoue K, Park P, Ikeda K (2014) Durable and broad-spectrum disease protection measure against airborne phytopathogenic fungi by using the detachment action of gelatinolytic bacteria. Biol Control 71:1–6

    Google Scholar 

  • Kleemann J, Rincon-Rivera LJ, Takahara H, Neumann U, van Themaat EVL, van der Does HC, Hacquard S, Stüber K, Will I, Schmalenbach W, Schmelzer E, O’Connell RJ (2012) Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. PLoS Pathog 8:e1002643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klionsky DJ, Cuervo AM, Seglen PO (2007) Methods for monitoring autophagy from yeast to human. Autophagy 3:181–206

    CAS  PubMed  Google Scholar 

  • Kodama S, Ishizuka J, Miyashita I, Ishii T, Nishiuchi T, Miyoshi H, Kubo Y (2017) The morphogenesis-related NDR kinase pathway of Colletotrichum orbiculare is required for translating plant surface signals into infection-related morphogenesis and pathogenesis. PLoS Pathog 13:e1006189

    PubMed  PubMed Central  Google Scholar 

  • Kots K, Meijer HJG, Bouwmeester K, Govers F, Ketelaar T (2017) Filamentous actin accumulates during plant cell penetration and cell wall plug formation in Phytophthora infestans. Cell Mol Life Sci 74:909–920

    CAS  PubMed  Google Scholar 

  • Lacroix H, Whiteford JR, Spanu PD (2008) Localization of Cladosporium fulvum hydrophobins reveals a role for HCf-6 in adhesion. FEMS Microbiol Lett 286:136–144

    CAS  PubMed  Google Scholar 

  • Lee YH, Dean RA (1993) cAMP regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea. Plant Cell 5:693–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YH, Dean RA (1994) Hydrophobicity of contact surface induces appressorium formation in Magnaporthe grisea. FEMS Microbiol Lett 115:71–75

    Google Scholar 

  • Lee N, D’Souza CA, Kronstad JW (2003) Of smuts, blasts, mildews, and blights: cAMP signaling in phytopathogenic fungi. Annu Rev Phytopathol 41:399–427

    CAS  PubMed  Google Scholar 

  • Li G, Zhang X, Tian H, Choi YE, Tao WA, Xu JR (2017a) MST50 is involved in multiple MAP kinase signaling pathways in Magnaporthe oryzae. Environ Microbiol 19:1959–1974

    CAS  PubMed  Google Scholar 

  • Li X, Gao C, Li L, Liu M, Yin Z, Zhang H, Zheng X, Wang P, Zhang Z (2017b) MoEnd3 regulates appressorium formation and virulence through mediating endocytosis in rice blast fungus Magnaporthe oryzae. PLoS Pathog 13:e1006449

    PubMed  PubMed Central  Google Scholar 

  • Li Y, Zhang X, Hu S, Liu H, Xu JR (2017c) PKA activity is essential for relieving the suppression of hyphal growth and appressorium formation by MoSfl1 in Magnaporthe oryzae. PLoS Genet 13:e1006954

    PubMed  PubMed Central  Google Scholar 

  • Liu S, Dean RA (1997) G protein α subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Mol Plant Microbe Interact 10:1075–1086

    CAS  PubMed  Google Scholar 

  • Liu H, Suresh A, Willard FS, Siderovski DP, Lu S, Naqvi NI (2007) Rgs1 regulates multiple Gα subunit in Magnaporthe pathogenesis, asexual growth and thigmotropism. EMBO J 26:690–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Zhou X, Li G, Li L, Kong L, Wang C, Zhang H, Xu JR (2011) Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation. PLoS Pathog 7:e1001261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ludwig N, Lohrer M, Hempel M, Mathea S, Schliebner I, Menzel M, Kiesow A, Schaffrath U, Deising HB, Horbach R (2014) Melanin is not required for turgor generation but enhances cell wall rigidity in appressoria of the corn pathogen Colletotrichum graminicola. Mol Plant Microbe Interact 27:315–327

    PubMed  Google Scholar 

  • Marroquin-Guzman M, Wilson RA (2015) GATA-dependent glutaminolysis drives appressorium formation in Magnaporthe oryzae by suppressing TOR inhibition of cAMP/PKA signaling. PLoS Pathog 11:e1004851

    PubMed  PubMed Central  Google Scholar 

  • Marroquin-Guzman M, Hartline D, Wright JD, Elowsky C, Bourret TJ, Wilson RA (2017) The Magnaporthe oryzae nitrooxidative stress response suppresses rice innate immunity during blast disease. Nat Microbiol 2:17054

    CAS  PubMed  Google Scholar 

  • Marshall DS, Rush MC (1980) Infection cushion formation on rice sheaths by Rhizoctonia solani. Phytopathology 70:947–950

    Google Scholar 

  • Mehrabi R, Zwiers LH, deWaard MA, Kema GHJ (2006) MgHog1 regulates dimorphism and pathogenicity in the fungal wheat pathogen Mycosphaerella graminicola. Mol Plant Microbe Interact 19:1262–1269

    CAS  PubMed  Google Scholar 

  • Mentlak TA, Kombrink A, Shinya T, Ryder LS, Otomo I, Saitoh H, Terauchi R, Nishizawa Y, Shibuya N, Thomma BPHJ, Talbot NJ (2012) Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell 24:322–335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Micali CO, Neumann U, Grunewald D, Panstruga R, O’Connell R (2011) Biogenesis of a specialized plant–fungal interface during host cell internalization of Golovinomyces orontii haustoria. Cell Microbiol 13:210–226

    CAS  PubMed  Google Scholar 

  • Mijaljica D, Devenish RJ (2013) Nucleophagy at a glance. J Cell Sci 126:4325–4330

    CAS  PubMed  Google Scholar 

  • Morita Y, Hyon GS, Hosogi N, Miyata N, Nakayashiki H, Muranaka Y, Inada N, Park P, Ikeda K (2013) Appressorium-localized NADPH oxidase B is essential for aggressiveness and pathogenicity in the host-specific, toxin-producing fungus Alternaria alternata Japanese pear pathotype. Mol Plant Pathol 14:365–378

    CAS  PubMed  Google Scholar 

  • Mosquera G, Giraldo MC, Khang CH, Coughlan S, Valent B (2009) Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1-4 as biotrophy-associated secreted proteins in rice blast disease. Plant Cell 21:1273–1290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nimuchuk Z, Eulgem T, Holt BF III, Dangl JL (2003) Recognition and response in the plant immune system. Annu Rev Genet 37:579–609

    Google Scholar 

  • Nishimura S, Kohmoto K (1983) Host-specific toxins and chemical structures from Alternaria species. Annu Rev Phytopathol 21:87–116

    CAS  PubMed  Google Scholar 

  • O’Connell RJ, Pain NA, Hutchison KA, Jones GL, Green JR (1996) Ultrastructure and composition of the cell surfaces of infection structures formed by the fungal plant pathogen Colletotrichum lindemuthianum. J Microsc 181:204–212

    Google Scholar 

  • Osés-Ruiz M, Sakulkoo W, Littlejohn GR, Martin-Urdiroz M, Talbot NJ (2017) Two independent S-phase checkpoints regulate appressorium-mediated plant infection by the rice blast fungus Magnaporthe oryzae. Proc Natl Acad Sci USA 114:E237–E244

    PubMed  Google Scholar 

  • Panstruga R (2003) Establishing compatibility between plants and obligate biotrophic pathogens. Curr Opin Plant Biol 6:320–326

    CAS  PubMed  Google Scholar 

  • Park G, Xue C, Zhao X, Kim Y, Orbach M, Xu JR (2006) Multiple upstream signals converge on the adaptor protein Mst50 in Magnaporthe grisea. Plant Cell 18:2822–2835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park CH, Chen S, Shirsekar G, Zhou B, Khang CH, Songkumarn P, Afzal AJ, Ning Y, Wang R, Bellizzi M, Valent B (2012) The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. Plant Cell 24:4748–4762

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patkar RN, Benke PI, Qu Z, Chen YYC, Yang F, Swarup S, Naqvi NI (2015) A fungal monooxygenase-derived jasmonate attenuates host innate immunity. Nat Chem Biol 11:733–740

    CAS  PubMed  Google Scholar 

  • Pham KTM, Inoue Y, Vu BV, Nguyen HH, Nakayashiki T, Ikeda K, Nakayashiki H (2015) MoSET1 (histone H3K4 methyltransferase in Magnaporthe oryzae) regulates global gene expression during infection-related morphogenesis. PLoS Genet 11:e1005385

    PubMed  PubMed Central  Google Scholar 

  • Rui O, Han M (2007) The Slt2-type MAP kinase Bmp3 of Botrytis cinerea is required for normal saprotrophic growth, conidiation, plant surface sensing and host tissue colonization. Mol Plant Pathol 8:173–184

    CAS  PubMed  Google Scholar 

  • Ryder L, Dagdas YF, Mentlak TA, Kershaw MJ, Thornton CR, Schuster M, Chen J, Wang Z, Talbot NJ (2013) NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus. Proc Natl Acad Sci USA 110:3179–3184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakulkoo W, Osés-Ruiz M, Garcia EO, Soanes DM, Littlejohn GR, Hacker C, Correia A, Valent B, Talbot NJ (2018) A single fungal MAP kinase controls plant cell-to-cell invasion by the rice blast fungus. Science 359:1399–1403

    CAS  PubMed  Google Scholar 

  • Saunders DGO, Aves AJ, Talbot NJ (2010a) Cell cycle-mediated regulation of plant infection by the rice blast fungus. Plant Cell 22:497–507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders DGO, Dagdas YF, Talbot NJ (2010b) Spatial uncoupling of mitosis and cytokinesis during appressorium-mediated plant infection by the rice blast fungus Magnaporthe oryzae. Plant Cell 22:2417–2428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Segal LM, Wilson RA (2018) Reactive oxygen species metabolism and plant–fungal interactions. Fungal Genet Biol 110:1–9

    CAS  PubMed  Google Scholar 

  • Segmüller N, Ellendorf U, Tudzynski B, Tudzynski P (2007) BcSAK1, a stress-activated mitogen-activaed protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryot Cell 6:211–221

    PubMed  Google Scholar 

  • Segmüller N, Kokkelink L, Giesbert S, Odinius D, van Kan J, Tudzynski P (2008) NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Mol Plant Microbe Interact 21:808–819

    PubMed  Google Scholar 

  • Sesma A, Osbourn AE (2004) The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature 431:582–586

    CAS  PubMed  Google Scholar 

  • Shi X, Ling Y, He F, Zhang C, Wang R, Zhang T, Wu W, Hao Z, Wang Y, Wang GL, Ning Y (2018) The fungal pathogen Magnaporthe oryzae suppresses innate immunity by modulating a host potassium channel. PLoS Pathog 14:e1006878

    PubMed  PubMed Central  Google Scholar 

  • Shimoi S, Inoue K, Kitagawa H, Yamasaki M, Tsushima S, Park P, Ikeda K (2010) Biological control for rice blast disease by employing detachment action with gelatinolytic bacteria. Biol Control 55:85–91

    Google Scholar 

  • Shiraishi T, Yamada T, Saitoh K, Kato T, Toyoda K, Yoshioka H, Kim HM, Ichinose Y, Tahara M, Oku H (1994) Suppressors: determinants of specificity produced by plant pathogens. Plant Cell Physiol 35:1107–1119

    CAS  Google Scholar 

  • Skamnioti P, Henderson C, Zhang Z, Robinson Z, Gurr SJ (2007) A novel role for catalase B in the maintenance of fungal cell-wall integrity during host invasion in the rice blast fungus Magnaporthe grisea. Mol Plant Microbe Interact 20:568–580

    CAS  PubMed  Google Scholar 

  • Soanes DM, Chakrabarti A, Paskiewicz K, Dawe A, Talbot NJ (2012) Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae. PLoS Pathog 8:e1002514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun G, Elowsky C, Li G, Wilson RA (2018) TOR-autophagy branch signaling via Imp1 dictates plant–microbe biotrophic interface longevity. PLoS Genet 14:e1007814

    PubMed  PubMed Central  Google Scholar 

  • Takemoto D, Kamakura S, Saikia S, Becker Y, Wrenn R, Tanaka A, Sumimoto H, Scott B (2011) Polarity proteins Bem1 and Cdc24 are components of the filamentous fungal NADPH oxidase complex. Proc Natl Acad Sci USA 108:2861–2866

    CAS  PubMed  PubMed Central  Google Scholar 

  • Talbot NJ, Kershaw MJ, Weakley GE, de Vries OMH, Wessels JGH, Hamer JE (1996) MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea. Plant Cell 8:985–999

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka A, Christensen MJ, Takemoto D, Park P, Scott B (2006) Reactive oxygen species play a role in regulating a fungus–perennial ryegrass mutualistic interaction. Plant Cell 18:1052–1066

    CAS  PubMed  PubMed Central  Google Scholar 

  • Temme N, Tudzynski P (2009) Does Botrytis cinerea ignore H2O2-induced oxidative stress during infection? Characterization of Botrytis activator protein 1. Mol Plant Microbe Interact 22:987–998

    CAS  PubMed  Google Scholar 

  • Thines E, Weber RW, Talbot NJ (2000) MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell 12:1703–1718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker SL, Besi MI, Galhano R, Franceschetti M, Goetz S, Lenhert S, Osbourn A, Sesma A (2010) Common genetic pathways regulate organ-specific infection-related development in the rice blast fungus. Plant Cell 22:953–972

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valent B, Khang CH (2010) Recent advances in rice blast effector research. Curr Opin Plant Biol 13:434–441

    CAS  PubMed  Google Scholar 

  • Veneault-Fourrey C, Barooah M, Egan M, Wakley G, Talbot NJ (2006) Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science 28:580–583

    Google Scholar 

  • Walton JD (1996) Host-selective toxins: agents of compatibility. Plant Cell 8:1723–1733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CL, Shaw BD (2016) F-actin localization dynamics during appressorium formation in Colletotrichum graminicola. Mycologia 108:506–514

    CAS  PubMed  Google Scholar 

  • Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Huang HD, Jin H (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson RA, Jenkinson JM, Gibson RP, Littlechild JA, Wang ZY, Talbot NJ (2007) Tps1 regulates the pentose phosphate pathway, nitrogen metabolism and fungal virulence. EMBO J 26:3673–3685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson RA, Gibson RP, Quispe CF, Littlechild JA, Talbot NJ (2010) An NADPH-dependent genetic switch regulates plant infection by the rice blast fungus. Proc Natl Acad Sci USA 107:21902–21907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wösten HAB (2001) Hydrophobins: multipurpose proteins. Annu Rev Microbiol 55:625–646

    PubMed  Google Scholar 

  • Xiao JZ, Ohshima A, Kamakura T, Ishiyama T, Yamaguchi I (1994) Extracellular glycoprotein(s) associated with cellular differentiation in Magnaporthe grisea. Mol Plant Microbe Interact 7:639–644

    CAS  Google Scholar 

  • Xu JR, Hamer JH (1996) MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev 10:2696–2706

    CAS  PubMed  Google Scholar 

  • Xu JR, Staiger CJ, Hamer JE (1998) Inactivation of the mitogen-activated protein kinase MPS1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses. Proc Natl Acad Sci USA 95:12713–12718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SL, Chung KR (2012) The NADPH oxidase-mediated production of hydrogen peroxide (H2O2) and resistance to oxidative stress in the necrotrophic pathogen Alternaria alternata of citrus. Mol Plant Pathol 13:900–914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang LN, Yin Z, Zhang X, Feng W, Xiao Y, Zhang H, Zheng X, Zhang Z (2018) New findings on phosphodiesterases, MoPdeH and MoPdeL, in Magnaporthe oryzae revealed by structural analysis. Mol Plant Pathol 19:1061–1074

    CAS  PubMed  Google Scholar 

  • Yarwood CE (1950) Water content of fungus spores. Am J Bot 37:636–639

    Google Scholar 

  • Zhang N, Cai Gm Price DC, Crouch JA, Gladieux P, Hillman B, Khang CH, LeBrun MH, Lee YH, Luo J, Qiu H, Veltri D, Wisecaver JH, Zhu J, Bhattacharya D (2018) Genome wide analysis of the transition to pathogenic lifestyles in Magnaporthales fungi. Sci Rep 8:5862

    PubMed  PubMed Central  Google Scholar 

  • Zhao X, Mehrabi R, Xu JR (2007) Mitogen-activated protein kinase pathway and fungal pathogenesis. Eukaryot Cell 6:1701–1714

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao YI, Zhou TT, Guo HS (2016) Hyphopodium-specific VdNoxB/VdPls1-dependent ROS-Ca2+ signaling is required for plant infection by Verticillium dahliae. PLoS Pathog 12:e1005793

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by Grants-in-Aid for Scientific Research B (No. 18380033), Grants-in-Aid for Young Scientists B (No. 19780036), Grants-in-Aid for Young Scientists A (No. 23688006), and Grants-in-Aid for Challenging exploratory Research (17K19266) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Ikeda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeda, K., Park, P. & Nakayashiki, H. Cell biology in phytopathogenic fungi during host infection: commonalities and differences. J Gen Plant Pathol 85, 163–173 (2019). https://doi.org/10.1007/s10327-019-00846-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-019-00846-w

Keywords

Navigation