Skip to main content
Log in

Nonhost resistance of Arabidopsis thaliana against Colletotrichum species

  • Review
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

Arabidopsis thaliana exhibits a durable resistance called nonhost resistance against nonadapted fungal pathogens. A. thaliana activates preinvasive resistance and terminates entry attempts by nonadapted fungi belonging to the genus Colletotrichum, which cause anthracnose disease in many plants. In the interaction between A. thaliana and nonadapted C. tropicale, the preinvasive resistance involves the PENETRATION 2-related antifungal secondary metabolite pathway and the ENHANCED DISEASE RESISTANCE 1-dependent antifungal peptide pathway. The development of invasive hyphae by C. tropicale owing to the reduction of preinvasive resistance then triggers the blockage of further hyphal expansion via the activation of the second layer of resistance, i.e., postinvasive resistance, which guarantees the robustness of the nonhost resistance of A. thaliana against Colletotrichum pathogens. Both the tryptophan-derived metabolic pathway and glutathione synthesis play critical roles in the postinvasive resistance against C. tropicale, although the molecular mechanism of postinvasive resistance remains to be elucidated. In this review, we describe the current understanding of the molecular background of the Arabidopsis nonhost resistance against Colletotrichum fungi and discuss perspectives for future research on this durable resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrios GN (2004) Plant pathology, 5th edn. Elsevier Academic Press, San Diego

    Google Scholar 

  • Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, Maclean DJ, Ebert PR, Kazan K (2004) Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 16:3460–3479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Assaad FF, Qiu JL, Youngs H, Ehrhardt D, Zimmerli L, Kalde M, Wanner G, Peck SC, Edwards H, Ramonell K, Somerville CR, Thordal-Christensen H (2004) The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Mol Biol Cell 15:5118–5129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bednarek P (2012) Sulfur-containing secondary metabolites from Arabidopsis thaliana and other Brassicaceae with function in plant immunity. Chem Bio Chem 13:1846–1859

    Article  PubMed  CAS  Google Scholar 

  • Bednarek P, Piślewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A, Schulze-Lefert P (2009) A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323:101–106

    Article  PubMed  CAS  Google Scholar 

  • Bhat RA, Miklis M, Schmelzer E, Schulze-Lefert P, Panstruga R (2005) Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proc Natl Acad Sci USA 102:3135–3140

    Article  PubMed  CAS  Google Scholar 

  • Birker D, Heidrich K, Takahara H, Narusaka M, Deslandes L, Narusaka Y, Reymond M, Parker JE, O’Connell R (2009) A locus conferring resistance to Colletotrichum higginsianum is shared by four geographically distinct Arabidopsis accessions. Plant J 60:602–613

    Article  PubMed  CAS  Google Scholar 

  • Böttcher C, Westphal L, Schmotz C, Prade E, Scheel D, Glawischnig E (2009) The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. Plant Cell 21:1830–1845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95–101

    Article  PubMed  CAS  Google Scholar 

  • Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Huckelhoven R, Stein M, Freialdenhoven A, Somerville SC, Schulze-Lefert P (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425:973–977

    Article  PubMed  CAS  Google Scholar 

  • Frye CA, Innes RW (1998) An Arabidopsis mutant with enhanced resistance to powdery mildew. Plant Cell 10:947–956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frye CA, Tang D, Innes RW (2001) Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci USA 98:373–378

    Article  PubMed  CAS  Google Scholar 

  • Fuchs R, Kopischke M, Klapprodt C, Hause G, Meyer AJ, Schwarzländer M, Fricker MD, Lipka V (2016) Immobilized subpopulations of leaf epidermal mitochondria mediate PENETRATION2-dependent pathogen entry control in Arabidopsis. Plant Cell 28:130–145

    PubMed  Google Scholar 

  • Fukunaga S, Sogame M, Hata M, Singkaravanit-Ogawa S, Piślewska-Bednarek M, Onozawa-Komori M, Nishiuchi T, Hiruma K, Saitoh H, Terauchi R, Kitakura S, Inoue Y, Bednarek P, Schulze-Lefert P, Takano Y (2017) Dysfunction of Arabidopsis MACPF domain protein activates programmed cell death via tryptophan metabolism in MAMP-triggered immunity. Plant J 89:381–393

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J, Ausubel FM (1994) Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. Proc Natl Acad Sci USA 91:8955–8959

    Article  PubMed  CAS  Google Scholar 

  • Heath MC (2000) Nonhost resistance and nonspecific plant defenses. Curr Opin Plant Biol 3:315–319

    Article  PubMed  CAS  Google Scholar 

  • Hiruma K, Takano Y (2010) Roles of EDR1 in non-host resistance of Arabidopsis. Plant Signal Behav 6:1831–1833

    Article  CAS  Google Scholar 

  • Hiruma K, Onozawa-Komori M, Takahashi F, Asakura M, Bednarek P, Okuno T, Schulze-Lefert P, Takano Y (2010) Entry mode-dependent function of an indole glucosinolate pathway in Arabidopsis for nonhost resistance against anthracnose pathogens. Plant Cell 22:2429–2443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hiruma K, Nishiuchi T, Kato T, Bednarek P, Okuno T, Schulze-Lefert P, Takano Y (2011) Arabidopsis ENHANCED DISEASE RESISTANCE 1 is required for pathogen-induced expression of plant defensins in nonhost resistance, and acts through interference of MYC2-mediated repressor function. Plant J 67:980–992

    Article  PubMed  CAS  Google Scholar 

  • Hiruma K, Fukunaga S, Bednarek P, Piślewska-Bednarek M, Watanabe S, Narusaka Y, Shirasu K, Takano Y (2013) Glutathione and tryptophan metabolism are required for Arabidopsis immunity during the hypersensitive response to hemibiotrophs. PNAS 110:9589–9594

    Article  PubMed  Google Scholar 

  • Jacobs A, Lipka V, Burton R, Panstruga R, Strizhov N, Schulze-Lefert P, Fincher G (2003) An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation. Plant Cell 15:2503–2513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johansson ON, Fantozzi E, Fahlberg P, Nilsson AK, Buhot N, Tör M, Andersson MX (2014) Role of the penetration-resistance genes PEN1, PEN2 and PEN3 in the hypersensitive response and race-specific resistance in Arabidopsis thaliana. Plant J 79:466–476

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi I, Kobayashi Y, Yamaoka N, Kunoh H (1992) Recognition of a pathogen and a nonpathogen by barley coleoptile cells. III. Responses of microtubules and actin filaments in barley coleoptile cells to penetration attempts. Can J Bot 70:1815–1823

    Article  Google Scholar 

  • Kojima K, Kikuchi T, Takano Y, Oshiro E, Okuno T (2002) The mitogen-activated protein kinase gene MAF1 is essential for the early differentiation phase of appressorium formation in Colletotrichum lagenarium. Mol Plant Microbe Interact 15:1268–1276

    Article  PubMed  CAS  Google Scholar 

  • Kubo Y, Furusawa I (1991) Melanin biosynthesis: prerequisite for successful invasion of the plant host by appressoria of Colletotrichum and Pyricularia. In: Cole GT, Hoch HC (eds) The fungal spore and disease initiation in plants and animals. Plenum, New York, pp 205–217

    Chapter  Google Scholar 

  • Kubo Y, Takano Y (2013) Dynamics of infection-related morphogenesis and pathogenesis in Colletotrichum orbiculare. J Gen Plant Pathol 79:233–242

    Article  CAS  Google Scholar 

  • Kwon C, Neu C, Pajonk S, Yun HS, Lipka U, Humphry M, Bau S, Straus M, Kwaaitaal M, Rampelt H, El Kasmi F, Jürgens G, Parker J, Panstruga R, Lipka V, Schulze-Lefert P (2008) Co-option of a default secretory pathway for plant immune responses. Nature 451:835–840

    Article  PubMed  CAS  Google Scholar 

  • Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D, Llorente F, Molina A, Parker J, Somerville S, Schulze-Lefert P (2005) Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310:1180–1183

    Article  PubMed  CAS  Google Scholar 

  • Lipka U, Fuchs R, Lipka V (2008) Arabidopsis nonhost resistance to powdery mildews. Curr Opin Plant Biol 11:404–411

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R (2004) JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16:1938–1950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matsushima R, Hayashi Y, Yamada K, Shimada T, Nishimura M, Hara-Nishimura I (2003) The ER body, a novel endoplasmic reticulum-derived structure in Arabidopsis. Plant Cell Physiol 44:661–666

    Article  PubMed  CAS  Google Scholar 

  • Mélida H, Sopeña-Torres S, Bacete L, Garrido-Arandia M, Jordá L, López G, Muñoz-Barrios A, Pacios LF, Molina A (2018) Non-branched β-1,3-glucan oligosaccharides trigger immune responses in Arabidopsis. Plant J 93:34–49

    Article  PubMed  CAS  Google Scholar 

  • Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci USA 104:19613–19618

    Article  PubMed  Google Scholar 

  • Narusaka Y, Narusaka M, Park P, Kubo Y, Hirayama T, Seki M, Shiraishi T, Ishida J, Nakashima M, Enju A, Sakurai T, Satou M, Kobayashi M, Shinozaki K (2004) RCH1, a locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum. Mol Plant Microbe Interact 17:749–762

    Article  PubMed  CAS  Google Scholar 

  • Narusaka M, Shirasu K, Noutoshi Y, Kubo Y, Shiraishi T, Iwabuchi M, Narusaka Y (2009) RRS1 and RPS4 provide a dual resistance-gene system against fungal and bacterial pathogens. Plant J 60:218–226

    Article  PubMed  CAS  Google Scholar 

  • Nishimura M, Stein M, Hou B, Vogel J, Edwards H, Somerville S (2003) Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science 301:969–972

    Article  PubMed  CAS  Google Scholar 

  • Noutoshi Y, Kuromori T, Wada T, Hirayama T, Kamiya A, Imura Y, Yasuda M, Nakashita H, Shirasu K, Shinozaki K (2006) Loss of Necrotic Spotted Lesions 1 associates with cell death and defense responses in Arabidopsis thaliana. Plant Mol Biol 62:29–42

    Article  PubMed  CAS  Google Scholar 

  • Nürnberger T, Lipka V (2005) Non-host resistance in plants: new insights into an old phenomenon. Mol Plant Pathol 6:335–345

    Article  PubMed  Google Scholar 

  • O’Connell R, Herbert C, Sreenivasaprasad S, Khatib M, Esquerré -Tugayé M, Dumas B (2004) A novel ArabidopsisColletotrichum pathosystem for the molecular dissection of plant fungal interactions. Mol Plant Microbe Interact 17:272–282

    Article  PubMed  Google Scholar 

  • Parisy V, Poinssot B, Owsianowski L, Buchala A, Glazebrook J, Mauch F (2007) Identification of PAD2 as a γ-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J 49:157–172

    Google Scholar 

  • Perfect SE, Hughes HB, O’Connell RJ, Green JR (1999) Colletotrichum: a model genus for studies on pathology and fungal–plant interactions. Fungal Genet Biol 27:186–198

    Article  PubMed  CAS  Google Scholar 

  • Roetschi A, Si-Ammour A, Belbahri L, Mauch F, Mauch-Mani B (2001) Characterization of an ArabidopsisPhytophthora pathosystem: resistance requires a functional PAD2 gene and is independent of salicylic acid, ethylene and jasmonic acid signalling. Plant J 28:293–305

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Vallet A, Ramos B, Bednarek P, López G, Piślewska-Bednarek M, Schulze-Lefert P, Molina A (2010) Tryptophan-derived secondary metabolites in Arabidopsis thaliana confer non-host resistance to necrotrophic Plectosphaerella cucumerina fungi. Plant J 63:115–127

    PubMed  CAS  Google Scholar 

  • Schlaeppi K, Abou-Mansour E, Buchala A, Mauch F (2010) Disease resistance of Arabidopsis to Phytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin. Plant J 62:840–851

    Article  PubMed  CAS  Google Scholar 

  • Sels J, Mathys J, De Coninck BM, Cammue BP, De Bolle MF (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem 46:941–950

    Article  PubMed  CAS  Google Scholar 

  • Shimada C, Lipka V, O’Connell R, Okuno T, Schulze-Lefert P, Takano Y (2006) Nonhost resistance in Arabidopsis-Colletotrichum interactions acts at the cell periphery and requires actin filament function. Mol Plant Microbe Interact 19:270–279

    Article  PubMed  CAS  Google Scholar 

  • Stein M, Dittgen J, Sánchez-Rodríguez C, Hou BH, Molina A, Schulze-Lefert P, Lipka V, Somerville S (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18:731–746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomma BP, Cammue BP, Thevissen K (2002) Plant defensins. Planta 216:193–202

    Article  PubMed  CAS  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants, H2O2 accumulation in papillae and hypersensitive response during barley-powdery mildew interaction. Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  • Wan J, Zhang XC, Neece D, Ramonell KM, Clough S, Kim SY, Stacey MG, Stacey G (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20:471–481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Watanabe S, Shimada TL, Hiruma K, Takano Y (2013) Pathogen infection trial increases the secretion of proteins localized in the endoplasmic reticulum body of Arabidopsis. Plant Physiol 163:659–664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yun HP, Kang BG, Kwon C (2016) Arabidopsis immune secretory pathways to powdery mildew fungi. Plant Signal Behav 11:10 e1226456

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JR, Normanly J, Chory J, Celenza JL (2002) Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev 16:3100–3112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou N, Tootle TL, Glazebrook J (1999) Arabidopsis PAD3, a gene required for camalexin biosynthesis, encodes a putative cytochrome P450 monooxygenase. Plant Cell 11:2419–2428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants-in-Aid for Scientific Research (KAKENHI) (15H05780, 18H02204 and 18H04780), by grants from the Project of the NARO Bio-oriented Technology Research Advancement Institution (research program on development of innovative technology), and by the Asahi Glass Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Takano.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosaka, A., Takano, Y. Nonhost resistance of Arabidopsis thaliana against Colletotrichum species. J Gen Plant Pathol 84, 305–311 (2018). https://doi.org/10.1007/s10327-018-0799-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-018-0799-y

Keywords

Navigation