Skip to main content
Log in

Detection of cabbage yellows fungus Fusarium oxysporum f. sp. conglutinans in soil by PCR and real-time PCR

  • Technique
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

For the specific detection of Fusarium oxysporum f. sp. conglutinans (Foc), we designed a primer set for PCR and a primer–probe set for real-time PCR based on its endopolygalacturonase gene sequence. Using the primer set, we could distinguish Foc from other pathogenic forms and nonpathogenic isolates of F. oxysporum. Moreover, we detected the fungus by real-time PCR using DNA isolated from soil. Sensitivity of real-time PCR was improved 10- to 10,000-fold by adding bovine serum albumin or by performing pre-PCR. Our method can detect Foc in the soil at a density that causes only slight yellows symptom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arie T (2010) Phylogeny and phytopathogenicity mechanisms of soilborne Fusarium oxysporum. J Gen Plant Pathol 76:403–405

    Article  Google Scholar 

  • Arie T, Gouthu S, Shimazaki S, Kamakura T, Kimura M, Inoue M, Takio K, Ozaki A, Yoneyama K, Yamaguchi I (1998) Immunological detection of endopolygalacturonase secretion by Fusarium oxyspoyum in plant tissue and sequencing of its encoding gene. Ann Phytopathol Soc Jpn 64:7–15

    Article  CAS  Google Scholar 

  • Armstrong GM, Armstrong JK (1981) Formae speciales and races of Fusarium oxysporum causing wilt diseases. In: Nelson PE, Toussoun TA, Cook RJ (eds) Fusarium: diseases, biology, and taxonomy. Pennsylvania State University Press, University Park, pp 391–399

    Google Scholar 

  • Blank LM (1937) Fusarium resistance in Wisconsin all seasons cabbage. J Agr Res 55:497–510

    Google Scholar 

  • Couteaudier Y, Alabouvette C (1990) Survival and inoculum potential of conidia and chlamydospores of Fusarium oxysporum f. sp. lini in soil. Can J Microbiol 36:551–556

    Article  CAS  PubMed  Google Scholar 

  • Fraser-Smith S, Czislowski E, Meldrum RA, Zander M, O’Neill W, Balali GR, Aitken EAB (2014) Sequence variation in the putative effector gene SIX8 facilitates molecular differentiation of Fusarium oxysporum f. sp. cubense. Plant Pathol 63:104–1052

    Article  Google Scholar 

  • Hirano Y, Arie T (2006) PCR-based differentiation of Fusarium oxysporum ff. sp. lycopersici and radicis-lycopersici and races of F. oxysporum f. sp. lycopersici. J Gen Plant Pathol 72:273–283

    Article  CAS  Google Scholar 

  • Houterman PM, Speijer D, Dekker HL, Koster CGD, Cornelissen BJC, Rep M (2007) The mixed xylem sap proteome of Fusarium oxysporum-infected tomato plants. Mol Plant Pathol 8:215–221

    Article  CAS  PubMed  Google Scholar 

  • Inami K, Yoshioka C, Hirano Y, Kawabe M, Tsushima S, Teraoka T, Arie T (2010) Real-time PCR for differential determination of the tomato wilt fungus, Fusarium oxysporum f. sp. lycopersici, and its races. J Gen Plant Pathol 76:116–121

    Article  CAS  Google Scholar 

  • Inami K, Yoshioka-Akiyama C, Morita Y, Yamasaki M, Teraoka T, Arie T (2012) A genetic mechanism for emergence of races in Fusarium oxysporum f. sp. lycopersici: inactivation of avirulence gene AVR1 by transposon insertion. PLoS One 7(8):e44101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashiwa T, Inami K, Fujinaga M, Ogiso H, Yoshida T, Teraoka T, Arie T (2013) An avirulence gene homologue in the tomato wilt fungus Fusarium oxysporum f. sp. lycopersici race 1 functions as a virulence gene in the cabbage yellows fungus F. oxysporum f. sp. conglutinans. J Gen Plant Pathol 79:412–421

    Article  CAS  Google Scholar 

  • Kashiwa T, Kozaki T, Ishii K, Teraoka T, Komatsu K, Arie T (2015) Structural analysis of small chromosome containing SIX4 in Fusarium oxysporum f. spp. conglutinans and lycopersici (Abstract in Japanese). Jpn J Phytopathol 81:221

    Google Scholar 

  • Kashiwa T, Suzuki S, Sato A, Akai K, Komatsu K, Teraoka T, Arie T (2016) A new biotype of Fusarium oxysporum f. sp. lycopersici race 2 emerged by a transposon-driven mutation of avirulence gene AVR1. FEMS Microbiol Lett 363:fnw132

    Article  PubMed  Google Scholar 

  • Kawabe M, Kobayashi Y, Okada G, Yamaguchi I, Teraoka T, Arie T (2005) Three evolutionary lineages of tomato wilt pathogen, Fusarium oxysporum f. sp. lycopersici, based on sequences of IGS, MAT1, and pg1, are each composed of isolates of a single mating type and a single or closely related vegetative compatibility group. J Gen Plant Pathol 71:263–272

    Article  CAS  Google Scholar 

  • Kreader CA (1996) Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl Environ Microbiol 62:1102–1106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lievens B, Houterman PM, Rep M (2009) Effector gene screening allows unambiguous identification of Fusarium oxysporum f. sp. lycopersici races and discrimination from other formae speciales. FEMS Microbiol Lett 300:201–215

    Article  CAS  PubMed  Google Scholar 

  • Morimoto S, Hoshino YT (2008) Methods for analysis of soil communities by PCR-DGGE (1): bacterial and fungal communities (in Japanese). Soil Microorg 62:63–68

    Google Scholar 

  • Peever TL, Ibañez A, Akimitsu K, Timmer LW (2002) Worldwide phylogeography of the citrus brown spot pathogen, Alternaria alternata. Phytopathology 92:794–802

    Article  CAS  PubMed  Google Scholar 

  • Pietro AD, Roncero MIG (1998) Cloning, expression, and role in pathogenicity of pg1 encoding the major extracellular endopolygalacturonase of the vascular wilt pathogen Fusarium oxysporum. Mol Plant Microbe Interact 11:91–98

    Article  PubMed  Google Scholar 

  • Saitoh K, Togashi K, Arie T, Teraoka T (2006) A simple method for a mini-preparation of fungal DNA. J Gen Plant Pathol 72:348–350

    Article  CAS  Google Scholar 

  • Schrader C, Schielke A, Ellerbroek L, Johne R (2012) PCR inhibitors—occurrence, properties and removal. J Appl Microbiol 113:1014–1026

    Article  CAS  PubMed  Google Scholar 

  • Shoji S, Dahlgren R, Nanzyo M (1993) Geographic distribution of volcanic ash soils. In: Shoji S, Nanzyo M, Dahlgren R (eds) Volcanic ash soil. Elsevier, Amsterdam, pp 3–4

    Google Scholar 

  • Takahashi T, Nakayama T (2006) Novel technique of quantitative nested real-time PCR assay for Mycobacterium tuberculosis DNA. J Clin Microbiol 44:1029–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thatcher LF, Gardiner DM, Kazan K, Manners JM (2012) A highly conserved effector in Fusarium oxysporum is required for full virulence on Arabidopsis. Mol Plant Microbe Interact 25:180–190

    Article  CAS  PubMed  Google Scholar 

  • Walker JC (1930) Inheritance of Fusarium resistance in cabbage. J Agr Res 40:721–745

    Google Scholar 

Download references

Acknowledgments

We thank Dr. M. Fujinaga (Nagano Vegetable and Ornamental Crops Experiment Station), Mr. H. Ogiso (Saku Branch, Nagano Vegetable and Ornamental Crops Experiment Station) and Dr. M. Shimosaka (Shinshu University) for providing fungal isolates. This study was partly supported by the eDNA Project (Development of Soil Diversity Analysis System with Environmental DNA) of the Ministry of Agriculture, Forestry, and Fisheries (MAFF), and Grants-in-Aid from The Japan Society for the Promotion of Sciences (JSPS) for TA and TK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsutomu Arie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10327_2016_668_MOESM1_ESM.tiff

Phylogenic tree of representative Fusarium oxysporum isolates. Neighbor-joining (NJ) tree based on the pg1 sequence from 23 F. oxysporum isolates. Phylogenic analysis was done as in our previous study (Kashiwa et al. 2013). Numbers on nodes represent bootstrap values estimated from 1000 replications of the data set. The bar indicates a phylogenetic distance of 0.5%. All 8 isolates of f. sp. conglutinans formed one distinctive cluster. Supplementary material 1 (TIFF 14203 kb)

10327_2016_668_MOESM2_ESM.tiff

Primers and probe on pg1 sequence. Alignment of pg1 sequence from 10 F. oxysporum isolates. 1, f. sp. conglutinans Cong:1-1; 2, f. sp. lycopersici race 1 MAFF 305121; 3, f. sp. lycopersici race 2 JCM 12575; 4, f. sp. lycopersici race 3 Chz1-A; 5, f. sp. niveum MAFF 305608; 6, f. sp. cucumerinum Rif-1; 7, f. sp. raphani MAFF 240328; 8, f. sp. radicis-lycopersici MAFF 103044; 9, f. sp. melonis NRRL 26406; 10, f. sp. melongenae MAFF 103051. Primer sets PG1congF/PG1congR (orange) were designed for PCR. Primer–probe set Cong_PG1_F/Cong_PG1_R/Cong_PG1_Probe (blue) were designed for real-time PCR. Primers PG1congF and Cong_PG1_R were used in the pre-PCR step. Red nucleotides represent single nucleotide polymorphisms unique to the sequence of f. sp. conglutinans. Supplementary material 2 (TIFF 18953 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashiwa, T., Inami, K., Teraoka, T. et al. Detection of cabbage yellows fungus Fusarium oxysporum f. sp. conglutinans in soil by PCR and real-time PCR. J Gen Plant Pathol 82, 240–247 (2016). https://doi.org/10.1007/s10327-016-0668-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-016-0668-5

Keywords

Navigation