Journal of General Plant Pathology

, Volume 80, Issue 3, pp 202–209 | Cite as

Classification and parasitic specialization of blast fungi

  • Yukio Tosa
  • Izumi Chuma


Pyricularia oryzae (Magnaporthe oryzae), a causal agent of blast diseases on staple gramineous crops, is a model organism listed as the most important economically and scientifically of the top 10 fungal pathogens by fungal molecular pathologists. Although we are now in an era of genome-enabled analysis, we need to understand the history of the pathogen’s taxonomy, classification, and parasitic specialization in addition to recent research advances. In this review, we focus on these rather fundamental topics. First, the history of classification, including the discovery of its sexual stage and designation, is overviewed. Based on recent results of phylogenetic analysis of Magnaporthaceae isolates, blast fungi are suggested to constitute a robust population that is not congeneric with Magnaporthe salvinii, the type species of Magnaporthe. Second, genetic mechanisms involved in its parasitic specialization into host-specific subgroups and races are outlined. Implications of recent molecular data for resistance breeding are discussed.


Avirulence gene Gene-for-gene Magnaporthaceae Magnaporthe oryzae Pyricularia oryzae 



We thank Dr. T. Aoki, National Institute of Agrobiological Sciences, Japan, for valuable comments on fungal taxonomy and Dr. M. Kusaba, Saga University, and Mr. N. Murata, Kobe University, for useful suggestions on phylogenetic analyses, and Dr. Y. Inoue, Kobe University, for drawing Fig. 2.


  1. Barr ME (1977) Magnaporthe, Telimenella, and Hyponectria (Physosporellaceae). Mycologia 69:952–966CrossRefGoogle Scholar
  2. Böhnert HU, Fudal I, Dioh W, Tharreau D, Notteghem J-L, Lebrun M-H (2004) A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell 16:2499–2513PubMedCentralPubMedCrossRefGoogle Scholar
  3. Chuma I, Isobe C, Hotta Y, Ibaragi K, Futamata N, Kusaba M, Yoshida K, Terauchi R, Fujita Y, Nakayashiki H, Valent B, Tosa Y (2011) Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathogens :e1002147Google Scholar
  4. Couch BC, Kohn LM (2002) A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia 94:683–693PubMedCrossRefGoogle Scholar
  5. Couch BC, Fudal I, Lebrun M-H, Tharreau D, Valent B, van Kim P, Nottéghem J-L, Kohn LM (2005) Origins of host-specific populations of the blast pathogen Magnaporthe oryzae in crop domestication with subsequent expansion of pandemic clones on rice and weeds of rice. Genetics 170:613–630PubMedCentralPubMedCrossRefGoogle Scholar
  6. Dai Y, Jia Y, Correll J, Wang X, Wang Y (2010) Diversification and evolution of the avirulence gene AVR-Pita1 in field isolates of Magnaporthe oryzae. Fungal Genet Biol 47:973–980PubMedCrossRefGoogle Scholar
  7. Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu J-R, Pan H, Read ND, Lee Y-H, Carbone I, Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun M-H, Bohnert H, Coughlan S, Butler J, Calvo S, Ma L-J, Nicol R, Purcell S, Nusbaum C, Galagan JE, Birren BW (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986PubMedCrossRefGoogle Scholar
  8. Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Pietro AD, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430PubMedCrossRefGoogle Scholar
  9. Eto Y, Ikeda K, Chuma I, Kataoka T, Kuroda S, Kikuchi N, Don LD, Kusaba M, Nakayashiki H, Tosa Y, Mayama S (2001) Comparative analyses of the distribution of various transposable elements in Pyricularia and their activity during and after the sexual cycle. Mol Gen Genet 264:565–577PubMedCrossRefGoogle Scholar
  10. Farman ML (2002) Pyricularia grisea isolates causing gray leaf spot on perennial ryegrass (Lolium perenne) in the United States: relationship to P. grisea isolates from other host plants. Phytopathology 92:245–254PubMedCrossRefGoogle Scholar
  11. Fetch T Jr, Johnston PA, Pickering R (2009) Chromosomal location and inheritance of stem rust resistance transferred from Hordeum bulbosum into cultivated barley (H. vulgare). Phytopathology 99:339–343PubMedCrossRefGoogle Scholar
  12. Hawksworth DL (2011) A new dawn for the naming of fungi: impacts of decisions made in Melbourne in July 2011 on the future publication and regulation of fungal names. IMA Fungus 2:155–162PubMedCentralPubMedCrossRefGoogle Scholar
  13. Hebert TT (1971) The perfect stage of Pyricularia grisea. Phytopathology 61:83–87CrossRefGoogle Scholar
  14. Hirata K, Kusaba M, Chuma I, Osue J, Nakayashiki H, Mayama S, Tosa Y (2007) Speciation in Pyricularia inferred from multilocus phylogenetic analysis. Mycol Res 111:799–808PubMedCrossRefGoogle Scholar
  15. Kang S, Sweigard JA, Valent B (1995) The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Mol Plant Microb Interact 8:939–948CrossRefGoogle Scholar
  16. Kang S, Lebrun MH, Farrall L, Valent B (2001) Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene. Mol Plant Microb Interact 14:671–674CrossRefGoogle Scholar
  17. Kato H (1978) Biological and genetic aspects in the perfect state of rice blast fungus, Pyricularia oryzae Cav. and its allies. Gamma Field Symposia 17:1–22Google Scholar
  18. Kato H, Yamaguchi T, Nishihara N (1976) The perfect state of Pyricularia oryzae Cav. in culture. Ann Phytopath Soc Jpn 42:507–510CrossRefGoogle Scholar
  19. Kato H, Yamamoto M, Yamaguchi-Ozaki T, Kadouchi H, Iwamoto Y, Nakayashiki H, Tosa Y, Mayama S, Mori N (2000) Pathogenicity, mating ability and DNA restriction fragment length polymorphisms of Pyricularia populations isolated from Gramineae, Bambusideae and Zingiberaceae plants. J Gen Plant Pathol 66:30–47CrossRefGoogle Scholar
  20. Kiyosawa S (1982) Genetics and epidemiological modeling of breakdown of plant disease resistance. Ann Rev Phytopathol 20:93–117CrossRefGoogle Scholar
  21. Landschoot PJ, Hoyland BF (1992) Gray leaf spot of perennial ryegrass turf in Pennsylvania. Plant Dis 76:1280–1282CrossRefGoogle Scholar
  22. Li W, Wang B, Wu J, Lu G, Hu Y, Zhang X, Zhang Z, Zhao Q, Feng Q, Zhang H, Wang Z, Wang G, Han B, Wang Z, Zhou B (2009) The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Mol Plant Microb Interact 22:411–420CrossRefGoogle Scholar
  23. Luo J, Zhang N (2013) Magnaporthiopsis, a new genus in Magnaporthaceae (Ascomycota). Mycologia 105:1019–1029PubMedCrossRefGoogle Scholar
  24. Miki S, Matsui K, Kito H, Otsuka K, Ashizawa T, Yasuda N, Fukiya S, Sato J, Hirayae K, Fujita Y, Nakajima T, Tomita F, Sone T (2009) Molecular cloning and characterization of the AVR-Pia locus from a Japanese field isolate of Magnaporthe oryzae. Mol Plant Pathol 10:361–374PubMedCrossRefGoogle Scholar
  25. Murakami J, Tosa Y, Kataoka T, Tomita R, Kawasaki J, Chuma I, Sesumi Y, Kusaba M, Nakayashiki H, Mayama S (2000) Analysis of host species specificity of Magnaporthe grisea toward wheat using a genetic cross between isolates from wheat and foxtail millet. Phytopathology 90:1060–1067PubMedCrossRefGoogle Scholar
  26. Murata N, Aoki T, Kusaba M, Tosa Y, Chuma I (2014) Various species of Pyricularia constitute a robust clade distinct from Magnaporthe salvinii and its relatives in Magnaporthaceae. J Gen Plant Pathol 80:66–72CrossRefGoogle Scholar
  27. Oh HS, Tosa Y, Takabayashi N, Nakagawa S, Tomita R, Don LD, Kusaba M, Nakayashiki H, Mayama S (2002) Characterization of an Avena isolate of Magnaporthe grisea and identification of a locus conditioning its specificity on oat. Can J Bot 80:1088–1095CrossRefGoogle Scholar
  28. Orbach MJ, Farrall L, Sweigard JA, Chumley FG, Valent B (2000) A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell 12:2019–2032PubMedCentralPubMedCrossRefGoogle Scholar
  29. Pratt K (2012) UK researchers find important new disease. UKAgNews, 24 April 2012. University of Kentucky, College of Agriculture, Food and Environment, Lexington, KY. Accessed 2 Mar 2014
  30. Rossman AY, Howard RJ, Valent B (1990) Pyricularia grisea, the correct name for the rice blast disease fungus. Mycologia 82:509–512CrossRefGoogle Scholar
  31. Sanchez E Jr, Asano K, Sone T (2011) Characterization of Inago1 and Inago2 retrotransposons in Magnaporthe oryzae. J Gen Plant Pathol 77:239–242CrossRefGoogle Scholar
  32. Silué D, Notteghem JL, Tharreau D (1992) Evidence of a gene-for-gene relationship in the Oryza sativaMagnaporthe grisea pathosystem. Phytopathology 82:577–580CrossRefGoogle Scholar
  33. Sweigard JA, Carroll AM, Kang S, Farrall L, Chumley FG, Valent B (1995) Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell 7:1221–1233PubMedCentralPubMedCrossRefGoogle Scholar
  34. Takabayashi N, Tosa Y, Oh HS, Mayama S (2002) A gene-for-gene relationship underlying the species-specific parasitism of Avena/Triticum isolates of Magnaporthe grisea on wheat cultivars. Phytopathology 92:1182–1188PubMedCrossRefGoogle Scholar
  35. Takahashi M, Ashizawa T, Hirayae K, Moriwaki J, Sone T, Sonoda R, Noguchi MT, Nagashima S, Ishikawa K, Arai M (2010) One of two major paralogs of AVR-Pita1 is functional in Japanese rice blast isolates. Phytopathology 100:612–618PubMedCrossRefGoogle Scholar
  36. Tosa Y, Chuma I (2011) Genetic analyses of “host species specificity” of Magnaporthe oryzae/grisea. In: Wolpert T, Shiraishi T, Collmer A, Akimitsu K, Glazebrook J (eds) Genome-enabled analysis of plant-pathogen interactions. APS Press, St. Paul, pp 93–99Google Scholar
  37. Tosa Y, Nakayashiki H, Hyodo H, Mayama S, Kato H, Leong SA (1995) Distribution of retrotransposon MAGGY in Pyricularia species. Ann Phytopathol Soc Jpn 61:549–554CrossRefGoogle Scholar
  38. Tosa Y, Hirata K, Tamba H, Nakagawa S, Chuma I, Isobe C, Osue J, Urashima AS, Don LD, Kusaba M, Nakayashiki H, Tanaka A, Tani T, Mori N, Mayama S (2004) Genetic constitution and pathogenicity of Lolium isolates of Magnaporthe oryzae in comparison with host species-specific pathotypes of the blast fungus. Phytopathology 94:454–462PubMedCrossRefGoogle Scholar
  39. Tosa Y, Tamba H, Tanaka K, Mayama S (2006) Genetic analysis of host species specificity of Magnaporthe oryzae isolates from rice and wheat. Phytopathology 96:480–484PubMedCrossRefGoogle Scholar
  40. Tsuda M, Ueyama A (1982) A comment from a taxonomical viewpoint on the perfect state of the blast fungus (abstract in Japanese). Ann Phytopath Soc Japan 48:340CrossRefGoogle Scholar
  41. Ueyama A, Tsuda M (1975) Formation of the perfect state in culture of Pyricularia sp. from some graminaceous plants (preliminary report). Trans Mycol Soc Jpn 16:420–422Google Scholar
  42. Urashima AS, Igarashi S, Kato H (1993) Host range, mating type, and fertility of Pyricularia grisea from wheat in Brazil. Plant Dis 77:1211–1216CrossRefGoogle Scholar
  43. Valent B, Chumley FG (1991) Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea. Ann Rev Phytopathol 29:443–467CrossRefGoogle Scholar
  44. Wingfield MJ, De Beer ZW, Slippers B, Wingfield BD, Groenewald JZ, Lombard L, Crous PW (2012) One fungus, one name promotes progressive plant pathology. Mol Plant Pathol 13:604–613PubMedCrossRefGoogle Scholar
  45. Yaegashi H (1978) Inheritance of pathogenicity in crosses of Pyricularia isolates from weeping lovegrass and finger millet. Ann Phytopath Soc Jpn 44:626–632CrossRefGoogle Scholar
  46. Yaegashi H (1981) Studies on the perfect stage of Pyricularia species (in Japanese). Bull Tohoku Natl Agric Exp Stn 63:49–125Google Scholar
  47. Yaegashi H, Nishihara N (1976) Production of the perfect stage in Pyricularia from cereals and grasses. Ann Phytopath Soc Japan 42:511–515CrossRefGoogle Scholar
  48. Yaegashi H, Udagawa S (1978) The taxonomical identity of the perfect state of Pyricularia grisea and its allies. Can J Bot 56:180–183CrossRefGoogle Scholar
  49. Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Yoshida K, Tosa Y, Chuma I, Takano Y, Win J, Kamoun S, Terauchi R (2009) Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell 21:1573–1591PubMedCentralPubMedCrossRefGoogle Scholar
  50. Zhang N, Zhao S, Shen Q (2011) A six-gene phylogeny reveals the evolution of mode of infection in the rice blast fungus and allied species. Mycologia 103:1267–1276PubMedCrossRefGoogle Scholar
  51. Zhou E, Jia Y, Singh P, Correll JC, Lee FN (2007) Instability of the Magnaporthe oryzae avirulence gene AVR-Pita alters virulence. Fungal Genet Biol 44:1024–1034PubMedCrossRefGoogle Scholar

Copyright information

© The Phytopathological Society of Japan and Springer Japan 2014

Authors and Affiliations

  1. 1.Graduate School of Agricultural SciencesKobe UniversityKobeJapan

Personalised recommendations