Mechanism and kinetics of adsorption and removal of heavy metals from wastewater using nanomaterials

Abstract

At high environmental concentration, some heavy metals display adverse health effects on living organisms and ecosystems. They bioaccumulate in the food chain and end up in wastewater, calling for advanced techniques of remediation. Here, we review recently developed nanomaterials used to remove heavy metals in wastewater, with focus on synthesis, removal mechanisms and kinetics. Nanomaterial-based adsorbents include zero-valent, carbon-based nanomaterials and nanocomposites. Nanomaterial synthesis is done by co-precipitation, sol–gel, spinning, chemical vapour deposition, pyrolysis and sputtering. Removal mechanisms include chemical precipitation, adsorption, ion exchange, coagulation and membrane filtration. We discuss factors controlling the adsorption processes, such as pH, temperature, contact period and dosage.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

modified from Neyaz et al. 2013)

Fig. 3

modified from Yang et al. 2019)

Fig. 4
Fig. 5

References

  1. Abdel Salam M, Gabal MA, Obaid AY (2012) Preparation and characterization of magnetic multi-walled carbon nanotubes/ferrite nanocomposite and its application for the removal of aniline from aqueous solution. Synth Met 161:2651–2658. https://doi.org/10.1016/j.synthmet.2011.09.038

    CAS  Article  Google Scholar 

  2. Abdollahi B, Shakeri A, Aber S, Sharifi Bonab M (2018) Simultaneous photodegradation of acid orange 7 and removal of Pb2+ from polluted water using reusable clinoptilolite–TiO2 nanocomposite. Res Chem Intermed 44:1505–1521. https://doi.org/10.1007/s11164-017-3181-3

    CAS  Article  Google Scholar 

  3. Adeli M, Yamini Y, Faraji M (2017) Removal of copper, nickel and zinc by sodium dodecyl sulphate coated magnetite nanoparticles from water and wastewater samples. Arab J Chem 10:S514–S521. https://doi.org/10.1016/j.arabjc.2012.10.012

    CAS  Article  Google Scholar 

  4. Afshar A, Abolfazl S, Sadjadi S et al (2016) Polypyrrole-polyaniline/Fe3O4 magnetic nanocomposite for the removal of Pb(II) from aqueous solution. Korean J Chem Eng 33:669–677. https://doi.org/10.1007/s11814-015-0156-1

    CAS  Article  Google Scholar 

  5. Ahmad I, Siddiqui WA, Qadir S, Ahmad T (2018) Synthesis and characterization of molecular imprinted nanomaterials for the removal of heavy metals from water. J Mater Res Technol 7:270–282. https://doi.org/10.1016/j.jmrt.2017.04.010

    CAS  Article  Google Scholar 

  6. Ahmed M, Elektorowicz M, Hasan SW (2019) GO, SiO2, and SnO2 nanomaterials as highly efficient adsorbents for Zn2+ from industrial wastewater-A second stage treatment to electrically enhanced membrane bioreactor. J Water Process Eng 31:100815. https://doi.org/10.1016/j.jwpe.2019.100815

    Article  Google Scholar 

  7. Akhil D, Lakshmi D, Kartik A et al (2021) Production, characterization, activation and environmental applications of engineered biochar: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01167-7

    Article  Google Scholar 

  8. Anastopoulos I, Robalds A, Tran HN et al (2019) Removal of heavy metals by leaves-derived biosorbents. Environ Chem Lett 17:755–766. https://doi.org/10.1007/s10311-018-00829-x

    CAS  Article  Google Scholar 

  9. Almomani F, Bhosale R, Khraisheh M et al (2020) Heavy metal ions removal from industrial wastewater using magnetic nanoparticles (MNP). Appl Surf Sci 506:144924. https://doi.org/10.1016/j.apsusc.2019.144924

    CAS  Article  Google Scholar 

  10. Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Rev 4:37–59. https://doi.org/10.1002/cben.201600010

    Article  Google Scholar 

  11. Bagheri H, Fakhri H, Ghahremani R, et al (2020) Nanomaterial-based adsorbents for wastewater treatment. In: Smart nanocontainers. Elsevier, pp 467–485. https://doi.org/https://doi.org/10.1016/B978-0-12-816770-0.00028-9

  12. Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4:361–377. https://doi.org/10.1016/j.arabjc.2010.07.019

    CAS  Article  Google Scholar 

  13. Baranik A, Gagor A, Queralt I et al (2018) Ceria nanoparticles deposited on graphene nanosheets for adsorption of copper(II) and lead(II) ions and of anionic species of arsenic and selenium. Microchim Acta 185:1–9. https://doi.org/10.1007/s00604-018-2806-6

    CAS  Article  Google Scholar 

  14. Bashir A, Malik LA, Ahad S et al (2019) Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ Chem Lett 17:729–754. https://doi.org/10.1007/s10311-018-00828-y

    CAS  Article  Google Scholar 

  15. Bhanjana G, Dilbaghi N, Kim KH, Kumar S (2017) Carbon nanotubes as sorbent material for removal of cadmium. J Mol Liq 242:966–970. https://doi.org/10.1016/j.molliq.2017.07.072

    CAS  Article  Google Scholar 

  16. Bhateria R, Singh R (2019) A review on nanotechnological application of magnetic iron oxides for heavy metal removal. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2019.100845

    Article  Google Scholar 

  17. Burakova IV, Neskoromnaya EA, Babkin AV (2018) Adsorption of heavy metals from aqueous media on graphene-based nanomaterials. aip.scitation.org 2041. https://doi.org/https://doi.org/10.1063/1.5079338

  18. Cai X, Gao Y, Sun Q et al (2014) Removal of co-contaminants Cu(II) and nitrate from aqueous solution using kaolin-Fe/Ni nanoparticles. Chem Eng J 244:19–26. https://doi.org/10.1016/j.cej.2014.01.040

    CAS  Article  Google Scholar 

  19. Cao CY, Qu J, Wei F et al (2012) Superb adsorption capacity and mechanism of flowerlike magnesium oxide nanostructures for lead and cadmium ions. ACS Appl Mater Interfaces 4:4283–4287. https://doi.org/10.1021/am300972z

    CAS  Article  Google Scholar 

  20. Cegłowski M, Gierczyk B, Frankowski M, Popenda Ł (2018) A new low-cost polymeric adsorbents with polyamine chelating groups for efficient removal of heavy metal ions from water solutions. React Funct Polym 131:64–74. https://doi.org/10.1016/j.reactfunctpolym.2018.07.006

    CAS  Article  Google Scholar 

  21. Chiron N, Guilet R, Deydier E (2003) Adsorption of Cu(II) and Pb(II) onto a grafted silica: isotherms and kinetic models. Water Res 37:3079–3086. https://doi.org/10.1016/S0043-1354(03)00156-8

    CAS  Article  Google Scholar 

  22. Da’na E, Sayari A (2011) Adsorption of copper on amine-functionalized SBA-15 prepared by co-condensation: equilibrium properties. Chem Eng J 166:445–453. https://doi.org/10.1016/j.cej.2010.11.016

    CAS  Article  Google Scholar 

  23. Danesh N, Hosseini M, Ghorbani M, Marjani A (2016) Fabrication, characterization and physical properties of a novel magnetite graphene oxide/Lauric acid nanoparticles modified by ethylenediaminetetraacetic acid and its applications as an adsorbent for the removal of Pb(II) ions. Synth Met 220:508–523. https://doi.org/10.1016/j.synthmet.2016.07.025

    CAS  Article  Google Scholar 

  24. Deravanesiyan M, Beheshti M, Malekpour A (2015) The removal of Cr(III) and Co(II) ions from aqueous solution by two mechanisms using a new sorbent (alumina nanoparticles immobilized zeolite)—equilibrium, kinetic and thermodynamic studies. J Mol Liq 209:246–257. https://doi.org/10.1016/j.molliq.2015.05.038

    CAS  Article  Google Scholar 

  25. Divya K, Jisha MS (2018) Chitosan nanoparticles preparation and applications. Environ Chem Lett 16:101–112. https://doi.org/10.1007/s10311-017-0670-y

    CAS  Article  Google Scholar 

  26. Duan C, Ma T, Wang J, Zhou Y (2020) Removal of heavy metals from aqueous solution using carbon-based adsorbents: a review. J Water Process Eng 37:101339. https://doi.org/10.1016/j.jwpe.2020.101339

    Article  Google Scholar 

  27. Dubey R, Bajpai J, Bajpai AK (2016) Chitosan-alginate nanoparticles (CANPs) as potential nanosorbent for removal of Hg(II) ions. Environ Nanotechnol Monit Manag 6:32–44. https://doi.org/10.1016/j.enmm.2016.06.008

    Article  Google Scholar 

  28. Dutta D, Thiyagarajan S, Bahadur D (2016) SnO2 quantum dots decorated reduced graphene oxide nanocomposites for efficient water remediation. Chem Eng J 297:55–65. https://doi.org/10.1016/j.cej.2016.03.130

    CAS  Article  Google Scholar 

  29. Efome JE, Rana D, Matsuura T, Lan CQ (2019) Effects of operating parameters and coexisting ions on the efficiency of heavy metal ions removal by nano-fibrous metal-organic framework membrane filtration process. Sci Total Environ 674:355–362. https://doi.org/10.1016/j.scitotenv.2019.04.187

    CAS  Article  Google Scholar 

  30. El-Dib FI, Mohamed DE, El-Shamy OAA, Mishrif MR (2020) Study the adsorption properties of magnetite nanoparticles in the presence of different synthesized surfactants for heavy metal ions removal. Egypt J Pet 29:1–7. https://doi.org/10.1016/j.ejpe.2019.08.004

    Article  Google Scholar 

  31. Esmaeili A, Khoshnevisan N (2016) Optimization of process parameters for removal of heavy metals by biomass of Cu and Co-doped alginate-coated chitosan nanoparticles. Bioresour Technol 218:650–658. https://doi.org/10.1016/j.biortech.2016.07.005

    CAS  Article  Google Scholar 

  32. Esmat M, Farghali AA, Khedr MH, El-Sherbiny IM (2017) Alginate-based nanocomposites for efficient removal of heavy metal ions. Int J Biol Macromol 102:272–283. https://doi.org/10.1016/j.ijbiomac.2017.04.021

    CAS  Article  Google Scholar 

  33. Fan H, Ma X, Zhou S et al (2019) Highly efficient removal of heavy metal ions by carboxymethyl cellulose-immobilized Fe3O4 nanoparticles prepared via high-gravity technology. Carbohydr Polym 213:39–49. https://doi.org/10.1016/j.carbpol.2019.02.067

    CAS  Article  Google Scholar 

  34. Feng Y, Gong JL, Zeng GM et al (2010) Adsorption of Cd(II) and Zn(II) from aqueous solutions using magnetic hydroxyapatite nanoparticles as adsorbents. Chem Eng J 162:487–494. https://doi.org/10.1016/j.cej.2010.05.049

    CAS  Article  Google Scholar 

  35. Flora SJS, Mittal M, Mehta A (2008) Heavy metal induced oxidative stress and its possible reversal by chelation therapy. Indian J Med Res 128(4):501 (PMID: 19106443)

    CAS  Google Scholar 

  36. Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205. https://doi.org/10.1016/j.jhazmat.2013.12.062

    CAS  Article  Google Scholar 

  37. Fu F, Ma J, Xie L et al (2013) Chromium removal using resin supported nanoscale zero-valent iron. J Environ Manag. https://doi.org/10.1016/j.jenvman.2013.06.044

    Article  Google Scholar 

  38. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92(3):407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

    CAS  Article  Google Scholar 

  39. Fu W, Huang Z (2018) Magnetic dithiocarbamate functionalized reduced graphene oxide for the removal of Cu(II), Cd(II), Pb(II), and Hg(II) ions from aqueous solution: Synthesis, adsorption, and regeneration. Chemosphere 209:449–456. https://doi.org/10.1016/j.chemosphere.2018.06.087

    CAS  Article  Google Scholar 

  40. Gao J, He Y, Zhao X et al (2016) Single step synthesis of amine-functionalized mesoporous magnetite nanoparticles and their application for copper ions removal from aqueous solution. J Colloid Interface Sci 481:220–228. https://doi.org/10.1016/j.jcis.2016.07.057

    CAS  Article  Google Scholar 

  41. Garg UK, Kaur MP, Garg VK, Sud D (2007) Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2006.06.056

    Article  Google Scholar 

  42. Ge F, Li MM, Ye H, Zhao BX (2012) Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J Hazard Mater 211–212:366–372. https://doi.org/10.1016/j.jhazmat.2011.12.013

    CAS  Article  Google Scholar 

  43. Ge L, Wang W, Peng Z et al (2018) Facile fabrication of Fe@MgO magnetic nanocomposites for efficient removal of heavy metal ion and dye from water. Powder Technol 326:393–401. https://doi.org/10.1016/j.powtec.2017.12.003

    CAS  Article  Google Scholar 

  44. Ghaemi N (2016) A new approach to copper ion removal from water by polymeric nanocomposite membrane embedded with γ-alumina nanoparticles. Appl Surf Sci 364:221–228. https://doi.org/10.1016/j.apsusc.2015.12.109

    CAS  Article  Google Scholar 

  45. Ghaemi N, Madaeni SS, Daraei P et al (2015) Polyethersulfone membrane enhanced with iron oxide nanoparticles for copper removal from water: application of new functionalized Fe3O4 nanoparticles. Chem Eng J 263:101–112. https://doi.org/10.1016/j.cej.2014.10.103

    CAS  Article  Google Scholar 

  46. Ghasemi E, Heydari A, Sillanpää M (2017) Superparamagnetic Fe3O4@EDTA nanoparticles as an efficient adsorbent for simultaneous removal of Ag(I), Hg(II), Mn(II), Zn(II), Pb(II) and Cd(II) from water and soil environmental samples. Microchem J 131:51–56. https://doi.org/10.1016/j.microc.2016.11.011

    CAS  Article  Google Scholar 

  47. Ghiloufi I, Khezami L, El Mir L (2015) Preparation and characterization of nanoporous resin for heavy metal removal from aqueous solution. J Water Supply Res Technol AQUA 64:316–325. https://doi.org/10.2166/aqua.2014.086

    Article  Google Scholar 

  48. Giraldo L, Erto A, Moreno-Piraján JC (2013) Magnetite nanoparticles for removal of heavy metals from aqueous solutions: synthesis and characterization. In: Adsorption, pp 465–474 https://doi.org/https://doi.org/10.1007/s10450-012-9468-1

  49. Girginova PI, Daniel-da-Silva AL, Lopes CB et al (2010) Silica coated magnetite particles for magnetic removal of Hg2+ from water. J Colloid Interface Sci 345:234–240. https://doi.org/10.1016/j.jcis.2010.01.087

    CAS  Article  Google Scholar 

  50. Goutam SP, Saxena G, Singh V et al (2018) Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem Eng J 336:386–396. https://doi.org/10.1016/j.cej.2017.12.029

    CAS  Article  Google Scholar 

  51. Gu S, Kang X, Wang L et al (2019) Clay mineral adsorbents for heavy metal removal from wastewater: a review. Environ Chem Lett 17:629–654. https://doi.org/10.1007/s10311-018-0813-9

    CAS  Article  Google Scholar 

  52. Gupta VK, Agarwal S, Saleh TA (2011) Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res 45:2207–2212. https://doi.org/10.1016/j.watres.2011.01.012

    CAS  Article  Google Scholar 

  53. Gupta VK, Chandra R, Tyagi I, Verma M (2016) Removal of hexavalent chromium ions using CuO nanoparticles for water purification applications. J Colloid Interface Sci 478:54–62. https://doi.org/10.1016/j.jcis.2016.05.064

    CAS  Article  Google Scholar 

  54. Hallaji H, Keshtkar AR, Moosavian MA (2015) A novel electrospun PVA/ZnO nanofiber adsorbent for U(VI), Cu(II) and Ni(II) removal from aqueous solution. J Taiwan Inst Chem Eng 46:109–118. https://doi.org/10.1016/j.jtice.2014.09.007

    CAS  Article  Google Scholar 

  55. Hasanzadeh R, Moghadam PN, Bahri-Laleh N, Sillanpää M (2017) Effective removal of toxic metal ions from aqueous solutions: 2-bifunctional magnetic nanocomposite base on novel reactive PGMA-MAn copolymer@Fe3O4 nanoparticles. J Colloid Interface Sci 490:727–746. https://doi.org/10.1016/j.jcis.2016.11.098

    CAS  Article  Google Scholar 

  56. Hasanzadeh R, Najafi Moghadam P, Samadi N (2013) Synthesis and application of modified poly (styrene-alt-maleic anhydride) networks as a nano chelating resin for uptake of heavy metal ions. Polym Adv Technol 24:34–41. https://doi.org/10.1002/pat.3046

    CAS  Article  Google Scholar 

  57. Hayati B, Maleki A, Najafi F et al (2017) Super high removal capacities of heavy metals (Pb2+ and Cu2+) using CNT dendrimer. J Hazard Mater 336:146–157. https://doi.org/10.1016/j.jhazmat.2017.02.059

    CAS  Article  Google Scholar 

  58. He Y, Luo L, Liang S et al (2018) Synthesis of mesoporous silica-calcium phosphate hybrid nanoparticles and their potential as efficient adsorbent for cadmium ions removal from aqueous solution. J Colloid Interface Sci 525:126–135. https://doi.org/10.1016/j.jcis.2018.04.037

    CAS  Article  Google Scholar 

  59. Hojamberdiev M, Daminova SS, Kadirova ZC et al (2018) Ligand-immobilized spent alumina catalyst for effective removal of heavy metal ions from model contaminated water. J Environ Chem Eng 6:4623–4633. https://doi.org/10.1016/j.jece.2018.06.070

    CAS  Article  Google Scholar 

  60. Huang P, Ye Z, Xie W et al (2013) Rapid magnetic removal of aqueous heavy metals and their relevant mechanisms using nanoscale zero valent iron (nZVI) particles. Water Res 47:4050–4058. https://doi.org/10.1016/j.watres.2013.01.054

    CAS  Article  Google Scholar 

  61. Huang Q, Liu Y, Cai T, Xia X (2019) Simultaneous removal of heavy metal ions and organic pollutant by BiOBr/Ti3C2 nanocomposite. J Photochem Photobiol A Chem 375:201–208. https://doi.org/10.1016/j.jphotochem.2019.02.026

    CAS  Article  Google Scholar 

  62. Huang SH, Chen DH (2009) Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J Hazard Mater 163:174–179. https://doi.org/10.1016/j.jhazmat.2008.06.075

    CAS  Article  Google Scholar 

  63. Iconaru SL, Guégan R, Popa CL et al (2016) Magnetite (Fe3O4) nanoparticles as adsorbents for As and Cu removal. Appl Clay Sci 134:128–135. https://doi.org/10.1016/j.clay.2016.08.019

    CAS  Article  Google Scholar 

  64. Islam MS, Choi WS, Nam B et al (2017) Needle-like iron oxide@CaCO3 adsorbents for ultrafast removal of anionic and cationic heavy metal ions. Chem Eng J 307:208–219. https://doi.org/10.1016/j.cej.2016.08.079

    CAS  Article  Google Scholar 

  65. Jan AT, Azam M, Siddiqui K, Ali A, Choi I, Haq QM (2015) Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. Int J Mol Sci 16(12):29592–29630. https://doi.org/10.3390/ijms161226183

    CAS  Article  Google Scholar 

  66. Jawed A, Saxena V, Pandey LM (2020) Engineered nanomaterials and their surface functionalization for the removal of heavy metals: a review. J Water Process Eng 33:101009. https://doi.org/10.1016/j.jwpe.2019.101009

    Article  Google Scholar 

  67. Kakavandi B, Kalantary RR, Jafari AJ et al (2015) Pb(II) Adsorption onto a magnetic composite of activated carbon and superparamagnetic Fe3O4 nanoparticles: experimental and modeling study. Clean: Soil, Air, Water 43:1157–1166. https://doi.org/10.1002/clen.201400568

    CAS  Article  Google Scholar 

  68. Kanel SR, Greneche JM, Choi H (2006) Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050. https://doi.org/10.1021/es0520924

    CAS  Article  Google Scholar 

  69. Karami H (2013) Heavy metal removal from water by magnetite nanorods. Chem Eng J 219:209–216. https://doi.org/10.1016/j.cej.2013.01.022

    CAS  Article  Google Scholar 

  70. Kharisov B, Dias H, Kharissova O et al (2014) Solubilization, dispersion and stabilization of magnetic nanoparticles in water and non-aqueous solvents: recent trends. RSC Adv 4:45354–45381. https://doi.org/10.1039/C4RA06902A

    CAS  Article  Google Scholar 

  71. Kim EJ, Lee CS, Chang YY, Chang YS (2013) Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems. ACS Appl Mater Interfaces 5:9628–9634. https://doi.org/10.1021/am402615m

    CAS  Article  Google Scholar 

  72. Kotsyuda SS, Tomina VV, Zub YL et al (2017) Bifunctional silica nanospheres with 3-aminopropyl and phenyl groups. synthesis approach and prospects of their applications. Appl Surf Sci 420:782–791. https://doi.org/10.1016/j.apsusc.2017.05.150

    CAS  Article  Google Scholar 

  73. Li J, Zhang S, Chen C et al (2012) Removal of Cu(II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles. ACS Publ 4:4991–5000. https://doi.org/10.1021/am301358b

    CAS  Article  Google Scholar 

  74. Li Y, He J, Zhang K et al (2019) Super rapid removal of copper, cadmium and lead ions from water by NTA-silica gel. RSC Adv 9:397–407. https://doi.org/10.1039/C8RA08638A

    CAS  Article  Google Scholar 

  75. Lisha KP, Anshup PT (2009) Towards a practical solution for removing inorganic mercury from drinking water using gold nanoparticles. Gold Bull 42:144–152. https://doi.org/10.1007/BF03214924

    CAS  Article  Google Scholar 

  76. Liu D, Zhu Y, Li Z et al (2013) Chitin nanofibrils for rapid and efficient removal of metal ions from water system. Carbohydr Polym 98:483–489. https://doi.org/10.1016/j.carbpol.2013.06.015

    CAS  Article  Google Scholar 

  77. Liu JF, Zhao ZS, Bin JG (2008) Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol 42:6949–6954. https://doi.org/10.1021/es800924c

    CAS  Article  Google Scholar 

  78. Liu X, Guan J, Lai G et al (2020a) Stimuli-responsive adsorption behavior toward heavy metal ions based on comb polymer functionalized magnetic nanoparticles. J Clean Prod 253:119915. https://doi.org/10.1016/j.jclepro.2019.119915

    CAS  Article  Google Scholar 

  79. Liu X, Jiang B, Yin X et al (2020b) Highly permeable nanofibrous composite microfiltration membranes for removal of nanoparticles and heavy metal ions. Sep Purif Technol 233:115976. https://doi.org/10.1016/j.seppur.2019.115976

    CAS  Article  Google Scholar 

  80. Luo C, Wang J, Jia P et al (2015) Hierarchically structured polyacrylonitrile nanofiber mat as highly efficient lead adsorbent for water treatment. Chem Eng J 262:775–784. https://doi.org/10.1016/j.cej.2014.09.116

    CAS  Article  Google Scholar 

  81. Luo C, Wei R, Guo D et al (2013) Adsorption behavior of MnO2 functionalized multi-walled carbon nanotubes for the removal of cadmium from aqueous solutions. Chem Eng J 225:406–415. https://doi.org/10.1016/j.cej.2013.03.128

    CAS  Article  Google Scholar 

  82. Madima N, Mishra SB, Inamuddin I, Mishra AK (2020) Carbon-based nanomaterials for remediation of organic and inorganic pollutants from wastewater. A review. Environ Chem Lett 18:1169–1191. https://doi.org/10.1007/s10311-020-01001-0

    CAS  Article  Google Scholar 

  83. Madrakian T, Afkhami A, Zadpour B, Ahmadi M (2015) New synthetic mercaptoethylamino homopolymer-modified maghemite nanoparticles for effective removal of some heavy metal ions from aqueous solution. J Ind Eng Chem 21:1160–1166. https://doi.org/10.1016/j.jiec.2014.05.029

    CAS  Article  Google Scholar 

  84. Mahmoud ME, Fekry NA, El-Latif MMA (2016) Nanocomposites of nanosilica-immobilized-nanopolyaniline and crosslinked nanopolyaniline for removal of heavy metals. Chem Eng J 304:679–691. https://doi.org/10.1016/j.cej.2016.06.110

    CAS  Article  Google Scholar 

  85. Mahurpawar M (2015) Effects of heavy metals on human health. Int J Res Granthaalayah. ISSN-23500530:2394-3629

  86. Malik LA, Bashir A, Qureashi A, Pandith AH (2019) Detection and removal of heavy metal ions: a review. Environ Chem Lett 17:1495–1521. https://doi.org/10.1007/s10311-019-00891-z

    CAS  Article  Google Scholar 

  87. Marcelo LR, de Gois JS, da Silva AA et al (2020) Synthesis of iron-based magnetic nanocomposites and applications in adsorption processes for water treatment: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01134-2

    Article  Google Scholar 

  88. Martínez-Cabanas M, López-García M, Barriada JL et al (2016) Green synthesis of iron oxide nanoparticles. Development of magnetic hybrid materials for efficient As(V) removal. Chem Eng J 301:83–91. https://doi.org/10.1016/j.cej.2016.04.149

    CAS  Article  Google Scholar 

  89. Mohammadi N, Mousazadeh B, Hamoule T (2020) Synthesis and characterization of NH2-SiO2@Cu-MOF as a high-performance adsorbent for Pb ion removal from water environment. Environ Dev Sustain. https://doi.org/10.1007/s10668-020-00646-9

    Article  Google Scholar 

  90. Mokadem Z, Mekki S, Saïdi-Besbes S et al (2017) Triazole containing magnetic core-silica shell nanoparticles for Pb2+, Cu2+ and Zn2+ removal. Arab J Chem 10:1039–1051. https://doi.org/10.1016/j.arabjc.2016.12.008

    CAS  Article  Google Scholar 

  91. Morillo Martín D, Faccini M, García MA, Amantia D (2018) Highly efficient removal of heavy metal ions from polluted water using ion-selective polyacrylonitrile nanofibers. J Environ Chem Eng 6:236–245. https://doi.org/10.1016/j.jece.2017.11.073

    CAS  Article  Google Scholar 

  92. Naidu Subramaniam M, Sean Goh P, Jye Lau W, Fauzi Ismail A (2019) The roles of nanomaterials in conventional and emerging technologies for heavy metal removal: a state-of-the-art review. mdpi.com. https://doi.org/https://doi.org/10.3390/nano9040625

  93. Najafi M, Yousefi Y, Rafati AA (2012) Synthesis, characterization and adsorption studies of several heavy metal ions on amino-functionalized silica nano hollow sphere and silica gel. Sep Purif Technol 85:193–205. https://doi.org/10.1016/j.seppur.2011.10.011

    CAS  Article  Google Scholar 

  94. Naseem K, Begum R, Wu W et al (2019) Adsorptive removal of heavy metal ions using polystyrene-poly(N-isopropylmethacrylamide-acrylic acid) core/shell gel particles: adsorption isotherms and kinetic study. J Mol Liq 277:522–531. https://doi.org/10.1016/j.molliq.2018.12.054

    CAS  Article  Google Scholar 

  95. Nassar NN (2010) Kinetics, mechanistic, equilibrium, and thermodynamic studies on the adsorption of acid red dye from wastewater by γ-Fe2O3 nanoadsorbents. Sep Sci Technol 45:1092–1103. https://doi.org/10.1080/01496391003696921

    CAS  Article  Google Scholar 

  96. Neyaz N, Siddiqui A, Nair KK (2013) IPA-under creative commons license 3.0 application of surface functionalized iron oxide nanomaterials as a nanosorbents in extraction of toxic heavy metals from ground water: a review. Int J Environ Sci. https://doi.org/10.6088/ijes.2014040400004

    Article  Google Scholar 

  97. Nguyen TMT, Do TPT, Hoang TS et al (2018) Adsorption of anionic surfactants onto alumina: characteristics, mechanisms, and application for heavy metal removal. Int J Polym Sci. https://doi.org/10.1155/2018/2830286

    Article  Google Scholar 

  98. Ojea-Jimé Nez I, Ncatl Ló Pez X, Arbiol J, Puntes V (2012) Citrate-coated gold nanoparticles as smart scavengers for mercury(II) removal from polluted waters. ACS Publ 6:2253–2260. https://doi.org/10.1021/nn204313a

    CAS  Article  Google Scholar 

  99. Ouni A, Ghemari C, Ben Said A et al (2019) Monitoring of heavy metal contamination in soils and terrestrial isopods sampled from the industrialized areas of Sfax (southeastern Tunisia). Environ Earth Sci. https://doi.org/10.1007/s12665-019-8432-8

    Article  Google Scholar 

  100. Ozmen M, Can K, Arslan G et al (2010) Adsorption of Cu(II) from aqueous solution by using modified Fe3O4 magnetic nanoparticles. Desalination 254:162–169. https://doi.org/10.1016/j.desal.2009.11.043

    CAS  Article  Google Scholar 

  101. Padmavathy KS, Madhu G, Haseena PV (2016) A study on effects of pH, adsorbent dosage, time, initial concentration and adsorption isotherm study for the removal of hexavalent chromium (Cr(VI)) from wastewater by magnetite nanoparticles. Proc Technol. https://doi.org/10.1016/j.protcy.2016.05.127

    Article  Google Scholar 

  102. Park S, Gomez-Flores A, Chung YS, Kim H (2015) Removal of cadmium and lead from aqueous solution by hydroxyapatite/chitosan hybrid fibrous sorbent: kinetics and equilibrium studies. J Chem. https://doi.org/10.1155/2015/396290

    Article  Google Scholar 

  103. Pham TD, Do TT, Ha VL et al (2017) Adsorptive removal of ammonium ion from aqueous solution using surfactant-modified alumina. Environ Chem 14:327–337. https://doi.org/10.1071/EN17102

    CAS  Article  Google Scholar 

  104. Rad LR, Momeni A, Ghazani BF et al (2014) Removal of Ni2+ and Cd2+ ions from aqueous solutions using electrospun PVA/zeolite nanofibrous adsorbent. Chem Eng J 256:119–127. https://doi.org/10.1016/j.cej.2014.06.066

    CAS  Article  Google Scholar 

  105. Rahbari M, Goharrizi As(2009) Adsorption of lead(II) from water by carbon nanotubes: equilibrium, kinetics, and thermodynamics. Water Environ Res 81:598–607. https://doi.org/10.2175/106143008x370511

    CAS  Article  Google Scholar 

  106. Rajabathar JR, Shukla AK, Ali A, Al-Lohedan HA (2017) Silver nanoparticle/r-graphene oxide deposited mesoporous-manganese oxide nanocomposite for pollutant removal and supercapacitor applications. Int J Hydrogen Energy 42:15679–15688. https://doi.org/10.1016/j.ijhydene.2017.04.038

    CAS  Article  Google Scholar 

  107. Razzaz A, Ghorban S, Hosayni L et al (2016) Chitosan nanofibers functionalized by TiO2 nanoparticles for the removal of heavy metal ions. J Taiwan Inst Chem Eng 58:333–343. https://doi.org/10.1016/j.jtice.2015.06.003

    CAS  Article  Google Scholar 

  108. Reddy AVB, Yusop Z, Jaafar J et al (2016) Recent progress on Fe-based nanoparticles: synthesis, properties, characterization and environmental applications. J Environ Chem Eng 4:3537–3553. https://doi.org/10.1016/j.jece.2016.07.035

    CAS  Article  Google Scholar 

  109. Ren T, He P, Niu W et al (2013) Synthesis of α-Fe2O3 nanofibers for applications in removal and recovery of Cr(VI) from wastewater. Environ Sci Pollut Res 20:155–162. https://doi.org/10.1007/s11356-012-0842-z

    CAS  Article  Google Scholar 

  110. Renu AM, Singh K (2017) Heavy metal removal from wastewater using various adsorbents: a review. J Water Reuse Desalin 7(4):387–419. https://doi.org/10.2166/wrd.2016.104

    Article  Google Scholar 

  111. Renu NA, Agarwal M, Singh K (2017) Methodologies for removal of heavy metal ions from wastewater: an overview. Interdiscip Environ Rev 18:124. https://doi.org/10.1504/ier.2017.087915

    Article  Google Scholar 

  112. Ruthiraan M, Mubarak NM, Thines RK et al (2015) Comparative kinetic study of functionalized carbon nanotubes and magnetic biochar for removal of Cd 2+ ions from wastewater. Korean J Chem Eng 32:446–457. https://doi.org/10.1007/s11814-014-0260-7

    CAS  Article  Google Scholar 

  113. Saad AHA, Azzam AM, El-Wakeel ST et al (2018) Removal of toxic metal ions from wastewater using ZnO@Chitosan core-shell nanocomposite. Environ Nanotechnol Monit Manag 9:67–75. https://doi.org/10.1016/j.enmm.2017.12.004

    Article  Google Scholar 

  114. Sahraei R, Sekhavat Pour Z, Ghaemy M (2017) Novel magnetic bio-sorbent hydrogel beads based on modified gum tragacanth/graphene oxide: removal of heavy metals and dyes from water. J Clean Prod 142:2973–2984. https://doi.org/10.1016/j.jclepro.2016.10.170

    CAS  Article  Google Scholar 

  115. Saleh TA, Gupta VK (2014) Processing methods, characteristics and adsorption behavior of tire derived carbons: a review. Adv Colloid Interface Sci 211:93–101. https://doi.org/10.1016/j.cis.2014.06.006

    CAS  Article  Google Scholar 

  116. Sambaza SS, Masheane ML, Malinga SP et al (2017) Polyethyleneimine-carbon nanotube polymeric nanocomposite adsorbents for the removal of Cr6+ from water. Phys Chem Earth 100:236–246. https://doi.org/10.1016/j.pce.2016.08.002

    Article  Google Scholar 

  117. Santhosh C, Velmurugan V, Jacob G et al (2016) Role of nanomaterials in water treatment applications: a review. Chem Eng J 306:1116–1137. https://doi.org/10.1016/j.cej.2016.08.053

    CAS  Article  Google Scholar 

  118. Saravanan A, Kumar PS, Vo DVN et al (2020) Photocatalysis for removal of environmental pollutants and fuel production: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01077-8

    Article  Google Scholar 

  119. Şengil IA, Özacar M (2009) Competitive biosorption of Pb2+, Cu2+ and Zn2+ ions from aqueous solutions onto valonia tannin resin. J Hazard Mater 166(2–3):1488–1494. https://doi.org/10.1016/j.jhazmat.2008.12.071

    CAS  Article  Google Scholar 

  120. Shah LA, Khan M, Javed R et al (2018) Superabsorbent polymer hydrogels with good thermal and mechanical properties for removal of selected heavy metal ions. J Clean Prod 201:78–87. https://doi.org/10.1016/j.jclepro.2018.08.035

    CAS  Article  Google Scholar 

  121. Sheela T, Nayaka YA, Viswanatha R et al (2012) Kinetics and thermodynamics studies on the adsorption of Zn(II), Cd(II) and Hg(II) from aqueous solution using zinc oxide nanoparticles. Powder Technol 217:163–170. https://doi.org/10.1016/j.powtec.2011.10.023

    CAS  Article  Google Scholar 

  122. Shen H, Chen J, Dai H et al (2013) New insights into the sorption and detoxification of chromium(VI) by tetraethylenepentamine functionalized nanosized magnetic polymer adsorbents: mechanism and pH effect. Ind Eng Chem Res 52:12723–12732. https://doi.org/10.1021/ie4010805

    CAS  Article  Google Scholar 

  123. Shen H, Pan S, Zhang Y et al (2012) A new insight on the adsorption mechanism of amino-functionalized nano-Fe 3O 4 magnetic polymers in Cu(II), Cr(VI) co-existing water system. Chem Eng J 183:180–191. https://doi.org/10.1016/j.cej.2011.12.055

    CAS  Article  Google Scholar 

  124. Singh J, Kalamdhad As(2011) Effects of heavy metals on soil, plants, human health and aquatic life. Int J Res Chem Environ 1(2):15–21

    Google Scholar 

  125. Singh S, Kumar V, Chauhan A et al (2018) Toxicity, degradation and analysis of the herbicide atrazine. Environ Chem Lett 16:211–237. https://doi.org/10.1007/s10311-017-0665-8

    CAS  Article  Google Scholar 

  126. Singh S, Kumar V, Romero R, Sharma K, Singh J (2019) Applications of nanoparticles in wastewater treatment. In: Prasad R, Kumar V, Kumar M, Choudhary D (eds) Nanobiotechnology in bioformulations. Nanotechnology in the life sciences. Springer, Cham. https://doi.org/https://doi.org/10.1007/978-3-030-17061-5_17

  127. Singh S, Kumar V, Datta S et al (2020) Glyphosate uptake, translocation, resistance emergence in crops, analytical monitoring, toxicity and degradation: a review. Environ Chem Lett 18:663–702. https://doi.org/10.1007/s10311-020-00969-z

    CAS  Article  Google Scholar 

  128. Sobha K, Poornima A, Harini P, Veeraiah K (2007) A study on biochemical changes in the fresh water fish, Catla catla (Hamilton) exposed to the heavy metal toxicant cadmium chloride. Kathmandu Univ J Sci Eng Technol 3(2):1–11. https://doi.org/10.3126/kuset.v3i2.2890

    Article  Google Scholar 

  129. Somu P, Paul S (2018) Casein based biogenic-synthesized zinc oxide nanoparticles simultaneously decontaminate heavy metals, dyes, and pathogenic microbes: a rational strategy for wastewater treatment. J Chem Technol Biotechnol 93:2962–2976. https://doi.org/10.1002/jctb.5655

    CAS  Article  Google Scholar 

  130. Sounthararajah DP, Loganathan P, Kandasamy J, Vigneswaran S (2015) Adsorptive removal of heavy metals from water using sodium titanate nanofibres loaded onto GAC in fixed-bed columns. J Hazard Mater 287:306–316. https://doi.org/10.1016/j.jhazmat.2015.01.067

    CAS  Article  Google Scholar 

  131. Stafiej A, Pyrzynska K (2007) Adsorption of heavy metal ions with carbon nanotubes. Sep Purif Technol 58:49–52. https://doi.org/10.1016/j.seppur.2007.07.008

    CAS  Article  Google Scholar 

  132. Sumesh E, Bootharaju MS, Anshup PT (2011) A practical silver nanoparticle-based adsorbent for the removal of Hg2+ from water. J Hazard Mater 189:450–457. https://doi.org/10.1016/j.jhazmat.2011.02.061

    CAS  Article  Google Scholar 

  133. Sun Y, Zhou S, Pan SY et al (2020) Performance evaluation and optimization of flocculation process for removing heavy metal. Chem Eng J 385:123911. https://doi.org/10.1016/j.cej.2019.123911

    CAS  Article  Google Scholar 

  134. Sun YB, Wang Q, Yang ST et al (2011) Characterization of nano-iron oxyhydroxides and their application in UO 2 2+ removal from aqueous solutions. akjournals.com. https://doi.org/https://doi.org/10.1007/s10967-011-1325-2

  135. Tan Y, Chen M, Hao Y (2012) High efficient removal of Pb(II) by amino-functionalized Fe3O4 magnetic nano-particles. Chem Eng J 191:104–111. https://doi.org/10.1016/j.cej.2012.02.075

    CAS  Article  Google Scholar 

  136. Tu YJ, Chan TS, Tu HW et al (2016) Rapid and efficient removal/recovery of molybdenum onto ZnFe2O4 nanoparticles. Chemosphere 148:452–458. https://doi.org/10.1016/j.chemosphere.2016.01.054

    CAS  Article  Google Scholar 

  137. Tu YJ, You CF, Chang CK (2013) Conversion of waste Mn-Zn dry battery as efficient nano-adsorbents for hazardous metals removal. J Hazard Mater 258–259:102–108. https://doi.org/10.1016/j.jhazmat.2013.04.029

    CAS  Article  Google Scholar 

  138. Tu YJ, You CF, Chen MH, Duan YP (2017) Efficient removal/recovery of Pb onto environmentally friendly fabricated copper ferrite nanoparticles. J Taiwan Inst Chem Eng 71:197–205. https://doi.org/10.1016/j.jtice.2016.12.006

    CAS  Article  Google Scholar 

  139. Verma M, Tyagi I, Chandra R, Gupta VK (2017a) Adsorptive removal of Pb(II) ions from aqueous solution using CuO nanoparticles synthesized by sputtering method. J Mol Liq 225:936–944. https://doi.org/10.1016/j.molliq.2016.04.045

    CAS  Article  Google Scholar 

  140. Verma R, Asthana A, Singh AK et al (2017b) Novel glycine-functionalized magnetic nanoparticles entrapped calcium alginate beads for effective removal of lead. Microchem J 130:168–178. https://doi.org/10.1016/j.microc.2016.08.006

    CAS  Article  Google Scholar 

  141. Wadhawan S, Jain A, Nayyar J, Mehta SK (2020) Role of nanomaterials as adsorbents in heavy metal ion removal from waste water: a review. J Water Process Eng 33:101038

    Article  Google Scholar 

  142. Wang H, Yuan X, Wu Y et al (2013) Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution. Appl Surf Sci 279:432–440. https://doi.org/10.1016/j.apsusc.2013.04.133

    CAS  Article  Google Scholar 

  143. Wang K, Gu J, Yin N (2017) Efficient removal of Pb(II) and Cd(II) using NH2-functionalized Zr-MOFs via rapid microwave-promoted synthesis. Ind Eng Chem Res 56:1880–1887. https://doi.org/10.1021/acs.iecr.6b04997

    CAS  Article  Google Scholar 

  144. Wang X, Guo Y, Yang L et al (2012) Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment. J Env Anal Toxicol 2:154. https://doi.org/10.4172/2161-0525.1000154

    Article  Google Scholar 

  145. Wang X, Huang K, Chen Y et al (2018) Preparation of dumbbell manganese dioxide/gelatin composites and their application in the removal of lead and cadmium ions. J Hazard Mater 350:46–54. https://doi.org/10.1016/j.jhazmat.2018.02.020

    CAS  Article  Google Scholar 

  146. Wu L, Zhang X, Chen L et al (2018) Amphoteric starch derivatives as reusable flocculant for heavy-metal removal. RSC Adv 8:1274–1280. https://doi.org/10.1039/c7ra12798g

    CAS  Article  Google Scholar 

  147. Xiao Z, Zhang H, Xu Y et al (2017) Ultra-efficient removal of chromium from aqueous medium by biogenic iron based nanoparticles. Sep Purif Technol 174:466–473. https://doi.org/10.1016/j.seppur.2016.10.047

    CAS  Article  Google Scholar 

  148. Xie R, Jin Y, Chen Y, Jiang W (2017) The importance of surface functional groups in the adsorption of copper onto walnut shell derived activated carbon. Water Sci Technol 76:3022–3034. https://doi.org/10.2166/wst.2017.471

    CAS  Article  Google Scholar 

  149. Xu D, Zhu K, Zheng X, Xiao R (2015) Poly(ethylene-co-vinyl alcohol) functional nanofiber membranes for the removal of Cr(VI) from water. Ind Eng Chem Res 54:6836–6844. https://doi.org/10.1021/acs.iecr.5b00995

    CAS  Article  Google Scholar 

  150. Xu P, Zeng GM, Huang DL et al (2017) Fabrication of reduced glutathione functionalized iron oxide nanoparticles for magnetic removal of Pb(II) from wastewater. J Taiwan Inst Chem Eng 71:165–173. https://doi.org/10.1016/j.jtice.2016.11.031

    CAS  Article  Google Scholar 

  151. Xu P, Zeng GM, Huang DL et al (2012) Adsorption of Pb(II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: equilibrium, kinetic, thermodynamic and mechanisms analysis. Chem Eng J 203:423–431. https://doi.org/10.1016/j.cej.2012.07.048

    CAS  Article  Google Scholar 

  152. Yang J, Hou B, Wang J et al (2019) Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials 9:424. https://doi.org/10.3390/nano9030424

    CAS  Article  Google Scholar 

  153. Yari S, Abbasizadeh S, Mousavi SE et al (2015) Adsorption of Pb(II) and Cu(II) ions from aqueous solution by an electrospun CeO2 nanofiber adsorbent functionalized with mercapto groups. Process Saf Environ Prot 94:159–171. https://doi.org/10.1016/j.psep.2015.01.011

    CAS  Article  Google Scholar 

  154. Yu G, Lu Y, Guo J et al (2018) Carbon nanotubes, graphene, and their derivatives for heavy metal removal. Adv Comp Hybrid Mater 1:56–78. https://doi.org/10.1007/s42114-017-0004-3

    CAS  Article  Google Scholar 

  155. Yuan X, An N, Zhu Z et al (2018) Hierarchically porous nitrogen-doped carbon materials as efficient adsorbents for removal of heavy metal ions. Process Saf Environ Prot 119:320–329. https://doi.org/10.1016/j.psep.2018.08.012

    CAS  Article  Google Scholar 

  156. Zendehdel M, Shoshtari-Yeganeh B, Cruciani G (2016) Removal of heavy metals and bacteria from aqueous solution by novel hydroxyapatite/zeolite nanocomposite, preparation, and characterization. J Iran Chem Soc 13:1915–1930. https://doi.org/10.1007/s13738-016-0908-9

    CAS  Article  Google Scholar 

  157. Zeng T, Yu Y, Li Z et al (2019) 3D MnO2 nanotubes@reduced graphene oxide hydrogel as reusable adsorbent for the removal of heavy metal ions. Mater Chem Phys 231:105–108. https://doi.org/10.1016/j.matchemphys.2019.04.019

    CAS  Article  Google Scholar 

  158. Zhao C, Wang X, Zhang S et al (2020) Porous carbon nanosheets functionalized with Fe3O4 nanoparticles for capacitive removal of heavy metal ions from water. Environ Sci Water Res Technol 6:331–340. https://doi.org/10.1039/c9ew00472f

    CAS  Article  Google Scholar 

  159. Zhao G, Li J, Ren X et al (2011) Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45:10454–10462. https://doi.org/10.1021/es203439v

    CAS  Article  Google Scholar 

  160. Zhao M, Xu Y, Zhang C, Rong H, Zeng G (2016) New trends in removing heavy metals from wastewater. Appl Microbiol Biotechnol 100(15):6509–6518. https://doi.org/10.1007/s00253-016-7646-x

    CAS  Article  Google Scholar 

  161. Zhu K, Jia H, Wang F et al (2017) Efficient removal of Pb(II) from aqueous solution by modified montmorillonite/carbon composite: Equilibrium, kinetics, and thermodynamics. J Chem Eng Data 62:333–340. https://doi.org/10.1021/acs.jced.6b00676

    CAS  Article  Google Scholar 

  162. Zhu X, Song T, Lv Z, Ji G (2016) High-efficiency and low-cost α-Fe2O3 nanoparticles-coated volcanic rock for Cd(II) removal from wastewater. Process Saf Environ Prot 104:373–381. https://doi.org/10.1016/j.psep.2016.09.019

    CAS  Article  Google Scholar 

Download references

Acknowledgement

Simranjeet Singh is thankful to the Interdisciplinary Centre for Water Research (ICWaR) Indian Institute of Sciences Bangalore for the financial assistance IOE-IISc Fellowship (Sr. No: IE/REAC-20-0134) and providing laboratory and library facilities.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Joginder Singh or Praveen C. Ramamurthy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Kapoor, D., Khasnabis, S. et al. Mechanism and kinetics of adsorption and removal of heavy metals from wastewater using nanomaterials. Environ Chem Lett (2021). https://doi.org/10.1007/s10311-021-01196-w

Download citation

Keywords

  • Adsorption
  • Nanomaterials
  • Heavy metal
  • Wastewater
  • Carbon-based nanomaterials
  • Metal oxides