Sustainable adsorbents for the removal of pesticides from water: a review

Abstract

The global usage of pesticides has increased by more than 1.5 times over the last three decades. As a consequence, waters are increasingly contaminated by pesticides and their degradation products. For example, organochlorine pesticides are considered most hazardous due to their long half-lives in the environment, up to 5–15 years, and because they bioaccumulate. This is a major health issue requiring advanced methods for water cleaning such as adsorption with activated carbon, yet actual methods are limited by the cost, poor recyclability and disposal of current adsorbents. Here, we review pesticide adsorbents made of materials. Biochars derived from plant materials show maximal adsorption capacities up to around 900 mg/g due to high carbon content in the range of 38 to 80%. Strategies for field applications and post-treatment of spent adsorbents are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

FAO:

Food and Agriculture Organization

WHO:

World Health Organization

DDT:

Dichlorodiphenyltrichloroethane

MCL:

Maximum contaminant level

EPA:

Environmental Protection Agency

ODA-M:

Modified with octadecylamine

ODAAPS-M:

Modified octadecylamine aminopropyltriethoxysilane

HI:

Hydrophobicity index

AC:

Activated carbon

BC:

Biochar

GAC:

Granular activated carbon

SDBAC:

Stearyldimethylbenzylammoniumchloride

HTAB:

Hexadecyltrimethylammonium bromide

DTAB:

Dodecyltrimethylammonium bromide

BET:

Brunauer–Emmett–Teller

PFO:

Pseudo-first order

PSO:

Pseudo-second order

MFM:

Modified Freundlich model

References

  1. Abdel-Aty AM, Gad-Allah TA, Ali MEM, Abdel-Ghafar HH (2015) Parametric, equilibrium, and kinetic studies on biosorption of diuron by Anabaena sphaerica and Scenedesmus obliquus. Environ Prog Sustain Energy 34:504–511. https://doi.org/10.1002/ep.12027

    CAS  Article  Google Scholar 

  2. Abdel-Gawad SA, Baraka AM, Omran KA, Mokhtar MM (2012) Removal of some pesticides from the simulated waste water by electrocoagulation method using iron electrodes. Int J Electrochem Sci 7:6654–6665

    CAS  Google Scholar 

  3. Abilarasu A, Kumar PS, Vo DVN et al (2021) Enhanced photocatalytic degradation of diclofenac by Sn0.15Mn0.85Fe2O4 catalyst under solar light. J Environ Chem Eng. 9:104875. https://doi.org/10.1016/j.jece.2020.104875

    CAS  Article  Google Scholar 

  4. Afroze S, Sen TK (2018) A Review on Heavy Metal Ions and Dye Adsorption from Water by Agricultural Solid Waste Adsorbents. Water Air Soil Pollut. https://doi.org/10.1007/s11270-018-3869-z

    Article  Google Scholar 

  5. Ahmed S (2014) Egyptian Apricot Stone (Prunus armeniaca) as a Low Cost and Eco-friendly Biosorbent for Oxamyl Removal from Aqueous Solutions. Am J Exp Agric 4:302–321. https://doi.org/10.9734/ajea/2014/7116

    CAS  Article  Google Scholar 

  6. Akhtar M, Iqbal S, Bhanger MI, Moazzam M (2009) Utilization of organic by-products for the removal of organophosphorous pesticide from aqueous media. J Hazard Mater 162:703–707. https://doi.org/10.1016/j.jhazmat.2008.05.084

    CAS  Article  Google Scholar 

  7. Akpomie KG, Conradie J (2020) Banana peel as a biosorbent for the decontamination of water pollutants. A review Environ Chem Lett 18:1085–1112. https://doi.org/10.1007/s10311-020-00995-x

    CAS  Article  Google Scholar 

  8. Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026

    CAS  Article  Google Scholar 

  9. Ambigadevi J, Kumar PS, Vo D-VN, et al (2020)Recent developments in photocatalytic remediation of textile effluent using semiconductor based nanostructured catalyst: a review.J Environ Chem Eng 104881https://doi.org/10.1016/j.jece.2020.104881

  10. Anastopoulos I, Mittal A, Usman M et al (2018) A review on halloysite-based adsorbents to remove pollutants in water and wastewater. J. Mol. Liq. 269:855–868

    CAS  Article  Google Scholar 

  11. Anudechakul C, Vangnai AS, Ariyakanon N (2015) Removal of Chlorpyrifos by Water Hyacinth (Eichhornia crassipes) and the Role of a Plant-Associated Bacterium. Int J Phytoremediation 17:678–685. https://doi.org/10.1080/15226514.2014.964838

    CAS  Article  Google Scholar 

  12. Azarkan S, Peña A, Draoui K, Sainz-Díaz CI (2016) Adsorption of two fungicides on natural clays of Morocco. Appl Clay Sci 123:37–46. https://doi.org/10.1016/j.clay.2015.12.036

    CAS  Article  Google Scholar 

  13. Baharum NA, Nasir HM, Ishak MY, et al. (2020) Highly efficient removal of diazinon pesticide from aqueous solutions by using coconut shell-modified biochar. Arab J Chemhttps://doi.org/10.1016/j.arabjc.2020.05.011

  14. Bayat M, Alighardashi A, Sadeghasadi A (2018) Fixed-bed column and batch reactors performance in removal of diazinon pesticide from aqueous solutions by using walnut shell-modified activated carbon. Environ Technol Innov 12:148–159. https://doi.org/10.1016/j.eti.2018.08.008

    Article  Google Scholar 

  15. Behloul M, Lounici H, Abdi N et al (2017) Adsorption study of metribuzin pesticide on fungus Pleurotus mutilus. Int Biodeterior Biodegrad 119:687–695. https://doi.org/10.1016/j.ibiod.2016.07.005

    CAS  Article  Google Scholar 

  16. Benelli G, Maggi F, Romano D et al (2017) Nanoparticles as effective acaricides against ticks—A review. Ticks Tick Borne Dis 8:821–826. https://doi.org/10.1016/j.ttbdis.2017.08.004

    Article  Google Scholar 

  17. Bhadra BN, Song JY, Lee SK, et al (2018) Adsorptive removal of aromatic hydrocarbons from water over metal azolate framework-6-derived carbons.J Hazard Mater doi: https://doi.org/10.1016/j.jhazmat.2017.11.057

  18. Boudesocque S, Guillon E, Aplincourt M et al (2008) Use of a Low-Cost Biosorbent to Remove Pesticides from Wastewater. J Environ Qual 37:631–638. https://doi.org/10.2134/jeq2007.0332

    CAS  Article  Google Scholar 

  19. Chaparadza A, Hossenlopp JM (2012) Adsorption kinetics, isotherms and thermodynamics of atrazine removal using a banana peel based sorbent. Water Sci Technol 65:940–947. https://doi.org/10.2166/wst.2012.935

    CAS  Article  Google Scholar 

  20. Chatterjee S, Das SK, Chakravarty R et al (2010) Interaction of malathion, an organophosphorus pesticide with Rhizopus oryzae biomass. J Hazard Mater 174:47–53. https://doi.org/10.1016/j.jhazmat.2009.09.014

    CAS  Article  Google Scholar 

  21. Chattoraj S, Mondal NK, Das B et al (2014) Biosorption of carbaryl from aqueous solution onto Pistia stratiotes biomass. Appl Water Sci 4:79–88. https://doi.org/10.1007/s13201-013-0132-z

    CAS  Article  Google Scholar 

  22. Christopher FC, Kumar PS, Christopher FJ et al (2020) Recent advancements in rapid analysis of pesticides using nano biosensors: A present and future perspective. J Clean Prod 269:122356. https://doi.org/10.1016/j.jclepro.2020.122356

    CAS  Article  Google Scholar 

  23. Cobas M, Meijide J, Sanromán MA, Pazos M (2016) Chestnut shells to mitigate pesticide contamination. J Taiwan Inst Chem Eng 61:166–173. https://doi.org/10.1016/j.jtice.2015.11.026

    CAS  Article  Google Scholar 

  24. Cosgrove S, Jefferson B, Jarvis P (2019) Pesticide removal from drinking water sources by adsorption: a review. Environ Technol Rev 8:1–24. https://doi.org/10.1080/21622515.2019.1593514

    CAS  Article  Google Scholar 

  25. Covert SA, Shoda ME, Stackpoole SM, Stone WW (2020) Pesticide mixtures show potential toxicity to aquatic life in U.S. streams, water years 2013–2017. Sci Total Environ 745:141285. https://doi.org/10.1016/j.scitotenv.2020.141285

    CAS  Article  Google Scholar 

  26. Crini G, Lichtfouse E, Wilson LD, Morin-Crini N (2019) Conventional and non-conventional adsorbents for wastewater treatment. Environ Chem Lett 17:195–213. https://doi.org/10.1007/s10311-018-0786-8

    CAS  Article  Google Scholar 

  27. Dai Y, Sun Q, Wang W et al (2018) Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere 211:235–253. https://doi.org/10.1016/j.chemosphere.2018.06.179

    CAS  Article  Google Scholar 

  28. Dai Y, Zhang N, Xing C et al (2019) The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: A review. Chemosphere 223:12–27

    CAS  Article  Google Scholar 

  29. De Gisi S, Lofrano G, Grassi M, Notarnicola M (2016) Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustain Mater Technol 9:10–40

    Google Scholar 

  30. De Smedt C, Ferrer F, Leus K, Spanoghe P (2015) Removal of pesticides from aqueous solutions by adsorption on zeolites as solid adsorbents. Adsorpt Sci Technol 33:457–485. https://doi.org/10.1260/0263-6174.33.5.457

    Article  Google Scholar 

  31. de Souza RM, Seibert D, Quesada HB et al (2020) Occurrence, impacts and general aspects of pesticides in surface water: a review. Process Saf Environ Prot 135:22–37. https://doi.org/10.1016/j.psep.2019.12.035

    CAS  Article  Google Scholar 

  32. De Wilde T, Spanoghe P, Ryckeboer J et al (2009) Sorption characteristics of pesticides on matrix substrates used in biopurification systems. Chemosphere 75:100–108. https://doi.org/10.1016/j.chemosphere.2008.11.037

    CAS  Article  Google Scholar 

  33. Deokar SK, Mandavgane SA, Kulkarni BD (2016a) Agro-industrial waste: a low cost adsorbent for effective removal of 4-chloro-2-methylphenoxyacetic acid herbicide in batch and packed bed modes. Environ Sci Pollut Res 23:16164–16175. https://doi.org/10.1007/s11356-016-6769-z

    CAS  Article  Google Scholar 

  34. Deokar SK, Mandavgane SA, Kulkarni BD (2016b) Adsorptive removal of 2,4-dichlorophenoxyacetic acid from aqueous solution using bagasse fly ash as adsorbent in batch and packed-bed techniques. Clean Technol Environ Policy 18:1971–1983. https://doi.org/10.1007/s10098-016-1124-0

    CAS  Article  Google Scholar 

  35. Downs AMR, Stafford KA, Hunt LP, et al (2002) Widespread insecticide resistance in head lice to the over-the-counter pediculocides in England, and the emergence of carbaryl resistance.Br J Dermatol doi:https://doi.org/10.1046/j.1365-2133.2002.04473.x

  36. Duke SO, Cantrell CL, Meepagala KM et al (2010) Natural Toxins for Use in Pest Management. Toxins (Basel) 2:1943–1962. https://doi.org/10.3390/toxins2081943

    CAS  Article  Google Scholar 

  37. Ecobichon DJ (2001) Pesticide use in developing countries Toxicology doi:https://doi.org/10.1016/S0300-483X(00)00452-2

  38. El Bakouri H, Morillo J, Usero J, Ouassini A (2008) Potential use of organic waste substances as an ecological technique to reduce pesticide ground water contamination. J Hydrol 353:335–342. https://doi.org/10.1016/j.jhydrol.2008.02.019

    CAS  Article  Google Scholar 

  39. El Bakouri H, Usero J, Morillo J et al (2009) Drin pesticides removal from aqueous solutions using acid-treated date stones. Bioresour Technol 100:2676–2684. https://doi.org/10.1016/j.biortech.2008.12.051

    CAS  Article  Google Scholar 

  40. Fan Y, Wang B, Yuan S et al (2010) Adsorptive removal of chloramphenicol from wastewater by NaOH modified bamboo charcoal. Bioresour Technol 101:7661–7664. https://doi.org/10.1016/j.biortech.2010.04.046

    CAS  Article  Google Scholar 

  41. FAO (2020) International Year of Plant Health 2020 | FAO | Food and Agriculture Organization of the United Nations. In: FAO. http://www.fao.org/plant-health-2020/about/en/. Accessed 14 Jul 2020

  42. FAO (2019) FAOSTAT. In: FAO. http://www.fao.org/faostat/en/#data/RP. Accessed 22 Sep 2020

  43. Feng Y, Yang L, Liu J, Logan BE (2016) Electrochemical technologies for wastewater treatment and resource reclamation. Environ Sci Water Res Technol 2:800–831. https://doi.org/10.1039/C5EW00289C

    CAS  Article  Google Scholar 

  44. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. https://doi.org/10.1016/j.cej.2009.09.013

    CAS  Article  Google Scholar 

  45. García-García CR, Parrón T, Requena M et al (2016) Occupational pesticide exposure and adverse health effects at the clinical, hematological and biochemical level. Life Sci 145:274–283. https://doi.org/10.1016/j.lfs.2015.10.013

    CAS  Article  Google Scholar 

  46. Ghanbarlou H, Nasernejad B, Nikbakht Fini M et al (2020) Synthesis of an iron-graphene based particle electrode for pesticide removal in three-dimensional heterogeneous electro-Fenton water treatment system. Chem Eng J. https://doi.org/10.1016/j.cej.2020.125025

    Article  Google Scholar 

  47. Ghiaci M, Arshadi M, Sedaghat ME et al (2008) Adsorption of organic pollutants from aqueous solutions on cereal ashes. J Chem Eng Data 53:2707–2709. https://doi.org/10.1021/je800532p

    CAS  Article  Google Scholar 

  48. Gopinath KP, Vo D-VN, Gnana Prakash D, et al (2020) Environmental applications of carbon-based materials: a review. Environ Chem Letthttps://doi.org/10.1007/s10311-020-01084-9

  49. GracePavithra K, Jaikumar V, Kumar PS, SundarRajan P (2019) A review on cleaner strategies for chromium industrial wastewater: Present research and future perspective. J Clean Prod 228:580–593. https://doi.org/10.1016/j.jclepro.2019.04.117

    CAS  Article  Google Scholar 

  50. Gu S, Kang X, Wang L et al (2019) Clay mineral adsorbents for heavy metal removal from wastewater: a review. Environ Chem Lett 17:629–654. https://doi.org/10.1007/s10311-018-0813-9

    CAS  Article  Google Scholar 

  51. Gupta VK, Kumar R, Nayak A et al (2013) Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: A review. Adv. Colloid Interface Sci. 193–194:24–34

    CAS  Article  Google Scholar 

  52. Hameed BH, Salman JM, Ahmad AL (2009) Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones. J Hazard Mater 163:121–126. https://doi.org/10.1016/j.jhazmat.2008.06.069

    CAS  Article  Google Scholar 

  53. Hassan SS, Al-Ghouti MA, Abu-Dieyeh M, McKay G (2020) Novel bioadsorbents based on date pits for organophosphorus pesticide remediation from water. J Environ Chem Eng 8:103593. https://doi.org/10.1016/j.jece.2019.103593

    CAS  Article  Google Scholar 

  54. Heidarinejad Z, Dehghani MH, Heidari M et al (2020) Methods for preparation and activation of activated carbon: a review. Environ Chem Lett 18:393–415. https://doi.org/10.1007/s10311-019-00955-0

    CAS  Article  Google Scholar 

  55. Hendriks FC, Valencia D, Bruijnincx PCA, Weckhuysen BM (2017) Zeolite molecular accessibility and host–guest interactions studied by adsorption of organic probes of tunable size. Phys Chem Chem Phys 19:1857–1867. https://doi.org/10.1039/C6CP07572J

    CAS  Article  Google Scholar 

  56. Ighalo JO, Adeniyi AG (2020) Adsorption of pollutants by plant bark derived adsorbents: An empirical review. J Water Process Eng 35:101228. https://doi.org/10.1016/j.jwpe.2020.101228

    Article  Google Scholar 

  57. Ignatowicz K (2011) A mass transfer model for the adsorption of pesticide on coconut shell based activated carbon. Int J Heat Mass Transf 54:4931–4938. https://doi.org/10.1016/j.ijheatmasstransfer.2011.07.005

    CAS  Article  Google Scholar 

  58. Igwe JC, Ekwuruke A, Gbaruko BC, Abia AA (2009) Detoxification of copper fungicide using EDTA-modified cellulosic material. African J Biotechnol 8:499–506. https://doi.org/10.5897/AJB2009.000-9086

    CAS  Article  Google Scholar 

  59. Ioannidou OA, Zabaniotou AA, Stavropoulos GG et al (2010) Preparation of activated carbons from agricultural residues for pesticide adsorption. Chemosphere 80:1328–1336. https://doi.org/10.1016/j.chemosphere.2010.06.044

    CAS  Article  Google Scholar 

  60. Jacob MM, Ponnuchamy M, Kapoor A, Sivaraman P (2020) Bagasse based biochar for the adsorptive removal of chlorpyrifos from contaminated water. J Environ Chem Eng 8:103904. https://doi.org/10.1016/j.jece.2020.103904

    CAS  Article  Google Scholar 

  61. Jayaraj R, Megha P, Sreedev P (2016) Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol 9:90–100. https://doi.org/10.1515/intox-2016-0012

    CAS  Article  Google Scholar 

  62. John EM, Shaike JM (2015) Chlorpyrifos: pollution and remediation. Environ Chem Lett 13:269–291. https://doi.org/10.1007/s10311-015-0513-7

    CAS  Article  Google Scholar 

  63. Jones KD, Huang WH (2003) Evaluation of toxicity of the pesticides, chlorpyrifos and arsenic, in the presence of compost humic substances in aqueous systems. J Hazard Mater 103:93–105. https://doi.org/10.1016/S0304-3894(03)00227-9

    CAS  Article  Google Scholar 

  64. Joshiba GJ, Kumar PS, Govarthanan M et al (2020) Investigation of Magnetic Silica Nanocomposite Immobilized Pseudomonas fluorescens as a biosorbent for the effective sequestration of Rhodamine B from aqueous systems. Environ Pollut 269:116173. https://doi.org/10.1016/j.envpol.2020.116173

    CAS  Article  Google Scholar 

  65. Jothirani R, Kumar PS, Saravanan A et al (2016) Ultrasonic modified corn pith for the sequestration of dye from aqueous solution. J Ind Eng Chem 39:162–175. https://doi.org/10.1016/j.jiec.2016.05.024

    CAS  Article  Google Scholar 

  66. Jusoh A, Hartini WJH, Ali N, Endut A (2011) Study on the removal of pesticide in agricultural run off by granular activated carbon. Bioresour Technol 102:5312–5318. https://doi.org/10.1016/j.biortech.2010.12.074

    CAS  Article  Google Scholar 

  67. Kapeleka JA, Sauli E, Ndakidemi PA (2019) Pesticide exposure and genotoxic effects as measured by DNA damage and human monitoring biomarkers. Int J Environ Health Res. doi: https://doi.org/10.1080/096031231690132

  68. Karthik V, Kumar PS, Vo D-VN, et al (2020) Hydrothermal production of algal biochar for environmental and fertilizer applications: a review. Environ Chem Letthttps://doi.org/10.1007/s10311-020-01139-x

  69. Karthikeyan P, Meenakshi S (2020) Enhanced removal of phosphate and nitrate ions by a novel Zn[sbnd]Fe LDHs-activated carbon composite. Sustain Mater Technol 25:e00154. https://doi.org/10.1016/j.susmat.2020.e00154

    CAS  Article  Google Scholar 

  70. Kaveeshwar AR, Kumar PS, Revellame ED et al (2018) Adsorption properties and mechanism of barium (II) and strontium (II) removal from fracking wastewater using pecan shell based activated carbon. J Clean Prod 193:1–13. https://doi.org/10.1016/j.jclepro.2018.05.041

    CAS  Article  Google Scholar 

  71. Kim K-H, Kabir E, Jahan SA (2017) Exposure to pesticides and the associated human health effects. Sci Total Environ 575:525–535. https://doi.org/10.1016/j.scitotenv.2016.09.009

    CAS  Article  Google Scholar 

  72. Kosheleva RI, Mitropoulos AC, Kyzas GZ (2019) Synthesis of activated carbon from food waste. Environ Chem Lett 17:429–438. https://doi.org/10.1007/s10311-018-0817-5

    CAS  Article  Google Scholar 

  73. Kushwaha S, Sreelatha G, Padmaja P (2011) Evaluation of Acid-Treated Palm Shell Powder for Its Effectiveness in the Adsorption of Organophosphorus Pesticides: Isotherm, Kinetics, and Thermodynamics. J Chem Eng Data 56:2407–2415. https://doi.org/10.1021/je1013334

    CAS  Article  Google Scholar 

  74. Kyzas GZ, Kostoglou M (2014) Green adsorbents for wastewaters: A critical review. Materials (Basel) 7:333–364

    Article  Google Scholar 

  75. Lemić J, Kovačević D, Tomašević-Čanović M et al (2006) Removal of atrazine, lindane and diazinone from water by organo-zeolites. Water Res 40:1079–1085. https://doi.org/10.1016/j.watres.2006.01.001

    CAS  Article  Google Scholar 

  76. Lichtfouse E, Morin-Crini N, Fourmentin M et al (2019) Chitosan for direct bioflocculation of wastewater. Environ Chem Lett 17:1603–1621. https://doi.org/10.1007/s10311-019-00900-1

    CAS  Article  Google Scholar 

  77. Lim YN, Ghazalyshaaban MD, Yin CY (2008) Removal of endosulfan from water using oil palm shell activated carbon and rice husk ash. J Oil Palm Res 20:527–532

    CAS  Google Scholar 

  78. Liu N, Charrua AB, Weng CH et al (2015) Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: A comparative study. Bioresour Technol 198:55–62. https://doi.org/10.1016/j.biortech.2015.08.129

    CAS  Article  Google Scholar 

  79. Lu PJ, Lin HC, Yu W Te, Chern JM (2011) Chemical regeneration of activated carbon used for dye adsorption. J Taiwan Inst Chem Eng.https://doi.org/10.1016/j.jtice.2010.06.001

  80. Lule GM, Atalay MU (2014) Comparison of Fenitrothion and Trifluralin Adsorption on Organo-Zeolites and Activated Carbon. Part I: Pesticides Adsorption Isotherms on Adsorbents. Part Sci Technol 32:418–425. https://doi.org/10.1080/02726351.2014.890687

    CAS  Article  Google Scholar 

  81. Madima N, Mishra SB, Inamuddin I, Mishra AK (2020) Carbon-based nanomaterials for remediation of organic and inorganic pollutants from wastewater. A review Environ Chem Lett 18:1169–1191. https://doi.org/10.1007/s10311-020-01001-0

    CAS  Article  Google Scholar 

  82. Mandal A, Singh N, Purakayastha TJ (2017) Characterization of pesticide sorption behaviour of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal. Sci Total Environ 577:376–385. https://doi.org/10.1016/j.scitotenv.2016.10.204

    CAS  Article  Google Scholar 

  83. Marican A, Durán-Lara EF (2018) A review on pesticide removal through different processes. Environ Sci Pollut Res 25:2051–2064. https://doi.org/10.1007/s11356-017-0796-2

    CAS  Article  Google Scholar 

  84. McKinlay R, Plant JA, Bell JNB, Voulvoulis N (2008) Calculating human exposure to endocrine disrupting pesticides via agricultural and non-agricultural exposure routes. Sci Total Environ 398:1–12. https://doi.org/10.1016/j.scitotenv.2008.02.056

    CAS  Article  Google Scholar 

  85. Memon GZ (2014) Adsorption of Selected Pesticides from Aqueous Solutions Using Cost effective Walnut Shells. IOSR J Eng 4:43–56. https://doi.org/10.9790/3021-041014356

    Article  Google Scholar 

  86. Memon GZ, Bhanger MI, Akhtar M et al (2008) Adsorption of methyl parathion pesticide from water using watermelon peels as a low cost adsorbent. Chem Eng J 138:616–621. https://doi.org/10.1016/j.cej.2007.09.027

    CAS  Article  Google Scholar 

  87. Memon GZ, Bhanger MI, Memon JR, Akhtar M (2009) Adsorption of methyl parathion from aqueous solutions using mango kernels: Equilibrium, kinetic and thermodynamic studies. Bioremediat J 13:102–106. https://doi.org/10.1080/10889860902902081

    CAS  Article  Google Scholar 

  88. Mo J, Yang Q, Zhang N et al (2018) A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. J Environ Manage 227:395–405

    CAS  Article  Google Scholar 

  89. Mohammad SG, Ahmed SM (2017) Preparation of environmentally friendly activated carbon for removal of pesticide from aqueous media. Int J Ind Chem 8:121–132. https://doi.org/10.1007/s40090-017-0115-2

    CAS  Article  Google Scholar 

  90. Mohammad SG, Ahmed SM, Badawi AFM (2015) A comparative adsorption study with different agricultural waste adsorbents for removal of oxamyl pesticide. Desalin Water Treat 55:2109–2120. https://doi.org/10.1080/19443994.2014.930797

    CAS  Article  Google Scholar 

  91. Mojiri A, Zhou JL, Robinson B et al (2020) Pesticides in aquatic environments and their removal by adsorption methods. Chemosphere 253:126646. https://doi.org/10.1016/j.chemosphere.2020.126646

    CAS  Article  Google Scholar 

  92. Momina SM, Isamil S (2018) Regeneration performance of clay-based adsorbents for the removal of industrial dyes: A review. RSC Adv 8:24571–24587. https://doi.org/10.1039/c8ra04290j

    CAS  Article  Google Scholar 

  93. Moradeeya PG, Kumar MA, Thorat RB et al (2017) Nanocellulose for biosorption of chlorpyrifos from water: chemometric optimization, kinetics and equilibrium. Cellulose 24:1319–1332. https://doi.org/10.1007/s10570-017-1197-x

    CAS  Article  Google Scholar 

  94. Morin-Crini N, Lichtfouse E, Torri G, Crini G (2019) Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ Chem Lett 17:1667–1692. https://doi.org/10.1007/s10311-019-00904-x

    CAS  Article  Google Scholar 

  95. Moussavi G, Hosseini H, Alahabadi A (2013) The investigation of diazinon pesticide removal from contaminated water by adsorption onto NH4Cl-induced activated carbon. Chem Eng J 214:172–179. https://doi.org/10.1016/j.cej.2012.10.034

    CAS  Article  Google Scholar 

  96. Muthamilselvi P, Karthikeyan R, Kapoor A, Prabhakar S (2018) Continuous fixed-bed studies for adsorptive remediation of phenol by garlic peel powder. Int J Ind Chem 9:379–390. https://doi.org/10.1007/s40090-018-0166-z

    CAS  Article  Google Scholar 

  97. Muthamilselvi P, Karthikeyan R, Kumar BSM (2016) Adsorption of phenol onto garlic peel: optimization, kinetics, isotherm, and thermodynamic studies. Desalin Water Treat 57:2089–2103. https://doi.org/10.1080/19443994.2014.979237

    CAS  Article  Google Scholar 

  98. Narayanan N, Gupta S, Gajbhiye VT (2020) Decontamination of pesticide industrial effluent by adsorption–coagulation–flocculation process using biopolymer-nanoorganoclay composite. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-020-02785-y

    Article  Google Scholar 

  99. Nicolopoulou-Stamati P, Maipas S, Kotampasi C, et al (2016)Chemical pesticides and human health: the urgent need for a new concept in agriculture.Front Public Heal 4https://doi.org/10.3389/fpubh.2016.00148

  100. Nithya K, Sathish A, Senthil Kumar P, Ramachandran T (2018) Fast kinetics and high adsorption capacity of green extract capped superparamagnetic iron oxide nanoparticles for the adsorption of Ni(II) ions. J Ind Eng Chem 59:230–241. https://doi.org/10.1016/j.jiec.2017.10.028

    CAS  Article  Google Scholar 

  101. Njoku VO, Foo KY, Hameed BH (2013) Microwave-assisted preparation of pumpkin seed hull activated carbon and its application for the adsorptive removal of 2,4-dichlorophenoxyacetic acid. Chem Eng J 215–216:383–388. https://doi.org/10.1016/j.cej.2012.10.068

    CAS  Article  Google Scholar 

  102. Njoku VO, Hameed BH (2011) Preparation and characterization of activated carbon from corncob by chemical activation with H3PO4 for 2,4-dichlorophenoxyacetic acid adsorption. Chem Eng J 173:391–399. https://doi.org/10.1016/j.cej.2011.07.075

    CAS  Article  Google Scholar 

  103. Njoku VO, Islam MA, Asif M, Hameed BH (2015) Adsorption of 2,4-dichlorophenoxyacetic acid by mesoporous activated carbon prepared from H3PO4-activated langsat empty fruit bunch. J Environ Manage 154:138–144. https://doi.org/10.1016/j.jenvman.2015.02.002

    CAS  Article  Google Scholar 

  104. Njoku VO, Islam MA, Asif M, Hameed BH (2014) Utilization of sky fruit husk agricultural waste to produce high quality activated carbon for the herbicide bentazon adsorption. Chem Eng J 251:183–191. https://doi.org/10.1016/j.cej.2014.04.015

    CAS  Article  Google Scholar 

  105. Okumuş V, Çelik KS, Özdemir S et al (2015) Biosorption of chlorophenoxy acid herbicides from aqueous solution by using low-cost agricultural wastes. Desalin Water Treat 56:1898–1907. https://doi.org/10.1080/19443994.2014.961562

    CAS  Article  Google Scholar 

  106. Omo-Okoro PN, Daso AP, Okonkwo JO (2018) A review of the application of agricultural wastes as precursor materials for the adsorption of per- and polyfluoroalkyl substances: A focus on current approaches and methodologies Environ. Technol Innov

  107. Ozdemir S, Bekler FM, Okumus V et al (2012) Biosorption of 2,4-d, 2,4-DP, and 2,4-DB from aqueous solution by using thermophilic anoxybacillus flavithermus and analysis by high-performance thin layer chromatography: Equilibrium and kinetic studies. Environ Prog Sustain Energy 31:544–552. https://doi.org/10.1002/ep.10576

    CAS  Article  Google Scholar 

  108. Patel H (2019) Fixed-bed column adsorption study: a comprehensive review. Appl Water Sci doi:https://doi.org/10.1007/s13201-019-0927-7

  109. Patinha C, Durães N, Dias AC et al (2018) Long-term application of the organic and inorganic pesticides in vineyards: Environmental record of past use. Appl Geochemistry 88:226–238. https://doi.org/10.1016/j.apgeochem.2017.05.014

    CAS  Article  Google Scholar 

  110. Pereira HA, Hernandes PRT, Netto MS et al (2020) Adsorbents for glyphosate removal in contaminated waters: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01108-4

    Article  Google Scholar 

  111. Plakas KV, Karabelas AJ (2012) Removal of pesticides from water by NF and RO membranes - A review. Desalination 287:255–265. https://doi.org/10.1016/j.desal.2011.08.003

    CAS  Article  Google Scholar 

  112. Ponnuchamy M, Kapoor A, Pakkirisamy B et al (2020) Optimization, equilibrium, kinetic and thermodynamic studies on adsorptive remediation of phenol onto natural guava leaf powder. Environ Sci Pollut Res 27:20576–20597. https://doi.org/10.1007/s11356-019-07145-z

    CAS  Article  Google Scholar 

  113. Popp J, Pető K, Nagy J (2013) Pesticide productivity and food security. A review Agron Sustain Dev 33:243–255. https://doi.org/10.1007/s13593-012-0105-x

    Article  Google Scholar 

  114. Pozo K, Harner T, Wania F, et al (2006) Toward a global network for persistent organic pollutants in air: Results from the GAPS study.Environ Sci Technolhttps://doi.org/10.1021/es060447t

  115. Qiu H, Lv L, Pan BC et al (2009) Critical review in adsorption kinetic models. J Zhejiang Univ Sci A 10:716–724. https://doi.org/10.1631/jzus.A0820524

    CAS  Article  Google Scholar 

  116. Rajmohan KS, Chandrasekaran R, Varjani S (2020) A Review on Occurrence of Pesticides in Environment and Current Technologies for Their Remediation and Management. Indian J Microbiol 60:125–138. https://doi.org/10.1007/s12088-019-00841-x

    CAS  Article  Google Scholar 

  117. Rathi BS, Kumar PS, Show P-L (2020) A review on effective removal of emerging contaminants from aquatic systems: current trends and scope for further research.J Hazard Mater 124413https://doi.org/10.1016/j.jhazmat.2020.124413

  118. Ratola N, Botelho C, Alves A (2003) The use of pine bark as a natural adsorbent for persistent organic pollutants - Study of lindane and heptachlor adsorption. J Chem Technol Biotechnol 78:347–351. https://doi.org/10.1002/jctb.784

    CAS  Article  Google Scholar 

  119. Reddy DHK, Vijayaraghavan K, Kim JA, Yun Y-S (2017) Valorisation of post-sorption materials: Opportunities, strategies, and challenges. Adv Colloid Interface Sci 242:35–58. https://doi.org/10.1016/j.cis.2016.12.002

    CAS  Article  Google Scholar 

  120. Rodrigo MA, Oturan MA, Oturan N (2014) Electrochemically assisted remediation of pesticides in soils and water: A review. Chem Rev 114:8720–8745

    CAS  Article  Google Scholar 

  121. Rojas R, Morillo J, Usero J et al (2015) Adsorption study of low-cost and locally available organic substances and a soil to remove pesticides from aqueous solutions. J Hydrol 520:461–472. https://doi.org/10.1016/j.jhydrol.2014.10.046

    CAS  Article  Google Scholar 

  122. Rojas R, Vanderlinden E, Morillo J et al (2014) Characterization of sorption processes for the development of low-cost pesticide decontamination techniques. Sci Total Environ 488–489:124–135. https://doi.org/10.1016/j.scitotenv.2014.04.079

    CAS  Article  Google Scholar 

  123. Romeh AA (2014) Phytoremediation of cyanophos insecticide by Plantago major L in water. J Environ Heal Sci Eng. https://doi.org/10.1186/2052-336X-12-38

    Article  Google Scholar 

  124. Romeh AA, Hendawi MY (2013) Chlorpyrifos insecticide uptake by plantain from polluted water and soil. Environ Chem Lett 11:163–170. https://doi.org/10.1007/s10311-012-0392-0

    CAS  Article  Google Scholar 

  125. Saleh IA, Zouari N, Al-Ghouti MA (2020) Removal of pesticides from water and wastewater: Chemical, physical and biological treatment approaches. Environ Technol Innov 19:101026. https://doi.org/10.1016/j.eti.2020.101026

    Article  Google Scholar 

  126. Salman JM, Hameed BH (2010) Removal of insecticide carbofuran from aqueous solutions by banana stalks activated carbon. J Hazard Mater 176:814–819. https://doi.org/10.1016/j.jhazmat.2009.11.107

    CAS  Article  Google Scholar 

  127. Salman JM, Mohammed MJ (2013) Batch study for herbicide bentazon adsorption onto branches of pomegranates trees activated carbon. Desalin Water Treat 51:5005–5008. https://doi.org/10.1080/19443994.2013.774118

    CAS  Article  Google Scholar 

  128. Salman JM, Njoku VO, Hameed BH (2011) Adsorption of pesticides from aqueous solution onto banana stalk activated carbon. Chem Eng J 174:41–48. https://doi.org/10.1016/j.cej.2011.08.026

    CAS  Article  Google Scholar 

  129. Saravanan A, Kumar PS, Govarthanan M et al (2021) Adsorption characteristics of magnetic nanoparticles coated mixed fungal biomass for toxic Cr(VI) ions in aquatic environment. Chemosphere 267:129226. https://doi.org/10.1016/j.chemosphere.2020.129226

    CAS  Article  Google Scholar 

  130. Sarker M, Ahmed I, Jhung SH (2017) Adsorptive removal of herbicides from water over nitrogen-doped carbon obtained from ionic liquid@ZIF-8. Chem Eng J. https://doi.org/10.1016/j.cej.2017.04.103

    Article  Google Scholar 

  131. Sathishkumar M, Choi JG, Ku CS et al (2008) Carbaryl sorption by porogen-treated banana pith carbon. Adsorpt Sci Technol 26:679–686. https://doi.org/10.1260/026361708788251367

    CAS  Article  Google Scholar 

  132. Saxena R, Saxena M, Lochab A (2020) Recent Progress in Nanomaterials for Adsorptive Removal of Organic Contaminants from Wastewater. ChemistrySelect 5:335–353. https://doi.org/10.1002/slct.201903542

    CAS  Article  Google Scholar 

  133. Shabeer TPA, Saha A, Gajbhiye VT et al (2014) Simultaneous removal of multiple pesticides from water: Effect of organically modified clays as coagulant aid and adsorbent in coagulation–flocculation process. Environ Technol 35:2619–2627. https://doi.org/10.1080/09593330.2014.914573

    CAS  Article  Google Scholar 

  134. Shahbazi A, Gonzalez-Olmos R, Kopinke FD et al (2014) Natural and synthetic zeolites in adsorption/oxidation processes to remove surfactant molecules from water. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2014.02.021

    Article  Google Scholar 

  135. Silva CR, Gomes TF, Andrade GCRM, et al (2013) Banana peel as an adsorbent for removing atrazine and ametryne from waters. In: Journal of Agricultural and Food Chemistry. pp 2358–2363

  136. Silva M, Fernandes A, Mendes A et al (2004) Preliminary feasibility study for the use of an adsorption/bio-regeneration system for molinate removal from effluents. Water Res 38:2677–2684. https://doi.org/10.1016/j.watres.2004.03.016

    CAS  Article  Google Scholar 

  137. Sirajudheen P, Karthikeyan P, Basheer MC, Meenakshi S (2020a) Adsorptive removal of anionic azo dyes from effluent water using Zr(IV) encapsulated carboxymethyl cellulose-montmorillonite composite. Environ Chem Ecotoxicol. https://doi.org/10.1016/j.enceco.2020.04.002

    Article  Google Scholar 

  138. Sirajudheen P, Karthikeyan P, Meenakshi S (2020b) Mechanistic performance of organic pollutants removal from water using Zn/Al layered double hydroxides imprinted carbon composite.Surfaces and Interfaces 100581https://doi.org/10.1016/j.surfin.2020.100581

  139. Soares SF, Fernandes T, Trindade T, Daniel-da-Silva AL (2020) Recent advances on magnetic biosorbents and their applications for water treatment. Environ Chem Lett 18:151–164. https://doi.org/10.1007/s10311-019-00931-8

    CAS  Article  Google Scholar 

  140. Sowmya A, Das D, Prabhakar S, et al (2020)Adsorption of perchlorate from water using quaternary ammonium-functionalized chitosan beads.Environ Prog Sustain Energy 39https://doi.org/10.1002/ep.13325

  141. Sowmya A, Meenakshi S (2014a) Effective removal of nitrate and phosphate anions from aqueous solutions using functionalised chitosan beads. Desalin Water Treat 52:2583–2593. https://doi.org/10.1080/19443994.2013.798842

    CAS  Article  Google Scholar 

  142. Sowmya A, Meenakshi S (2014b) A novel quaternized chitosan-melamine-glutaraldehyde resin for the removal of nitrate and phosphate anions. Int J Biol Macromol 64:224–232. https://doi.org/10.1016/j.ijbiomac.2013.11.036

    CAS  Article  Google Scholar 

  143. Srivastava S, Agrawal SB, Mondal MK (2015) Biosorption isotherms and kinetics on removal of Cr(VI) using native and chemically modified Lagerstroemia speciosa bark. Ecol Eng 85:56–66. https://doi.org/10.1016/j.ecoleng.2015.10.011

    Article  Google Scholar 

  144. Temdrara L, Addoun A, Khelifi A (2015) Development of olivestones-activated carbons by physical, chemical and physicochemical methods for phenol removal: a comparative study.Desalin Water Treat. doi: https://doi.org/10.1080/19443994.2013.838523

  145. Thuy PT, Anh NV, Van Der Bruggen B (2012) Evaluation of Two Low-Cost-High-Performance Adsorbent Materials in the Waste-to-Product Approach for the Removal of Pesticides from Drinking Water. Clean - Soil, Air, Water 40:246–253. https://doi.org/10.1002/clen.201100209

    CAS  Article  Google Scholar 

  146. Trivedi NS, Mandavgane SA (2018) Fundamentals of 2, 4 Dichlorophenoxyacetic Acid Removal from Aqueous Solutions. Sep Purif Rev 47:337–354. https://doi.org/10.1080/15422119.2018.1450765

    CAS  Article  Google Scholar 

  147. Trivedi NS, Mandavgane SA, Kulkarni BD (2016) Mustard plant ash: a source of micronutrient and an adsorbent for removal of 2,4-dichlorophenoxyacetic acid. Environ Sci Pollut Res 23:20087–20099. https://doi.org/10.1007/s11356-016-6202-7

    CAS  Article  Google Scholar 

  148. Tsai WT, Chen HR (2013) Adsorption kinetics of herbicide paraquat in aqueous solution onto a low-cost adsorbent, swine-manure-derived biochar. Int J Environ Sci Technol 10:1349–1356. https://doi.org/10.1007/s13762-012-0174-z

    CAS  Article  Google Scholar 

  149. ul Haq A, Shah J, Jan MR, ud Din S, (2015) Kinetic, equilibrium and thermodynamic studies for the sorption of metribuzin from aqueous solution using banana peels, an agro-based biomass. Toxicol Environ Chem 97:124–134. https://doi.org/10.1080/02772248.2015.1041528

    CAS  Article  Google Scholar 

  150. Vacca A, Mais L, Mascia M et al (2020) Design of Experiment for the Optimization of Pesticide Removal from Wastewater by Photo-Electrochemical Oxidation with TiO2 Nanotubes. Catalysts 10:512. https://doi.org/10.3390/catal10050512

    CAS  Article  Google Scholar 

  151. Valenzuela EF, Menezes HC, Cardeal ZL (2020) Passive and grab sampling methods to assess pesticide residues in water. A review Environ Chem Lett 18:1019–1048. https://doi.org/10.1007/s10311-020-00998-8

    CAS  Article  Google Scholar 

  152. Vieira WT, de Farias MB, Spaolonzi MP et al (2020) Removal of endocrine disruptors in waters by adsorption, membrane filtration and biodegradation. A review Environ Chem Lett 18:1113–1143. https://doi.org/10.1007/s10311-020-01000-1

    CAS  Article  Google Scholar 

  153. Vithanage M, Mayakaduwa SS, Herath I et al (2016) Kinetics, thermodynamics and mechanistic studies of carbofuran removal using biochars from tea waste and rice husks. Chemosphere 150:781–789. https://doi.org/10.1016/j.chemosphere.2015.11.002

    CAS  Article  Google Scholar 

  154. Wang W, Maimaiti A, Shi H et al (2019) Adsorption behavior and mechanism of emerging perfluoro-2-propoxypropanoic acid (GenX) on activated carbons and resins. Chem Eng J 364:132–138. https://doi.org/10.1016/j.cej.2019.01.153

    CAS  Article  Google Scholar 

  155. WHO (2009) Guidelines for efficacy testing of insecticides for indoor and outdoor ground-applied space spray applications control of neglected tropical diseases who pesticide evaluation scheme. Geneva World Heal Organ 2–53

  156. WHO (2019) The WHO Recommended Classification of Pesticides by Hazard

  157. Wu Z, Zhong H, Yuan X, et al (2014) Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater.Water Reshttps://doi.org/10.1016/j.watres.2014.09.026

  158. Xi X, Yan J, Quan G, Cui L (2014) Removal of the pesticide pymetrozine from aqueous solution by biochar produced from Brewer’s spent grain at different pyrolytic temperatures. BioResources 9:7696–7709. https://doi.org/10.15376/biores.9.4.7696-7709

    Article  Google Scholar 

  159. Xia H (2008) Enhanced disappearance of dicofol by water hyacinth in water. Environ Technol 29:297–302. https://doi.org/10.1080/09593330802099684

    CAS  Article  Google Scholar 

  160. Yaashikaa PR, Kumar PS, Varjani S, Saravanan A (2020) A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnol Reports 28:e00570. https://doi.org/10.1016/j.btre.2020.e00570

    CAS  Article  Google Scholar 

  161. Yaashikaa PR, Senthil Kumar P, Varjani SJ, Saravanan A (2019) Advances in production and application of biochar from lignocellulosic feedstocks for remediation of environmental pollutants. Bioresour Technol 292:122030. https://doi.org/10.1016/j.biortech.2019.122030

    CAS  Article  Google Scholar 

  162. Yang L, Li M, Li W et al (2018) Bench- and pilot-scale studies on the removal of pesticides from water by VUV/UV process. Chem Eng J 342:155–162. https://doi.org/10.1016/j.cej.2018.02.075

    CAS  Article  Google Scholar 

  163. Ye M, Beach J, Martin JW, Senthilselvan A (2017) Pesticide exposures and respiratory health in general populations. J Environ Sci 51:361–370. https://doi.org/10.1016/j.jes.2016.11.012

    CAS  Article  Google Scholar 

  164. Yonli AH, Batonneau-Gener I, Koulidiati J (2012) Adsorptive removal of α-endosulfan from water by hydrophobic zeolites. An isothermal study J Hazard Mater 203–204:357–362. https://doi.org/10.1016/j.jhazmat.2011.12.042

    CAS  Article  Google Scholar 

  165. Yuna Z (2016) Review of the Natural, Modified, and Synthetic Zeolites for Heavy Metals Removal from Wastewater. Environ Eng Sci 33:443–454. https://doi.org/10.1089/ees.2015.0166

    CAS  Article  Google Scholar 

  166. Zhang C, Zhang RZ, Ma YQ et al (2015) Preparation of Cellulose/Graphene Composite and Its Applications for Triazine Pesticides Adsorption from Water. ACS Sustain Chem Eng 3:396–405. https://doi.org/10.1021/sc500738k

    CAS  Article  Google Scholar 

  167. Zhang G, Wang S, Liu Z (2003) Ultrasonic regeneration of granular activated carbon. Environ Eng Sci 20:57–64. https://doi.org/10.1089/109287503762457581

    CAS  Article  Google Scholar 

  168. Zhao R, Ma X, Xu J, Zhang Q (2019) Removal of the pesticide imidacloprid from aqueous solution by biochar derived from peanut shell. BioResources 13:5656–5669. https://doi.org/10.15376/biores.13.3.5656-5669

    CAS  Article  Google Scholar 

  169. Zhou X, Zhou J, Liu Y et al (2019) Adsorption of endocrine disrupting ethylparaben from aqueous solution by chemically activated biochar developed from oil palm fibre. Sep Sci Technol 54:683–695. https://doi.org/10.1080/01496395.2018.1520723

    CAS  Article  Google Scholar 

  170. Zhou Y, Zhang L, Cheng Z (2015) Removal of organic pollutants from aqueous solution using agricultural wastes: A review. J Mol Liq 212:739–762. https://doi.org/10.1016/j.molliq.2015.10.023

    CAS  Article  Google Scholar 

  171. Zikankuba VL, Mwanyika G, Ntwenya JE, James A (2019)Pesticide regulations and their malpractice implications on food and environment safety. Cogent Food Agric,5https://doi.org/10.1080/23311932.2019.1601544

  172. Zuhra Memon G, Bhanger MI, Akhtar M (2007) The removal efficiency of chestnut shells for selected pesticides from aqueous solutions. J Colloid Interface Sci 315:33–40. https://doi.org/10.1016/j.jcis.2007.06.037

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ashish Kapoor or Ponnusamy Senthil Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ponnuchamy, M., Kapoor, A., Senthil Kumar, P. et al. Sustainable adsorbents for the removal of pesticides from water: a review. Environ Chem Lett (2021). https://doi.org/10.1007/s10311-021-01183-1

Download citation

Keywords

  • Sustainable adsorbents
  • Pesticides
  • Adsorption
  • Decontamination
  • Natural
  • Environmentally friendly