Abstract
The recent development of ionic liquids may induce environmental pollution, yet there is a lack of sensitive analytical methods to detect traces of ionic liquids, notably for quaternary ammonium ionic liquids. Here, we set up a method based on solid-phase extraction and ion chromatography combined to analyze quaternary ammonium ionic liquid cations in river water samples. Cations included tetramethylammonium, tetraethylammonium, tetrapropylammonium and tetrabutylammonium. We used methanesulfonic acid–acetonitrile as mobile phase in a cation-exchange column with carboxylic acid functional groups. A strong acid cation-exchange solid-phase extraction column was used for extraction and enrichment, then water–methanol was eluted to wash impurities, and finally the analytes were eluted with H3PO4–KH2PO4 buffer solution because this buffer has a low conductivity signal which avoids interferences with cation detection. We obtained a detection limit of 0.003 mg/L for river samples. Precision and accuracy met the requirements of quantitative analysis.
This is a preview of subscription content, access via your institution.


References
Bubalo MC, Radosevic K, Redovnikovic IR, Halambek J, Srcek VG (2014) A brief overview of the potential environmental hazards of ionic liquids. Ecotox Environ Saf 99:1–12. https://doi.org/10.1016/j.ecoenv.2013.10.019
Cerra B, Macchiarulo A, Carotti A, Camaioni E, Varfaj I, SardellaGioiello R (2020) Enantioselective HPLC analysis to assist the chemical exploration of chiral imidazolines. Molecules 25:640. https://doi.org/10.3390/molecules25030640
Fan ZQ, Yu H (2018) Determination of piperidinium ionic liquid cations in environmental water samples by solid phase extraction and hydrophilic interaction liquid chromatography. J Chromatogr A 1559:136–140. https://doi.org/10.1016/j.chroma.2017.05.015
Han Y, Zhou ZC, Zhu L, Wei YY, Feng WQ, Xu L, Liu Y, Lin ZJ, Shuai XY, Zhang ZJ, Chen H (2019) The impact and mechanism of quaternary ammonium compounds on the transmission of antibiotic resistance genes. Environ Sci Pollut Res 26:28352–28360. https://doi.org/10.1007/s11356-019-05673-2
Hawkins CA, Rud A, Guthrie ML, Dietz ML (2015) Rapid quantification of imidazolium-based ionic liquids by hydrophilic interaction liquid chromatography: methodology and an investigation of the retention mechanisms. J Chromatogr A 1400:54–64. https://doi.org/10.1016/j.chroma.2015.04.047
Jafari M, Keshavarz MH, Salek H (2019) A simple method for assessing chemical toxicity of ionic liquids on Vibrio fischeri through the structure of cations with specific anions. Ecotoxicol Environ Saf 182:109429. https://doi.org/10.1016/j.ecoenv.2019.109429
Jin XX, Yu H, Ma YJ (2019) Reversed-phase ion-pair chromatography of hydroxyl functionalized imidazolium ionic liquid cations and its application in analysis of environmental water and measurement of hydrophobicity constants. Microchem J 145:988–995. https://doi.org/10.1016/j.microc.2018.11.058
Jung J, Bae Y, Cho YK, Ren XH, Sun YY (2020) Structural insights into conformation of amphiphilic quaternary ammonium chitosans to control fungicidal and anti-biofilm functions. Carbohydr Polym 228:115391. https://doi.org/10.1016/j.carbpol.2019.115391
Katz ED, Lochmuller CH, Scott RPW (1989) MT-water association and its effect on solute retention in liquid chromatography. Anal Chem 61:349–355. https://doi.org/10.1021/ac00179a013
Kurrey R, Deb MK, Shrivas K (2019) Surface enhanced infra-red spectroscopy with modified silver nanoparticles (AgNPs) for detection of quaternary ammonium cationic surfactants. New J Chem 43:8109–8121. https://doi.org/10.1039/C9NJ01795J
Lamouroux C, Foglia G, Rouzo GL (2011) How to separate ionic liquids: use of hydrophilic interaction liquid chromatography and mixed mode phases. J Chromatogr A 1218:3022–3028. https://doi.org/10.1016/j.chroma.2011.03.053
Li R, Sun WJ, Xiao X, Chen B, Y, Wei (2020) Retention of stevioside polar compounds on a sulfonic acid-functionalized cation exchange stationary phase. J Chromatogr A 14:460978. https://doi.org/10.1016/j.chroma.2020.460978
Liu HY, Ding WH (2004) Determination of homologues of quaternary ammonium surfactants by capillary electrophoresis using indirect UV detection. J Chromatogr A 1025:303–312. https://doi.org/10.1016/j.chroma.2003.10.108
Liu S, Ma YJ, Huang X, Fan ZQ, Yu H (2020a) Separation and indirect ultraviolet detection of piperidinium cations by using imidazolium ionic liquids in liquid chromatography. Microchem J 153:104368. https://doi.org/10.1016/j.microc.2019.104368
Liu S, Yu H, Zhang X, Cai YQ (2020b) Reversed–phase ion–pair solid phase extraction and ion chromatography analysis of pyrrolidinium ionic liquid cations in environmental water samples. J Sep Sci 43:2743–2749. https://doi.org/10.1002/jssc.202000234
Lu JG, Li X, Zhao YX, Ma HL, Wang LF, Wang XY, Yu YF, Shen TY, Xu H, Zhang YT (2019) CO2 capture by ionic liquid membrane absorption for reduction of emissions of greenhouse gas. Environ Chem Lett 17:1031–1038. https://doi.org/10.1007/s10311-018-00822-4
Onink F, Meindersma W, Burghoff B, Weggemans W, Aerts G, Haan A (2015) Ion chromatography as a novel method to quantify the solubility of pyridinium ionic liquids in organic solvents. J Chromatogr Sci 53:8–15. https://doi.org/10.1093/chromsci/bmu001
Oskarsson A, Wright MC (2019) Ionic liquids: new emerging pollutants, similarities with perfluorinated alkyl substances (PFASs). Environ Sci Technol 53:10539–10541. https://doi.org/10.1021/acs.est.9b04778
Pawłowska B, Telesiński A, Biczak R (2019) Phytotoxicity of ionic liquids. Chemosphere 237:124436. https://doi.org/10.1016/j.chemosphere.2019.124436
Rajadurai V, Anguraj BL (2020) Ionic liquids to remove toxic metal pollution. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01115-5
Rodríguez ÁS, Ferrera ZS, Rodríguez JJS (2011) A preliminary assessment of levels of antifouling booster biocides in harbours and marinas of the island of Gran Canaria, using SPE-HPLC. Environ Chem Lett 9:203–208. https://doi.org/10.1007/s10311-009-0265-3
Ruiz-Angel MJ, Berthod A (2018) Reversed-phase liquid chromatography analysis of alkyl-imidazolium ionic liquids II effects of different added salts and stationary phase influence. J Chromatogr A 1189:476–482. https://doi.org/10.1016/j.chroma.2007.10.046
Singh S, Kumar V, Chauhan A, Datta S, Wani AB, Singh N, Singh J (2018) Toxicity, degradation and analysis of the herbicide atrazine. Environ Chem Lett 16:211–237. https://doi.org/10.1007/s10311-017-0665-8
Smirnova SV, Pletnev IV (2019) New ionic liquids for extraction preconcentration. J Anal Chem 74:1–11. https://doi.org/10.1134/S106193481901009X
Trujillo-Rodriguez MJ, Nan H, Varona M, Emaus MN, Souza ID, Anderson JL (2019) Advances of ionic liquids in analytical chemistry. Anal Chem 91:505–531. https://doi.org/10.1021/acs.analchem.8b04710
Wang W, He C, Gao Y, Zhang YH, Shi Q (2019) Isolation and characterization of hydrophilic dissolved organic matter in waters by ion exchange solid phase extraction followed by high resolution mass spectrometry. Environ Chem Lett 17:1857–1866. https://doi.org/10.1007/s10311-019-00898-6
Yi YB, Lee JW, Chung CH (2015) Conversion of plant materials into hydroxymethylfurfural using ionic liquids. Environ Chem Lett 13:173–190. https://doi.org/10.1007/s10311-015-0503-9
Zhang C, Cui F, Zeng GM, Jiang M, Yang ZZ, Yu ZG, Zhu MY, Shen LQ (2015) Quaternary ammonium compounds (QACs): a review on occurrence, fate and toxicity in the environment. Sci Total Environ 518–519:352–362. https://doi.org/10.1016/j.scitotenv.2015.03.007
Zhang X, Yu H, Cai YQ (2019) Determination of morpholinium ionic liquid cations in environmental water samples: development of solid-phase extraction method and ion chromatography. Anal Bioanal Chem 411:3427–3434. https://doi.org/10.1007/s00216-019-01834-x
Acknowledgements
This work was supported by the State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (KF2017-21).
Author information
Affiliations
Corresponding authors
Ethics declarations
Conflicts of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary
Rights and permissions
About this article
Cite this article
Liu, S., Yu, H., Ma, Yj. et al. Extraction and detection of quaternary ammonium ionic liquid cations in water samples. Environ Chem Lett (2021). https://doi.org/10.1007/s10311-020-01163-x
Received:
Accepted:
Published:
Keywords
- Environmental water
- Ion chromatography
- Ionic liquids
- Quaternary ammonium cations
- Solid-phase extraction