Extraction and detection of quaternary ammonium ionic liquid cations in water samples

Abstract

The recent development of ionic liquids may induce environmental pollution, yet there is a lack of sensitive analytical methods to detect traces of ionic liquids, notably for quaternary ammonium ionic liquids. Here, we set up a method based on solid-phase extraction and ion chromatography combined to analyze quaternary ammonium ionic liquid cations in river water samples. Cations included tetramethylammonium, tetraethylammonium, tetrapropylammonium and tetrabutylammonium. We used methanesulfonic acid–acetonitrile as mobile phase in a cation-exchange column with carboxylic acid functional groups. A strong acid cation-exchange solid-phase extraction column was used for extraction and enrichment, then water–methanol was eluted to wash impurities, and finally the analytes were eluted with H3PO4–KH2PO4 buffer solution because this buffer has a low conductivity signal which avoids interferences with cation detection. We obtained a detection limit of 0.003 mg/L for river samples. Precision and accuracy met the requirements of quantitative analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Bubalo MC, Radosevic K, Redovnikovic IR, Halambek J, Srcek VG (2014) A brief overview of the potential environmental hazards of ionic liquids. Ecotox Environ Saf 99:1–12. https://doi.org/10.1016/j.ecoenv.2013.10.019

    CAS  Article  Google Scholar 

  2. Cerra B, Macchiarulo A, Carotti A, Camaioni E, Varfaj I, SardellaGioiello R (2020) Enantioselective HPLC analysis to assist the chemical exploration of chiral imidazolines. Molecules 25:640. https://doi.org/10.3390/molecules25030640

    CAS  Article  Google Scholar 

  3. Fan ZQ, Yu H (2018) Determination of piperidinium ionic liquid cations in environmental water samples by solid phase extraction and hydrophilic interaction liquid chromatography. J Chromatogr A 1559:136–140. https://doi.org/10.1016/j.chroma.2017.05.015

    CAS  Article  Google Scholar 

  4. Han Y, Zhou ZC, Zhu L, Wei YY, Feng WQ, Xu L, Liu Y, Lin ZJ, Shuai XY, Zhang ZJ, Chen H (2019) The impact and mechanism of quaternary ammonium compounds on the transmission of antibiotic resistance genes. Environ Sci Pollut Res 26:28352–28360. https://doi.org/10.1007/s11356-019-05673-2

    CAS  Article  Google Scholar 

  5. Hawkins CA, Rud A, Guthrie ML, Dietz ML (2015) Rapid quantification of imidazolium-based ionic liquids by hydrophilic interaction liquid chromatography: methodology and an investigation of the retention mechanisms. J Chromatogr A 1400:54–64. https://doi.org/10.1016/j.chroma.2015.04.047

    CAS  Article  Google Scholar 

  6. Jafari M, Keshavarz MH, Salek H (2019) A simple method for assessing chemical toxicity of ionic liquids on Vibrio fischeri through the structure of cations with specific anions. Ecotoxicol Environ Saf 182:109429. https://doi.org/10.1016/j.ecoenv.2019.109429

    CAS  Article  Google Scholar 

  7. Jin XX, Yu H, Ma YJ (2019) Reversed-phase ion-pair chromatography of hydroxyl functionalized imidazolium ionic liquid cations and its application in analysis of environmental water and measurement of hydrophobicity constants. Microchem J 145:988–995. https://doi.org/10.1016/j.microc.2018.11.058

    CAS  Article  Google Scholar 

  8. Jung J, Bae Y, Cho YK, Ren XH, Sun YY (2020) Structural insights into conformation of amphiphilic quaternary ammonium chitosans to control fungicidal and anti-biofilm functions. Carbohydr Polym 228:115391. https://doi.org/10.1016/j.carbpol.2019.115391

    CAS  Article  Google Scholar 

  9. Katz ED, Lochmuller CH, Scott RPW (1989) MT-water association and its effect on solute retention in liquid chromatography. Anal Chem 61:349–355. https://doi.org/10.1021/ac00179a013

    CAS  Article  Google Scholar 

  10. Kurrey R, Deb MK, Shrivas K (2019) Surface enhanced infra-red spectroscopy with modified silver nanoparticles (AgNPs) for detection of quaternary ammonium cationic surfactants. New J Chem 43:8109–8121. https://doi.org/10.1039/C9NJ01795J

    CAS  Article  Google Scholar 

  11. Lamouroux C, Foglia G, Rouzo GL (2011) How to separate ionic liquids: use of hydrophilic interaction liquid chromatography and mixed mode phases. J Chromatogr A 1218:3022–3028. https://doi.org/10.1016/j.chroma.2011.03.053

    CAS  Article  Google Scholar 

  12. Li R, Sun WJ, Xiao X, Chen B, Y, Wei (2020) Retention of stevioside polar compounds on a sulfonic acid-functionalized cation exchange stationary phase. J Chromatogr A 14:460978. https://doi.org/10.1016/j.chroma.2020.460978

    CAS  Article  Google Scholar 

  13. Liu HY, Ding WH (2004) Determination of homologues of quaternary ammonium surfactants by capillary electrophoresis using indirect UV detection. J Chromatogr A 1025:303–312. https://doi.org/10.1016/j.chroma.2003.10.108

    CAS  Article  Google Scholar 

  14. Liu S, Ma YJ, Huang X, Fan ZQ, Yu H (2020a) Separation and indirect ultraviolet detection of piperidinium cations by using imidazolium ionic liquids in liquid chromatography. Microchem J 153:104368. https://doi.org/10.1016/j.microc.2019.104368

    CAS  Article  Google Scholar 

  15. Liu S, Yu H, Zhang X, Cai YQ (2020b) Reversed–phase ion–pair solid phase extraction and ion chromatography analysis of pyrrolidinium ionic liquid cations in environmental water samples. J Sep Sci 43:2743–2749. https://doi.org/10.1002/jssc.202000234

    CAS  Article  Google Scholar 

  16. Lu JG, Li X, Zhao YX, Ma HL, Wang LF, Wang XY, Yu YF, Shen TY, Xu H, Zhang YT (2019) CO2 capture by ionic liquid membrane absorption for reduction of emissions of greenhouse gas. Environ Chem Lett 17:1031–1038. https://doi.org/10.1007/s10311-018-00822-4

    CAS  Article  Google Scholar 

  17. Onink F, Meindersma W, Burghoff B, Weggemans W, Aerts G, Haan A (2015) Ion chromatography as a novel method to quantify the solubility of pyridinium ionic liquids in organic solvents. J Chromatogr Sci 53:8–15. https://doi.org/10.1093/chromsci/bmu001

    CAS  Article  Google Scholar 

  18. Oskarsson A, Wright MC (2019) Ionic liquids: new emerging pollutants, similarities with perfluorinated alkyl substances (PFASs). Environ Sci Technol 53:10539–10541. https://doi.org/10.1021/acs.est.9b04778

    CAS  Article  Google Scholar 

  19. Pawłowska B, Telesiński A, Biczak R (2019) Phytotoxicity of ionic liquids. Chemosphere 237:124436. https://doi.org/10.1016/j.chemosphere.2019.124436

    CAS  Article  Google Scholar 

  20. Rajadurai V, Anguraj BL (2020) Ionic liquids to remove toxic metal pollution. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01115-5

    Article  Google Scholar 

  21. Rodríguez ÁS, Ferrera ZS, Rodríguez JJS (2011) A preliminary assessment of levels of antifouling booster biocides in harbours and marinas of the island of Gran Canaria, using SPE-HPLC. Environ Chem Lett 9:203–208. https://doi.org/10.1007/s10311-009-0265-3

    CAS  Article  Google Scholar 

  22. Ruiz-Angel MJ, Berthod A (2018) Reversed-phase liquid chromatography analysis of alkyl-imidazolium ionic liquids II effects of different added salts and stationary phase influence. J Chromatogr A 1189:476–482. https://doi.org/10.1016/j.chroma.2007.10.046

    CAS  Article  Google Scholar 

  23. Singh S, Kumar V, Chauhan A, Datta S, Wani AB, Singh N, Singh J (2018) Toxicity, degradation and analysis of the herbicide atrazine. Environ Chem Lett 16:211–237. https://doi.org/10.1007/s10311-017-0665-8

    CAS  Article  Google Scholar 

  24. Smirnova SV, Pletnev IV (2019) New ionic liquids for extraction preconcentration. J Anal Chem 74:1–11. https://doi.org/10.1134/S106193481901009X

    CAS  Article  Google Scholar 

  25. Trujillo-Rodriguez MJ, Nan H, Varona M, Emaus MN, Souza ID, Anderson JL (2019) Advances of ionic liquids in analytical chemistry. Anal Chem 91:505–531. https://doi.org/10.1021/acs.analchem.8b04710

    CAS  Article  Google Scholar 

  26. Wang W, He C, Gao Y, Zhang YH, Shi Q (2019) Isolation and characterization of hydrophilic dissolved organic matter in waters by ion exchange solid phase extraction followed by high resolution mass spectrometry. Environ Chem Lett 17:1857–1866. https://doi.org/10.1007/s10311-019-00898-6

    CAS  Article  Google Scholar 

  27. Yi YB, Lee JW, Chung CH (2015) Conversion of plant materials into hydroxymethylfurfural using ionic liquids. Environ Chem Lett 13:173–190. https://doi.org/10.1007/s10311-015-0503-9

    CAS  Article  Google Scholar 

  28. Zhang C, Cui F, Zeng GM, Jiang M, Yang ZZ, Yu ZG, Zhu MY, Shen LQ (2015) Quaternary ammonium compounds (QACs): a review on occurrence, fate and toxicity in the environment. Sci Total Environ 518–519:352–362. https://doi.org/10.1016/j.scitotenv.2015.03.007

    CAS  Article  Google Scholar 

  29. Zhang X, Yu H, Cai YQ (2019) Determination of morpholinium ionic liquid cations in environmental water samples: development of solid-phase extraction method and ion chromatography. Anal Bioanal Chem 411:3427–3434. https://doi.org/10.1007/s00216-019-01834-x

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (KF2017-21).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hong Yu or Ya-jie Ma.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Yu, H., Ma, Yj. et al. Extraction and detection of quaternary ammonium ionic liquid cations in water samples. Environ Chem Lett (2021). https://doi.org/10.1007/s10311-020-01163-x

Download citation

Keywords

  • Environmental water
  • Ion chromatography
  • Ionic liquids
  • Quaternary ammonium cations
  • Solid-phase extraction