Biofuels and renewable chemicals production by catalytic pyrolysis of cellulose: a review

Abstract

The rise of consumption of traditional fossil fuels has caused emissions of greenhouse gas and deterioration of air quality. Biomass is a promising substitute for fossil fuels because biomass provides biofuels and chemicals by thermochemical conversion such as pyrolysis. In particular, fast pyrolysis of biomass cellulose into chemicals and biofuels has recently drawn attention. Issues of commercialization of fast pyrolysis products include low heating value, low stability, and high oxygen content and acidity. Consequently, new catalysts for enhanced cellulose conversion are sought for. Here, we review the production of biofuel and renewable chemicals from cellulose pyrolysis using acidic and basic catalysts. Acidic catalysts are more suitable to produce biofuels containing about 50% aromatic hydrocarbons, compared to basic catalysts which give biofuels containing 15% aromatic hydrocarbons. Basic catalysts are preferred to produce renewables chemicals, particularly ketone compounds. We explain the mechanism of cellulose pyrolysis with acidic and basic catalysts. The strong acid sites on the catalyst facilitate high selectivity for aromatic compounds in the pyrolysis oil, whereas basic active sites induce double-bond migration, increase carbon-coupling reactions, and ketone production.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Abbas I, Badran G, Verdin A, Ledoux F, Roumié M, Courcot D, Garçon G (2018) Polycyclic aromatic hydrocarbon derivatives in airborne particulate matter: sources, analysis and toxicity. Environ Chem Lett 16:439–475. https://doi.org/10.1007/s10311-017-0697-0

    CAS  Article  Google Scholar 

  2. Akalın MK, Tekin K, Karagöz S (2017) Supercritical fluid extraction of biofuels from biomass. Environ Chem Lett 15:29–41. https://doi.org/10.1007/s10311-016-0593-z

    CAS  Article  Google Scholar 

  3. Aravind S, Kumar PS, Kumar NS, Siddarth N (2020) Conversion of green algal biomass into bioenergy by pyrolysis. A review. Environ Chem Lett 18:829–849. https://doi.org/10.1007/s10311-020-00990-2

    CAS  Article  Google Scholar 

  4. Babaei Z, Chermahini AN, Dinari M, Saraji M, Shahvar A (2018) Cleaner production of 5-hydroxymethylfurfural from fructose using ultrasonic propagation. J Clean Prod 198:381–388. https://doi.org/10.1016/j.jclepro.2018.06.305

    CAS  Article  Google Scholar 

  5. Balajii M, Niju S (2019) Biochar-derived heterogeneous catalysts for biodiesel production. Environ Chem Lett 17:1447–1469. https://doi.org/10.1007/s10311-019-00885-x

    CAS  Article  Google Scholar 

  6. Beeck BO, Dusselier M, Geboers J, Holsbeek J, Morré E, Oswald S, Sels BF (2015) Direct catalytic conversion of cellulose to liquid straight-chain alkanes. Energy Environ Sci 8:230–240. https://doi.org/10.1039/C4EE01523A

    CAS  Article  Google Scholar 

  7. Behrens M, Cross JS, Akasaka H, Ohtake N (2017) A study of guaiacol, cellulose, and Hinoki wood pyrolysis with silica, ZrO2 & TiO2 and ZSM-5 catalysts. J Anal Appl Pyrol 125:178–184. https://doi.org/10.1016/j.jaap.2017.04.004

    CAS  Article  Google Scholar 

  8. Bekkum H, Flanigen EM, Jacobs PA, Jansen JC (2001) Introduction to zeolite science and practice, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  9. Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sustain Energy Rev 4:1–73. https://doi.org/10.1016/S1364-0321(99)00007-6

    CAS  Article  Google Scholar 

  10. Cao L, Yu IKM, Chena SS, Tsanga DCW, Wanga L, Xionga X, Zhang S, Ok YS, Kwon EE, Song H, Poon CS (2018) Production of 5-hydroxymethylfurfural from starch-rich food waste catalyzed by sulfonated biochar. Bioresour Technol 252:76–82. https://doi.org/10.1016/j.biortech.2017.12.098

    CAS  Article  Google Scholar 

  11. Casoni AI, Nievas ML, Moyano EL, Álvarez M, Diez A, Dennehy M, Volpe MA (2016) Catalytic pyrolysis of cellulose using MCM-41 type catalysts. Appl Catal A 514:235–240. https://doi.org/10.1016/j.apcata.2016.01.017

    CAS  Article  Google Scholar 

  12. Chaihad N, Karnjanakom S, Kurnia I, Yoshida A, Abudula A, Reubroycharoen P, Guan G (2019) In-situ catalytic upgrading of bio-oils derived from fast pyrolysis of cellulose, hemicellulose, and lignin over various zeolites. J Jpn Inst Energy 98:254–258. https://doi.org/10.3775/jie.98.254

    Article  Google Scholar 

  13. Chauhan SK, Gangopadhyay S, Singh N (2009) Environmental aspects of biofuels in road transportation. Environ Chem Lett 7:289–299. https://doi.org/10.1007/s10311-008-0185-7

    CAS  Article  Google Scholar 

  14. Chen SS, Maneerung T, Tsang DCW, Ok YS, Wang CH (2017) Valorization of biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts. Chem Eng J 328:246–273. https://doi.org/10.1016/j.cej.2017.07.020

    CAS  Article  Google Scholar 

  15. Chen T, Peng L, Yu X, He L (2018a) Magnetically recyclable cellulose-derived carbonaceous solid acid catalyzed the biofuel 5-ethoxymethylfurfural synthesis from renewable carbohydrates. Fuel 219:344–352. https://doi.org/10.1016/j.fuel.2018.01.129

    CAS  Article  Google Scholar 

  16. Chen H, Shi X, Zhou F, Ma H, Qiao K, Lu X, Huang H (2018b) Catalytic fast pyrolysis of cellulose to aromatics over hierarchical nanocrystalline ZSM-5 zeolites prepared using sucrose as a template. Catal Commun 110:102–105. https://doi.org/10.1016/j.catcom.2018.03.016

    CAS  Article  Google Scholar 

  17. Chen X, Li S, Liu Z, Chen Y, Yang H, Wang X, Chen H (2019a) Pyrolysis characteristics of lignocellulosic biomass components in the presence of CaO. Bioresour Technol 287:121493. https://doi.org/10.1016/j.biortech.2019.121493

    CAS  Article  Google Scholar 

  18. Chen G, Wang X, Jiang Y, Mu X, Liu H (2019b) Insights into deactivation mechanism of sulfonated carbonaceous solid acids probed by cellulose hydrolysis. Catal Today 319:25–30. https://doi.org/10.1016/j.cattod.2018.03.069

    CAS  Article  Google Scholar 

  19. Chen L, Li Y, Zhang X, Liu Y, Zhang Q, Wang C, Ma L (2019c) One-pot conversion of cellulose to liquid hydrocarbon efficiently catalyzed by Ru/C and boron phosphate in aqueous medium. Energy Procedia 158:160–166. https://doi.org/10.1016/j.egypro.2019.01.064

    CAS  Article  Google Scholar 

  20. Chi Y, Xue J, Zhuo J, Zhang D, Liu M, Yao Q (2018) Catalytic co-pyrolysis of cellulose and polypropylene over all-silica mesoporous catalyst MCM-41 and Al-MCM-41. Sci Total Environ 633:1105–1113. https://doi.org/10.1016/j.scitotenv.2018.03.239

    CAS  Article  Google Scholar 

  21. Collard FX, Blin J (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sustain Energy Rev 38:594–608. https://doi.org/10.1016/j.rser.2014.06.013

    CAS  Article  Google Scholar 

  22. Dai G, Wang S, Zou Q, Huang S (2018) Improvement of aromatics production from catalytic pyrolysis of cellulose over metal-modified hierarchical HZSM-5. Fuel Process Technol 179:319–323. https://doi.org/10.1016/j.fuproc.2018.07.023

    CAS  Article  Google Scholar 

  23. Dai L, Wang Y, Liu Y, Ruan R, Duan D, Zhao Y, Jiang L (2019) Catalytic fast pyrolysis of torrefied corn cob to aromatic hydrocarbons over Ni-modified hierarchical ZSM-5 catalyst. Bioresour Technol 27:407–414. https://doi.org/10.1016/j.biortech.2018.10.062

    CAS  Article  Google Scholar 

  24. de Amorim JDP, de Souza KC, Duarte CR, da Silva Duarte I, Ribeiro FDAS, Silva GS, Sarubbo LA (2020) Plant and bacterial nanocellulose: production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environ Chem Lett 18:851–869. https://doi.org/10.1007/s10311-020-00989-9

    CAS  Article  Google Scholar 

  25. Delidovich I, Palkovits R (2016) Impacts of acidity and textural properties of oxidized carbon materials on their catalytic activity for hydrolysis of cellobiose. Microporous Mesoporous Mater 219:317–321. https://doi.org/10.1016/j.micromeso.2015.07.011

    CAS  Article  Google Scholar 

  26. Donar YO, Sınağ A (2016) Catalytic effect of tin oxide nanoparticles on cellulose pyrolysis. J Anal Appl Pyrolysis 119:69–74. https://doi.org/10.1016/j.jaap.2016.03.016

    CAS  Article  Google Scholar 

  27. Fabbri D, Torri C, Baravelli V (2007a) Effect of zeolites and nanopowder metal oxides on the distribution of chiral anhydrosugars evolved from pyrolysis of cellulose: an analytical study. J Anal Appl Pyrolysis 80:24–29. https://doi.org/10.1016/j.jaap.2006.12.025

    CAS  Article  Google Scholar 

  28. Fabbri D, Torri C, Mancini I (2007b) Pyrolysis of cellulose catalysed by nanopowder metal oxides: production and characterisation of a chiral hydroxylactone and its role as building block. Green Chem 9:1374–1379. https://doi.org/10.1039/B707943E

    CAS  Article  Google Scholar 

  29. Fu X, Wang X, Li Y, Xin Y, Li S (2019) Enhancing and upgrading bio-oil during catalytic pyrolysis of cellulose: the synergistic effect of potassium cation and different anions impregnation. Fuel Process Technol 193:338–347. https://doi.org/10.1016/j.fuproc.2019.05.022

    CAS  Article  Google Scholar 

  30. Gong X, Yu Y, Gao X, Qiao Y, Xu M, Wu H (2014) Formation of anhydro-sugars in the primary volatiles and solid residues from cellulose fast pyrolysis in a wire-mesh reactor. Energy Fuels 28:5204–5211. https://doi.org/10.1021/ef501112q

    CAS  Article  Google Scholar 

  31. Grams J, Niewiadomski M, Ruppert AM, Kwapińsk W (2015) Influence of Ni catalyst support on the product distribution of cellulose fast pyrolysis vapors upgrading. J Anal Appl Pyrolysis 113:557–563. https://doi.org/10.1016/j.jaap.2015.03.011

    CAS  Article  Google Scholar 

  32. Guo X, Zheng Y, Zhang B, Chen J (2009) Analysis of coke precursor on catalyst and study on regeneration of catalyst in upgrading of bio-oil. Biomass Bioenergy 33:1469–1473. https://doi.org/10.1016/j.biombioe.2009.07.002

    CAS  Article  Google Scholar 

  33. Hajilary N, Rezakazemi M, Shirazian S (2019) Biofuel types and membrane separation. Environ Chem Lett 17:1–18. https://doi.org/10.1007/s10311-018-0777-9

    CAS  Article  Google Scholar 

  34. Hattori HS (2001) Solid base catalysts: generation of basic sites and application to organic synthesis. Appl Catal A 222:247–259. https://doi.org/10.1016/S0926-860X(01)00839-0

    CAS  Article  Google Scholar 

  35. Hattori H, Shima M, Kabashima H (2000) Alcoholysis of ester and epoxide catalyzed by solid bases alcoholysis of propylene oxide. Stud Surf Sci Catal 130:3507–3512. https://doi.org/10.1016/S0167-2991(00)80566-2

    Article  Google Scholar 

  36. He X, Chen Y, Liu Y, Fang L, Chen Z, Ji H (2019) Distribution of products from catalytic conversion of cellulose over metal-modified hierarchical h-zsm-5 in aqueous media. Catal Lett 149:2078–2088. https://doi.org/10.1007/s10562-019-02795-7

    CAS  Article  Google Scholar 

  37. Helle S, Bennett NM, Lau K, Matsui JH, Duff SJ (2007) A kinetic model for production of glucose by hydrolysis of levoglucosan and cellobiosan from pyrolysis oil. Carbohydr Res 342:2365–2370. https://doi.org/10.1016/j.carres.2007.07.016

    CAS  Article  Google Scholar 

  38. Hoang TQ, Zhu X, Sooknoi T, Resasco DE, Mallinson RG (2010) A comparison of the reactivities of propanal and propylene on HZSM-5. J Catal 271:201–208. https://doi.org/10.1016/j.jcat.2010.01.017

    CAS  Article  Google Scholar 

  39. Hoff TC, Gardner DW, Thilakaratne R, Wang K, Hansen TW, Brown RC, Tessonnier JP (2016) Tailoring ZSM-5 zeolites for the fast pyrolysis of biomass to aromatic hydrocarbons. Chemsuschem 9:1473–1482. https://doi.org/10.1002/cssc.201600186

    CAS  Article  Google Scholar 

  40. Hong Y, Lee Y, Rezaei PS, Kim BS, Jeon JK, Jae J, Park YK (2017) In-situ catalytic copyrolysis of cellulose and polypropylene over desilicated ZSM-5. Catal Today 293:151–158. https://doi.org/10.1016/j.cattod.2016.11.045

    CAS  Article  Google Scholar 

  41. Hu S, Jiang L, Wang Y, Su S, Sun L, Xu B (2015) Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures. Bioresour Technol 192:23–30. https://doi.org/10.1016/j.biortech.2015.05.042

    CAS  Article  Google Scholar 

  42. Hu L, Li Z, Wu Z, Lin L, Zhou S (2016) Catalytic hydrolysis of microcrystalline and rice straw-derived cellulose over a chlorine-doped magnetic carbonaceous solid acid. Ind Crop Prod 84:408–417. https://doi.org/10.1016/j.indcrop.2016.02.039

    CAS  Article  Google Scholar 

  43. Huang YB, Fu Y (2013) Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem 15:1095–1111. https://doi.org/10.1039/c3gc40136g

    CAS  Article  Google Scholar 

  44. Huang J, Long W, Agrawal PK, Jones CW (2009) Effects of acidity on the conversion of the model bio-oil ketone cyclopentanone on H-Y zeolites. J Phys Chem C 113:16702–16710. https://doi.org/10.1021/jp905661w

    CAS  Article  Google Scholar 

  45. Huang F, Li W, Zhang T, Li D, Liu Q, Zhu X, Ma L (2018) Conversion of biomass-derived carbohydrates into 5-hydroxymethylfurfural catalyzed by sulfonic acid-functionalized carbon material with high strong-acid density in γ-valerolactone. Res Chem Intermed 44:5439–5453. https://doi.org/10.1007/s11164-018-3432-y

    CAS  Article  Google Scholar 

  46. Iliopoulou EF, Stefanidis S, Kalogiannis K, Psarras AC, Delimitis A, Triantafyllidis KS, Lappas AA (2014) Pilot-scale validation of Co-ZSM-5 catalyst performance in the catalytic upgrading of biomass pyrolysis vapours. Green Chem 16:662–674. https://doi.org/10.1039/c3gc41575a

    CAS  Article  Google Scholar 

  47. Kabir G, Hameed BH (2017) Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals. Renew Sustain Energy Rev 70:945–967. https://doi.org/10.1016/j.rser.2016.12.001

    CAS  Article  Google Scholar 

  48. Kalogiannis KG, Stefanidis SD, Karakoulia SA, Triantafyllidis KS, Yiannoulakis H, Michailof C, Lappas AA (2018) First pilot scale study of basic vs acidic catalysts in biomass pyrolysis: deoxygenation mechanisms and catalyst deactivation. Appl Catal B 238:346–357. https://doi.org/10.1016/j.apcatb.2018.07.016

    CAS  Article  Google Scholar 

  49. Karanjkar PU, Coolman RJ, Huber GW, Blatnik MT, Almalkie S, de Bruyn Kops SM, Mountziaris TJ, Conner WC (2014) Production of aromatics by catalytic fast pyrolysis of cellulose in a bubbling fluidized bed reactor. AIChE J 60:1320–1335. https://doi.org/10.1002/aic.14376

    CAS  Article  Google Scholar 

  50. Kato Y, Sekine Y (2013) One pot direct catalytic conversion of cellulose to hydrocarbon by decarbonation using Pt/H-beta zeolite catalyst at low temperature. Catal Lett 143:418–423. https://doi.org/10.1007/s10562-013-0992-8

    CAS  Article  Google Scholar 

  51. Kawamoto H (2016) Review of reactions and molecular mechanisms in cellulose pyrolysis. Curr Org Chem 20:2444–2457. https://doi.org/10.2174/2213337203666160525102910

    CAS  Article  Google Scholar 

  52. Kim P, Rials TG, Labbé N, Chmely SC (2016a) Screening of mixed-metal oxide species for catalytic ex situ vapor-phase deoxygenation of cellulose by py-GC/MS coupled with multivariate analysis. Energy Fuels 30:3167–3174. https://doi.org/10.1021/acs.energyfuels.6b00347

    CAS  Article  Google Scholar 

  53. Kim BS, Kim YM, Lee HW, Jae J, Kim DH, Jung SC, Park YK (2016b) Catalytic copyrolysis of cellulose and thermoplastics over HZSM-5 and HY. ACS Sustain Chem Eng 4:1354–1363. https://doi.org/10.1021/acssuschemeng.5b01381

    CAS  Article  Google Scholar 

  54. Kubů M, Millini R, Žilková N (2019) 10-ring Zeolites: synthesis, characterization and catalytic applications. Catal Today 324:3–14. https://doi.org/10.4028/www.scientific.net/AMR.749.38

    CAS  Article  Google Scholar 

  55. Lee HW, Kim YM, Jae J, Jeon JK, Jung SC, Kim SC, Park YK (2016) Production of aromatic hydrocarbons via catalytic co-pyrolysis of torrefied cellulose and polypropylene. Energy Convers Manag 129:81–88. https://doi.org/10.1016/j.enconman.2016.10.001

    CAS  Article  Google Scholar 

  56. Lei X, Bi Y, Zhou W, Chen H, Hu J (2018) Catalytic fast pyrolysis of cellulose by integrating dispersed nickel catalyst with HZSM-5 zeolite. IOP Conf Ser Earth Environ Sci 108:022017. https://doi.org/10.1088/1755-1315/108/2/022017

    Article  Google Scholar 

  57. Leng E, Yang W, Xun G, Zhang B, Yang Z, Xu M (2017) Effect of KCl and CaCl2 loading on the formation of reaction intermediates during cellulose fast pyrolysis. P Combust Inst 36:2263–2270. https://doi.org/10.1016/j.proci.2016.06.167

    CAS  Article  Google Scholar 

  58. Leng E, Costa M, Gong X, Zheng A, Liu S, Xu M (2019) Effects of KCl and CaCl2 on the evolution of anhydrosugars in reaction intermediates during cellulose fast pyrolysis. Fuel 251:307–315. https://doi.org/10.1016/j.fuel.2019.04.006

    CAS  Article  Google Scholar 

  59. Li Y, Liao Y, Cao X, Wang T, Ma L, Long J, Xua Y (2015) Advances in hexitol and ethylene glycol production by one-pot hydrolytic hydrogenation and hydrogenolysis of cellulose. Biomass Bioenergy 74:148–161. https://doi.org/10.1016/j.biombioe.2014.12.025

    CAS  Article  Google Scholar 

  60. Li HX, Zhang X, Wang Q, Zhang K, Cao Q (2018) Preparation of the recycled and regenerated mesocarbon microbeads-based solid acid and its catalytic behaviors for hydrolysis of cellulose. Bioresour Technol 270:166–171. https://doi.org/10.1016/j.biortech.2018.09.037

    CAS  Article  Google Scholar 

  61. Li C, Xu G, Li K, Wang C, Zhang Y (2019) A weakly basic Co/CeO x catalytic system for one-pot conversion of cellulose to diols: Kungfu on eggs. Chem Commun 55:7663–7666. https://doi.org/10.1039/c9cc04020j

    CAS  Article  Google Scholar 

  62. Li HX, Zhang X, Wang Q, Yang D, Cao Q, Jin LE (2020a) Study on the hydrolysis of cellulose with the regenerable and recyclable multifunctional solid acid as a catalyst and its catalytic hydrolytic kinetics. Cellulose 27:285–300. https://doi.org/10.1007/s10570-019-02777-3

    CAS  Article  Google Scholar 

  63. Li HX, Shi WJ, Zhang X, Liu P, Cao Q, Jin LE (2020b) Catalytic hydrolysis of cellulose to total reducing sugars with superior recyclable magnetic multifunctional MCMB-based solid acid as a catalyst. J Chem Technol Biot 95:770–780. https://doi.org/10.1002/jctb.6262

    CAS  Article  Google Scholar 

  64. Lin X, Kong L, Cai H, Zhang Q, Bi D, Yi W (2019) Effects of alkali and alkaline earth metals on the co-pyrolysis of cellulose and high density polyethylene using TGA and Py-GC/MS. Fuel Process Technol 191:71–78. https://doi.org/10.1016/j.fuproc.2019.03.015

    CAS  Article  Google Scholar 

  65. Liu D, Yu Y, Wu H (2013) Differences in water-soluble intermediates from slow pyrolysis of amorphous and crystalline cellulose. Energy Fuels 27:1371–1380. https://doi.org/10.1021/ef301823g

    CAS  Article  Google Scholar 

  66. Liu S, Tamura M, Nakagawa Y, Tomishige K (2014) One-pot conversion of cellulose into n-hexane over the Ir-ReOx/SiO2 catalyst combined with HZSM-5. ACS Sustain Chem Eng 2:1819–1827. https://doi.org/10.1021/sc5001463

    CAS  Article  Google Scholar 

  67. Liu Y, Chen L, Wang T, Zhang Q, Wang C, Yan J, Ma L (2015) One-pot catalytic conversion of raw lignocellulosic biomass into gasoline alkanes and chemicals over LiTaMoO6 and Ru/C in aqueous phosphoric acid. ACS Sustain Chem Eng 3:1745–1755. https://doi.org/10.1021/acssuschemeng.5b00256

    CAS  Article  Google Scholar 

  68. Liu SN, Cao JP, Zhao XY, Wang JX, Ren XY, Yuan ZS, Wei XY (2019) Effect of zeolite structure on light aromatics formation during upgrading of cellulose fast pyrolysis vapor. J Energy Inst 92:1567–1576. https://doi.org/10.1016/j.joei.2018.07.017

    CAS  Article  Google Scholar 

  69. Liu J, Jia H, Zhu K, Zhao S, Lichtfouse E (2020) Formation of environmentally persistent free radicals and reactive oxygen species during the thermal treatment of soils contaminated by polycyclic aromatic hydrocarbons. Environ Chem Lett. https://doi.org/10.1007/s10311-020-00991-1

    Article  Google Scholar 

  70. Long Y, Yu Y, Chua YW, Wu H (2017) Acid-catalysed cellulose pyrolysis at low temperatures. Fuel 193:460–466. https://doi.org/10.1016/j.fuel.2016.12.067

    CAS  Article  Google Scholar 

  71. Lu Q, Xiong WM, Li WZ, Guo QX, Zhu XF (2009) Catalytic pyrolysis of cellulose with sulfated metal oxides: a promising method for obtaining high yield of light furan compounds. Bioresour Technol 100:4871–4876. https://doi.org/10.1016/j.biortech.2009.04.068

    CAS  Article  Google Scholar 

  72. Lu Q, Zhang ZF, Dong CQ, Zhu XF (2010) Catalytic upgrading of biomass fast pyrolysis vapors with nano metal oxides: an analytical Py-GC/MS study. Energies 3:1805–1820. https://doi.org/10.3390/en3111805

    CAS  Article  Google Scholar 

  73. Lu Q, Ye XN, Zhang ZB, Dong CQ, Zhang Y (2014a) Catalytic fast pyrolysis of cellulose and biomass to produce levoglucosenone using magnetic SO2−/4 TiO2–Fe3O4. Bioresour Technol 171:10–15. https://doi.org/10.1016/j.biortech.2014.08.075

    CAS  Article  Google Scholar 

  74. Lu Q, Zhang Y, Dong CQ, Yang YP, Yu HZ (2014b) The mechanism for the formation of levoglucosenone during pyrolysis of β-D-glucopyranose and cellobiose: a density functional theory study. J Anal Appl Pyrolysis 110:34–43. https://doi.org/10.1016/j.jaap.2014.08.002

    CAS  Article  Google Scholar 

  75. Mahaban A, Gupta P (2020) Carbon-based solid acids: a review. Environ Chem Lett 18:229–314. https://doi.org/10.1007/s10311-019-00940-7

    CAS  Article  Google Scholar 

  76. Marathe PS, Oudenhoven SRG, Heerspink PW, Kersten SRA, Westerhof RJM (2017) Fast pyrolysis of cellulose in vacuum: the effect of potassium salts on the primary reactions. Chem Eng J 329:187–197. https://doi.org/10.1016/j.cej.2017.05.134

    CAS  Article  Google Scholar 

  77. Matsuoka S, Kawamoto H, Saka S (2014) What is active cellulose in pyrolysis? An approach based on reactivity of cellulose reducing end. J Anal Appl Pyrolysis 106:138–146. https://doi.org/10.1016/j.jaap.2014.01.011

    CAS  Article  Google Scholar 

  78. Mihalcik DJ, Mullen CA, Boateng AA (2011) Screening acidic zeolites for catalytic fast pyrolysis of biomass and its components. J Anal Appl Pyrolysis 92:224–232. https://doi.org/10.1016/j.jaap.2011.06.001

    CAS  Article  Google Scholar 

  79. Mohabeer C, Reyes L, Abdelouahed L, Marcotte S, Taouk B (2019) Investigating catalytic de-oxygenation of cellulose, xylan and lignin bio-oils using HZSM-5 and Fe-HZSM-5. J Anal Appl Pyrolysis 137:118–127. https://doi.org/10.1016/j.jaap.2018.11.016

    CAS  Article  Google Scholar 

  80. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20:848–889. https://doi.org/10.1021/ef0502397

    CAS  Article  Google Scholar 

  81. Mortensen PM, Grunwaldt J, Jensen PA, Knudsen KG, Jensen AD (2011) Applied Catalysis A: general A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A 407:1–19. https://doi.org/10.1016/j.apcata.2011.08.046

    CAS  Article  Google Scholar 

  82. Mourant D, Wang Z, He M, Wang XS, Garcia-Perez M, Ling K (2011) Mallee wood fast pyrolysis: effects of alkali and alkaline earth metallic species on the yield and composition of bio-oil. Fuel 90:2915–2922. https://doi.org/10.1016/j.fuel.2011.04.033

    CAS  Article  Google Scholar 

  83. Murata K, Liu Y, Inaba M, Takahara I (2010) Hydrocracking of biomass-derived materials into alkanes in the presence of platinum-based catalyst and hydrogen. Catal Lett 140:8–13. https://doi.org/10.1007/s10562-010-0396-y

    CAS  Article  Google Scholar 

  84. Nielsen AT, Houlihan WJ (2011) The aldol condensation. Wiley, Hoboken, pp 1–438

    Google Scholar 

  85. Nieva ML, Volpe MA, Moyano EL (2015) Catalytic and catalytic free process for cellulose conversion: fast pyrolysis and microwave induced pyrolysis studies. Cellulose 22:215–228. https://doi.org/10.1007/s10570-014-0484-z

    CAS  Article  Google Scholar 

  86. Ogo S, Nishio T, Sekine H, Onda A, Sekine Y (2016) One pot direct catalytic conversion of cellulose to C3 and C4 hydrocarbons using Pt/H-USY zeolite catalyst at low temperature. Fuel Process Technol 141:123–129. https://doi.org/10.1016/j.fuproc.2015.06.032

    CAS  Article  Google Scholar 

  87. Park YK, Jun BR, Park SH, Jeon JK, Lee SH, Kim SS, Jeong KE (2014) Catalytic conversion of cellulose over mesoporous Y zeolite. J Nanosci Nanotechnol 14:5120–5123. https://doi.org/10.1166/jnn.2014.8406

    CAS  Article  Google Scholar 

  88. Patwardhan PR, Satrio JA, Brown RC, Shanks BH (2009) Product distribution from fast pyrolysis of glucose-based carbohydrates. J Anal Appl Pyrolysis 86:323–330. https://doi.org/10.1016/j.jaap.2009.08.007

    CAS  Article  Google Scholar 

  89. Peng L, Fu D, Chu H, Wang Z, Qi H (2020) Biofuel production from microalgae: a review. Environ Chem Lett 18:285–297. https://doi.org/10.1007/s10311-019-00939-0

    CAS  Article  Google Scholar 

  90. Pham TN, Sooknoi T, Crossley SP, Resasco DE (2013) Ketonization of carboxylic acids: mechanism, catalysts, and implications for biomass concersion. Am Chem Soc Catal 3:2456–2473. https://doi.org/10.1016/j.jaap.2009.08.007

    CAS  Article  Google Scholar 

  91. Pulido A, Oliver-Tomas B, Renz M, Boronat M, Corma A (2013) Ketonic decarboxylation reaction mechanism: a combined experimental and DFT study. Chemsuschem 6:141–151. https://doi.org/10.1002/cssc.201200419

    CAS  Article  Google Scholar 

  92. Qi X, Lian Y, Yan L, Smith RL Jr (2014) One-step preparation of carbonaceous solid acid catalysts by hydrothermal carbonization of glucose for cellulose hydrolysis. Catal Commun 57:50–54. https://doi.org/10.1016/j.catcom.2014.07.035

    CAS  Article  Google Scholar 

  93. Qiao K, Shi X, Zhou F, Chen H, Fu J, Ma H, Huang H (2017) Catalytic fast pyrolysis of cellulose in a microreactor system using hierarchical zsm-5 zeolites treated with various alkalis. Appl Catal A 547:274–282. https://doi.org/10.1016/j.apcata.2017.07.034

    CAS  Article  Google Scholar 

  94. Rahman MM, Liu R, Cai J (2018) Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil–a review. Fuel Process Technol 180:32–46. https://doi.org/10.1016/j.fuproc.2018.08.002

    CAS  Article  Google Scholar 

  95. Rezaei PS, Shafaghat H, Daud WMAW (2014) Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: a review. Appl Catal A 469:490–511. https://doi.org/10.1016/j.apcata.2013.09.036

    CAS  Article  Google Scholar 

  96. Rezaei PS, Shafaghat H, Daud WMAW (2015) Suppression of coke formation and enhancement of aromatic hydrocarbon production in catalytic fast pyrolysis of cellulose over different zeolites: effects of pore structure and acidity. RSC Adv 5:65408–65414. https://doi.org/10.1039/c5ra11332f

    Article  Google Scholar 

  97. Ryu HW, Tsang YF, Lee HW, Jae J, Jung SC, Lam SS, Park YK (2019) Catalytic co-pyrolysis of cellulose and linear low-density polyethylene over MgO-impregnated catalysts with different acid-base properties. Chem Eng J 373:375–381. https://doi.org/10.1016/j.cej.2019.05.049

    CAS  Article  Google Scholar 

  98. Shafizadeh F (1985) Pyrolytic reactions and products of biomass. In Fundamentals of thermochemical biomass conversion (pp. 183-217). Springer, Dordrecht

  99. Shen F, Guo T, Bai C, Qiu M, Qi X (2018) Hydrolysis of cellulose with one-pot synthesized sulfonated carbonaceous solid acid. Fuel Process Technol 169:244–247. https://doi.org/10.1016/j.fuproc.2017.10.015

    CAS  Article  Google Scholar 

  100. Shuai L, Pan X (2012) Hydrolysis of cellulose by cellulase-mimetic solid catalyst. Energy Environ Sci 5:6889–6894. https://doi.org/10.1039/c2ee03373a

    CAS  Article  Google Scholar 

  101. Siddiqui MTH, Nizamuddin S, Baloch HA, Mubarak NM, Dumbre DK, Asiri AM, Griffin GJ (2018) Synthesis of magnetic carbon nanocomposites by hydrothermal carbonization and pyrolysis. Environ Chem Lett 16:821–844. https://doi.org/10.1007/s10311-018-0724-9

    CAS  Article  Google Scholar 

  102. Sophonrat N, Sandström L, Svanberg R, Han T, Dvinskikh S, Lousada CM, Yang W (2019) Ex-situ catalytic pyrolysis of a mixture of PVC and cellulose using calcium oxide for HCl adsorption and catalytic reforming of the pyrolysis product. Ind Eng Chem Res 58:13960–13970. https://doi.org/10.1021/acs.iecr.9b02299

    CAS  Article  Google Scholar 

  103. Srinivasan V, Adhikari S, Chattanathan SA, Tu M, Park S (2014) Catalytic pyrolysis of raw and thermally treated cellulose using different acidic zeolites. Bioenergy Res 7:867–875. https://doi.org/10.1007/s12155-014-9426-8

    CAS  Article  Google Scholar 

  104. Srivastava N, Srivastava M, Manikanta A, Singh P, Ramteke PW, Mishra PK (2017) Nanomaterials for biofuel production using lignocellulosic waste. Environ Chem Lett 15:179–184. https://doi.org/10.1007/s10311-017-0622-6

    CAS  Article  Google Scholar 

  105. Srivastava RK, Shetti NP, Reddy KR, Aminabhavi TM (2020) Biofuels, biodiesel and biohydrogen production using bioprocesses. A review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-00999-7

    Article  Google Scholar 

  106. Stefanidis SD, Karakoulia SA, Kalogiannis KG, Iliopoulou EF, Delimitis A, Yiannoulakis H, Zampetakis T, Lappas AA, Triantafyllidis KS (2016) Natural magnesium oxide (MgO) catalysts: a cost-effective sustainable alternative to acid zeolites for the in situ upgrading of biomass fast pyrolysis oil. Appl Catal B 196:155–173. https://doi.org/10.1016/j.apcatb.2016.05.031

    CAS  Article  Google Scholar 

  107. Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2008) Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J Am Chem Soc 130:12787–12793. https://doi.org/10.1021/ja803983h

    CAS  Article  Google Scholar 

  108. Wang Z, Lu Q, Zhu X, Zhang Y (2011) Catalytic fast pyrolysis of cellulose to prepare levoglucosenone using sulfated zirconia. Chemsuschem 4:79–84. https://doi.org/10.1002/cssc.201000210

    CAS  Article  Google Scholar 

  109. Wang Y, Song H, Peng L, Zhang Q, Yao S (2014) Recent developments in the catalytic conversion of cellulose. Biotechnol Biotechnol Equip 28:981–988. https://doi.org/10.1080/13102818.2014.980049

    CAS  Article  Google Scholar 

  110. Wang W, Shi Y, Cui Y, Li X (2018) Catalytic fast pyrolysis of cellulose for increasing contents of furans and aromatics in biofuel production. J Anal Appl Pyrolysis 131:93–100. https://doi.org/10.1016/j.jaap.2018.02.004

    CAS  Article  Google Scholar 

  111. Wang JX, Cao JP, Zhao XY, Liu SN, Ren XY, Zhao M, Wei XY (2019a) Enhancement of light aromatics from catalytic fast pyrolysis of cellulose over bifunctional hierarchical HZSM-5 modified by hydrogen fluoride and nickel/hydrogen fluoride. Bioresour Technol 278:116–123. https://doi.org/10.1016/j.biortech.2019.01.059

    CAS  Article  Google Scholar 

  112. Wang JX, Cao JP, Zhao XY, Liu SN, Ren XY, Zhang LY, Wei XY (2019b) In situ upgrading of cellulose pyrolysis volatiles using hydrofluorinated and platinum-loaded HZSM-5 for high selectivity production of light aromatics. Ind Eng Chem Res 58:22193–22201. https://doi.org/10.1021/acs.iecr.9b04549

    CAS  Article  Google Scholar 

  113. Wei X, Wang Z, Wu Y, Yu Z, Jin J, Wu K (2014) Fast pyrolysis of cellulose with solid acid catalysts for levoglucosenone. J Anal Appl Pyrolysis 107:150–154. https://doi.org/10.1016/j.jaap.2014.02.015

    CAS  Article  Google Scholar 

  114. Wildschut J, Arentz J, Rasrendra CB, Venderbosch RH, Heeres HJ (2009) Catalytic hydrotreatment of fast pyrolysis oil: model studies on reaction pathways for the carbohydrate fraction. Environ Prog Sustain Energy 28:450–460. https://doi.org/10.1002/ep.10390

    CAS  Article  Google Scholar 

  115. Xia H, Yan X, Xu S, Yang L, Ge Y, Wang J, Zuo S (2015) Effect of Zn/ZSM-5 and FePO4 catalysts on cellulose pyrolysis. J Chem. https://doi.org/10.1155/2015/749875

    Article  Google Scholar 

  116. Xu C, Chen Y, Yang H, Wei C, Wang X, Chen H (2017) Fast pyrolysis of cotton stalk biomass using calcium oxide. Bioresour Technol 233:15–20. https://doi.org/10.1016/j.biortech.2017.02.070

    CAS  Article  Google Scholar 

  117. Yabushita M, Kobayashi H, Fukuoka A (2014) Catalytic transformation of cellulose into platform chemicals. Appl Catal B 145:1–9. https://doi.org/10.1016/j.apcatb.2013.01.052

    CAS  Article  Google Scholar 

  118. Yamaguchi D, Hara M (2010) Starch saccharification by carbon-based solid acid catalyst. Solid State Sci 12:1018–1023. https://doi.org/10.1016/j.solidstatesciences.2009.12.002

    CAS  Article  Google Scholar 

  119. Yi YB, Lee JL, Choi YH, Park SM, Chung CH (2012) Direct production of hydroxymethylfurfural from raw grape berry biomass using ionic liquids and metal chlorides. Environ Chem Lett 10:13–19. https://doi.org/10.1007/s10311-011-0322-6

    CAS  Article  Google Scholar 

  120. Yigezu ZD, Muthukumar K (2015) Structural characteristics of selected metal oxides used for the catalytic pyrolysis of sunflower oil. J Anal Appl Pyrolysis 114:60–67. https://doi.org/10.1016/j.jaap.2015.05.002

    CAS  Article  Google Scholar 

  121. Yu Y, Liu D, Wu H (2014) Formation and characteristics of reaction intermediates from the fast pyrolysis of NaCl-and MgCl2-loaded celluloses. Energy Fuels 28:245–253. https://doi.org/10.1021/ef401483u

    CAS  Article  Google Scholar 

  122. Zhang H, Zheng J, Xiao R, Jia Y, Shen D, Jin B, Xiao G (2014) Study on pyrolysis of pine sawdust with solid base and acid mixed catalysts by thermogravimetry–Fourier Transform Infrared Spectroscopy and Pyrolysis-Gas Chromatography/Mass Spectrometry. Energy Fuels 28:4294–4299. https://doi.org/10.1021/ef500176w

    CAS  Article  Google Scholar 

  123. Zhou L, Jia Y, Nguyen TH, Adesina AA, Liu Z (2013) Hydropyrolysis characteristics and kinetics of potassium-impregnated pine wood. Fuel Process Technol 116:149–157. https://doi.org/10.1016/j.fuproc.2013.05.005

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research study was sponsored by the Universiti Teknologi Malaysia through Professional Development Research University Grant (No. 04E73), UTM Transdisciplinary Research Grant (Grant No. 06G52 and 06G53), and Collaborative Research Grant (Grant No. 07G59 and 07G62).

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Jalil.

Ethics declarations

Conflict of interest

The authors confirm that there are no known conflicts of interest associated with this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hassan, N.S., Jalil, A.A., Hitam, C.N.C. et al. Biofuels and renewable chemicals production by catalytic pyrolysis of cellulose: a review. Environ Chem Lett (2020). https://doi.org/10.1007/s10311-020-01040-7

Download citation

Keywords

  • Biofuels
  • Renewable chemicals
  • Cellulose
  • Pyrolysis
  • Acidic catalyst
  • Basic catalyst