Applications of hemp in textiles, paper industry, insulation and building materials, horticulture, animal nutrition, food and beverages, nutraceuticals, cosmetics and hygiene, medicine, agrochemistry, energy production and environment: a review

Abstract

The hemp plant Cannabis sativa Linn, referring to industrial hemp, is a high-yielding annual industrial crop grown providing fibers from hemp stalk and oil from hemp seeds. Although hemp is a niche crop, hemp production is currently undergoing a renaissance. More than 30 countries grow hemp, with China being the largest hemp producing and exporting country. Europe and Canada are also important actors in the global hemp market. Traditionally, hemp as a fiber plant has been used for the production of apparels, fabrics, papers, cordages and building materials. The hurds, as waste by-product of fiber production, were used for bedding of animals, the seeds for human nutrition, e.g., as flour, and the oil for a wide range of purposes, from cooking to cosmetics. Hemp has also been an important crop throughout human history for medicine. Other more recent applications include materials for insulation and furniture, automotive composites for interior applications and motor vehicle parts, bioplastics, jewelry and fashion sectors, animal feed, animal bedding, and energy and fuel production. Foods containing hemp seed and oil are currently marketed worldwide for both animal and human nutrition. They also find applications in beverages and in neutraceutical products. Hemp oil is also used for cosmetics and personal care items, paints, printing inks, detergents and solvents. It is estimated that the global market for hemp consists of more than 25,000 products. Currently, the construction and insulation sector, paper and textile industries, and food and nutrition domains are the main markets while the cosmetics and automotive sector are growing markets. Innovative applications, e.g., in the medical and therapeutic domains, cosmeceuticals, phytoremediation, acoustic domain, wastewater treatment, biofuels, biopesticides and biotechnology, open new challenges. Hemp is also the object of numerous fundamental studies. This review presents and discusses the traditional and new uses of industrial hemp.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Source: G. Crini, Chrono-environnement, Besançon, France

Fig. 3

Source: G. Chanet, Eurochanvre, Arc-les-Gray, France

Fig. 4

Source: G. Chanet, Eurochanvre, Arc-les-Gray, France

Fig. 5

Source: with the kind courtesy of Florence Collet (Rennes, France) and Yacine Aït Oumeziane (Belfort, France)

Fig. 6

Source: G. Chanet, Eurochanvre, Arc-les-Gray, France

Fig. 7

Source: G. Crini, Chrono-environnement, Besançon, France

Fig. 8

Source: G. Crini, Chrono-environnement, Besançon, France

Fig. 9

Adapted from Rehman et al. (2013)

References

  1. Abé H, Foko Dadji AF, Nkondjio CA, Awono-Ambene PH, Tamesse JL (2018) Insecticidal activity of Cannabis sativa L. leaf essential oil on the malaria vector Anopheles gambiae s.l (Giles). Int J Mosq Res 5:65–74

    Google Scholar 

  2. Ahmad M, Ullah K, Khan MA, Zafar M, Tariq M, Ali S, Sultana S (2011) Physicochemical analysis of hemp oil biodiesel: a promising non edible new source for bioenergy. Energy Sources A Recovery Util Environ Effects 33:1365–1374. https://doi.org/10.1080/15567036.2010.499420

    CAS  Article  Google Scholar 

  3. Ahmad R, Tehsin Z, Malik ST, Asad SA, Shahzad M, Bilal M, Shah MM, Khan SA (2016) Phytoremediation potential of hemp (Cannabis sativa L.): identification and characterization of heavy metals responsive genes. CLEAN Soil Air Water 44:195–201. https://doi.org/10.1002/clen.201500117

    CAS  Article  Google Scholar 

  4. Aït Oumeziane Y, Moissette S, Bart M, Lanos C (2016) Influence of temperature on sorption process in hemp concrete. Constr Build Mater 106:600–607. https://doi.org/10.1016/j.conbuildmat.2015.12.117

    Article  Google Scholar 

  5. Allegret S (2013) The history of hemp. In: Bouloc P, Allegret S, Arnaud L (eds) Hemp—industrial production and uses. CAB International, Wallingford

    Google Scholar 

  6. Amaducci S (2005) Hemp production in Italy. J Ind Hemp 10:109–115

    Article  Google Scholar 

  7. Amaducci S, Gusovious HJ (2010) Hemp—cultivation, extraction and processing. In: Müssig J (ed) Industrial applications of natural fibres: structure, properties and technical applications. Willey, Chichester, pp 109–135. https://doi.org/10.1002/9780470660324.ch5

    Google Scholar 

  8. Amziane S, Arnaud L (2013) Bio-aggregate-based building materials: applications to hemp concretes. Wiley, Hoboken. ISBN 978-1-84821-404-0

    Google Scholar 

  9. Andre CM, Hausman JF, Guerriero G (2016) Cannabis sativa: the plant of the thousand and one molecules. Front Plant Sci 7:1–17. https://doi.org/10.3389/fpls.2016.00019

    Article  Google Scholar 

  10. Arizzi A, Viles H, Martin-Sanchez I, Cultrone G (2016) Predicting the long-term durability of hemp-lime renders in inland and coastal areas using Mediterranean, tropical and semi-arid climatic simulations. Sci Total Environ 542:757–770. https://doi.org/10.1016/j.scitotenv.2015.10.141

    CAS  Article  Google Scholar 

  11. Arnaud L, Gourlay E (2012) Experimental study of parameters influencing mechanical properties of hemp concretes. Constr Build Mater 28:50–56. https://doi.org/10.1016/j.conbuildmat.2011.07.052

    Article  Google Scholar 

  12. Asquer C, Melis E, Scano EA, Carboni G (2019) Opportunities for green energy through emerging crops: biogas valorization of Cannabis sativa L. residues. Climate 7:142. https://doi.org/10.3390/cli7120142

    Article  Google Scholar 

  13. Bai Z, Liu Q, Zhang H, Liu J, Yu J, Wang J (2020a) A novel 3D reticular anti-fouling bio-adsorbent for uranium extraction from seawater: polyethylenimine and guanidyl functionalized hemp fibers. Chem Eng J 382:122555. https://doi.org/10.1016/j.cej.2019.122555

    CAS  Article  Google Scholar 

  14. Bai Z, Liu Q, Zhang H, Liu J, Yu J, Wang J (2020b) High efficiency biosorption of uranium (VI) ions from solution by using hemp fibers functionalized with imidazole-4-5-dicarboxylic. J Mol Liq 297:111739. https://doi.org/10.1016/j.molliq.2019.111739

    CAS  Article  Google Scholar 

  15. Bajpai P (2018) Biotechnology for pulp and paper processing. Springer, Singapore, pp 1–588. ISBN 978-981-10-7853-8

    Google Scholar 

  16. Balintova M, Holub M, Stevulova N, Cigasova J, Tesarcikova M (2014) Sorption in acidic environment—biosorbents in comparison with commercial adsorbents. Chem Eng Trans 39:625–630. https://doi.org/10.3303/CET1439105

    Article  Google Scholar 

  17. Barberà L, Pèlach MA, Pérez I, Puig J, Mutjé (2011) Upgrading of hemp core for papermaking purposes by means of organosolv process. Ind Crops Prod 34:865–872. https://doi.org/10.1016/j.indcrop.2011.02.005

    CAS  Article  Google Scholar 

  18. Bedini S, Flamini G, Cosci F, Ascrizzi R, Benelli G, Conti B (2016) Cannabis sativa L. and Humulus iupulus essential oils as novel control tools against the invasive mosquito Aedes albopictus and fresh water snail Physella acuta. Ind Crops Prod 85:318–323. https://doi.org/10.1016/j.indcrop.2016.03.008

    CAS  Article  Google Scholar 

  19. Benelli G, Pavela R, Petrelli R, Cappellacci L, Santini G, Fiorini D, Sut S, Dall’Acqua S, Canale A, Maggi F (2018) The essential oil from industrial hemp (Cannabis sativa L.) by-products as an effective tool for insect pest management in organic crops. Ind Crops Prod 122:308–315. https://doi.org/10.1016/j.indcrop.2018.05.032

    CAS  Article  Google Scholar 

  20. Bertoli A, Tozzi S, Pistelli L, Angelini LG (2010) Fibre hemp inflorescences: from crop-residues to essential oil production. Ind Crops Prod 32:329–337. https://doi.org/10.1016/j.indcrop.2010.05.012

    CAS  Article  Google Scholar 

  21. Bhavani K (2015) Performance evaluation of various natural agro fibres in carpet making and their costing. Asian J Home Sci 10:296–300. https://doi.org/10.15740/HAS/AJHS/10.2/296-300

    Article  Google Scholar 

  22. Bócsa L, Karus M (1998) The cultivation of hemp: botany, varieties, cultivation and harvesting. Hemptech, Sebastopol, p 184. ISBN 978-1-886874-03-9

    Google Scholar 

  23. Bonini SA, Premoli M, Tambaro S, Kumar A, Maccarinelli G, Memo M, Mastinu A (2018) Cannabis sativa: a comprehensive ethnopharmacological review of a medicinal plant with a long history. J Ethnopharm 227:300–315. https://doi.org/10.1016/j.jep.2018.09.004

    CAS  Article  Google Scholar 

  24. Bono P, le Duc A, Lozachmeur M, Day A (2015) Materials: new fields of research and development for the valorization of technical plant fibres (flax fiber and hemp). OCL oilseeds and fats crops and lipids. EDP Sciences 22:1–11. https://doi.org/10.1051/ocl/2015041

    Article  Google Scholar 

  25. Bouloc P (2013) Hemp: industrial production and uses. CABI, Oxfordshire, p 312. ISBN 978-1-845-93793-5

    Google Scholar 

  26. Bran M, Olaru S, Dobre I (2017) Flax, hemp and cotton plants in Romania—a study for reconsideration of the textile industry. Ind Textila 68:186–192

    Article  Google Scholar 

  27. Bugnet J, Morin-Crini N, Cosentino C, Chanet G, Winterton P, Crini G (2017a) Hemp decontamination of poly-metallic aqueous solutions. Environ Eng Manag J 16:535–542

    CAS  Article  Google Scholar 

  28. Bugnet J, Morin-Crini N, Chanet G, Cosentino C, Crini G (2017b) Du chanvre pour dépolluer des eaux polycontaminées en métaux. In: Morin-Crini G, Crini G (eds) Chapter XI. PUFC, Besançon, pp 323–340

  29. Burczyk H, Grabowska L, Kołodziej J, Strybe M (2008) Industrial hemp as a raw material for energy production. J Ind Hemp 13:37–48. https://doi.org/10.1080/15377880801898717

    CAS  Article  Google Scholar 

  30. Callaway JC (2004) Hemp seed as a nutritional resource: an overview. Euphytica 140:65–72. https://doi.org/10.1007/s10681-004-4811-6

    Article  Google Scholar 

  31. Cassano R, Trombino S, Ferrarelli T, Nicoletta FP, Mauro MV, Giraldi C, Picci N (2013) Hemp fiber (Cannabis sativa L.) derivatives with antibacterial and chelating properties. Cellulose 20:547–557. https://doi.org/10.1007/s10570-012-9804-3

    CAS  Article  Google Scholar 

  32. Chalupa-Krebzdak S, Long CJ, Bohrer BM (2018) Nutrient density and nutritional value of milk and plant-based milk alternatives. Int Dairy J 87:84–92. https://doi.org/10.1016/jdairyl.2018.07.018

    CAS  Article  Google Scholar 

  33. Chandra S, Lata H, Elsohly MA (eds) (2017) Cannabis sativa L.—botany and biotechnology. Springer, Cham. ISBN 978-3-319-54563-9

    Google Scholar 

  34. Chauhan V, Karki T, Varis J (2019) Review of natural fiber-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques. J Thermoplast Compos Mater UNSP. https://doi.org/10.1177/0892705719889095

    Article  Google Scholar 

  35. Cherney JH, Small E (2016) Industrial hemp in North America: production, politics and potential. Agronomy 6:1–24. https://doi.org/10.3390/agronomy6040058

    CAS  Article  Google Scholar 

  36. Chernova T, Mikshina P, Salnikov V, Ageeva M, Ibragimova N, Sautkina O, Gorshlova T (2018) Development of hemp fibers: the key components of hemp plastic composites. IntechOpen 3:41–56. https://doi.org/10.5772/intechopen.70976

    CAS  Article  Google Scholar 

  37. Cigasova J, Stevulova N, Schwarzova I, Sicakova A, Junak J (2015) Application of hemp hurds in the preparation of biocomposites. In: IMST 2015, IOP conference series materials science and engineering. vol. 96, pp 012023

  38. Citterio S, Santagostino A, Fumagalli P, Prato N, Ranalli P, Sgorbati S (2003) Heavy metal tolerance and accumulation of Cd, Cr and Ni by Cannabis sativa L. Plant Soil 256:243–252. https://doi.org/10.1023/A:1026113905129

    CAS  Article  Google Scholar 

  39. Collet F, Chamoin J, Pretot S, Lanos C (2013) Comparison of the hygric behaviour of three hemp concretes. Energy Build 62:294–303. https://doi.org/10.1016/j.enbuild.2013.03.010

    Article  Google Scholar 

  40. Conrad C (1997) Hemp for health: the medicinal and nutritional uses of Cannabis sativa. Healing Arts Press, Rochester. ISBN 0-89281-539-6

    Google Scholar 

  41. Crini G, Lichtfouse E, Chanet G, Morin-Crini N (2020) Traditional and new applications of hemp. In: Crini G, Lichtfouse E (eds) Hemp production and applications, vol 42. Sustainable agriculture reviews. Springer, Cham

    Google Scholar 

  42. Danielewicz D, Surma-Slusarska B (2017) Properties and fibre characterization of bleached hemp, birch and pine pulps: a comparison. Cellulose 24:5173–5186. https://doi.org/10.1007/s10570-017-1476-6

    Article  Google Scholar 

  43. Dapčević-Hadnađev T, Hadnađev M, Lazaridou A, Moschakis T, Biliaderis CG (2019) Hempseed meal protein isolates prepared by different isolation techniques. Part II. Gelation properties at different ionic strengths. Food Hydrocoll 81:481–489. https://doi.org/10.1016/j.foodhyd.2018.03.022

    CAS  Article  Google Scholar 

  44. Das L, Liu E, Saeed A, Williams DW, Hu H, Li C, Ray AE, Shi J (2017) Industrial hemp as a potential bioenergy crop in comparison with kenaf, switchgrass and biomass sorghum. Bioresour Technol 244:641–649. https://doi.org/10.1016/j.biortech.2017.08.008

    CAS  Article  Google Scholar 

  45. De Candolle A (1883) Origine des plantes cultivées. Librairie Germer Baillière et Cie, Paris. ISBN 2-734-80142-6

    Google Scholar 

  46. de Padua LS, Bunyaprafatsara N, Lemmens RHMJ (eds) (1999) Plant resources of south-east Asia: medicinal and poisonous plants, vol 1. Backhuys Publishers, Leiden, pp 167–175

    Google Scholar 

  47. Devi V, Khanam S (2019a) Comparative study of different extraction processes for hemp (Cannabis sativa) seed oil considering physical, chemical and industrial-scale economic aspects. J Clean Prod 207:645–657. https://doi.org/10.1016/j.jclepro.2018.10.036

    CAS  Article  Google Scholar 

  48. Devi V, Khanam S (2019b) Study of ω-6 linoleic and ω-3 α-linoleic acids of hemp (Cannabis sativa) seed oil extracted by supercritical CO2 extraction: CCD optimization. J Environ Chem Eng 7:102818. https://doi.org/10.1016/j.jece.2018.102818

    CAS  Article  Google Scholar 

  49. Dubois S, Evrard A, Lebeau F (2014) Modeling the hygrothermal behavior of biobased construction materials. J Build Phys 38:191–213. https://doi.org/10.1177/1744259113489810

    Article  Google Scholar 

  50. Dunford NT (2015) Hemp and flaxseed oil: properties and applications for use in food. In: Talbot G (ed) Specialty oils and fats in food and nutrition: properties, processing and applications. Elsevier, Amsterdam, pp 39–63. https://doi.org/10.1016/B978-1-78242-376-8.00002-8

    Google Scholar 

  51. Elfordy S, Lucas F, Tancret F, Scudeller Y, Goudet L (2008) Mechanical and thermal properties of lime and hemp concrete (hempcrete) manufactured by a projection process. Constr Build Mater 22:2116–2123. https://doi.org/10.1016/j.conbuildmat.2007.07.016

    Article  Google Scholar 

  52. Fangueiro R, Rana S (eds) (2016) Natural fibers: advances in science and technology toward industrial applications. From science to market. Springer, Berlin. https://doi.org/10.1007/978-94-017-7515-1

    Google Scholar 

  53. Faruk O, Bledzki A, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596. https://doi.org/10.1016/j.progpolymsci.2012.04.003

    CAS  Article  Google Scholar 

  54. Fathordoobady F, Singh A, Kitts DD, Singh AP (2019) Hemp (Cannabis sativa L.) extract: anti-microbial properties, methods of extraction, and potential oral delivery. Food Rev Int 35:664–684. https://doi.org/10.1080/87559129.2019.1600539

    CAS  Article  Google Scholar 

  55. Feng JY, Zhang JC (2015) Preparation and oil/air filtration properties of hemp paper. J Ind Text 45:3–32. https://doi.org/10.1177/1528083714521071

    CAS  Article  Google Scholar 

  56. Fernandez-Ruiz J, Sagredo O, Pazos MR, Garcia C, Pertwee R, Mechoulam R, Martinez-Orgado J (2013) Cannabidiol for neurodegenerative disorders: Important new clinical applications for this phytocannabinoid? Br J Clin Pharmacol 75:323–333. https://doi.org/10.1111/j.1365-2125.2012.04341.x

    CAS  Article  Google Scholar 

  57. Fernando AL, Duarte MP, Vatsanidou A, Alexopoulou E (2015) Environmental aspects of fiber crops cultivation and use. Ind Crops Prod 68:105–115. https://doi.org/10.1016/j.indcrop.2014.10.003

    Article  Google Scholar 

  58. Fernea R, Manea DL, Tamas-Gavrea DR, Miron OI (2017) Preliminary research on using industrial plants in constructions. Sci Pap Ser Manag Econ Eng Agric Rural Dev 17:203–208

    Google Scholar 

  59. Figueiredo JA, Ismael MI, Anjo CMS, Duarte AP (2010) Cellulose and derivatives from wood and fibers as renewable sources of raw materials. Top Curr Chem 294:117–128

    CAS  Article  Google Scholar 

  60. Fike J (2016) Industrial hemp: renewed opportunities for an ancient crop. Crit Rev Plant Sci 35:406–424. https://doi.org/10.1080/07352689.2016.1257842

    Article  Google Scholar 

  61. Finnan J, Styles D (2013) Hemp: a more sustainable annual energy crop for climate and energy policy. Energy Policy 58:152–162. https://doi.org/10.1016/j.enpol.2013.02.046

    Article  Google Scholar 

  62. Fiorini D, Molle A, Nabissi M, Santini G, Benelli G, Maggi F (2019) Valorizing industrial hemp (Cannabis sativa L.) by-products: cannabidiol enrichment in the inflorescence essential oil optimizing sample pretreatment prior to distillation. Ind Crops Prod 128:581–589. https://doi.org/10.1016/j.indcrop.2018.10.045

    CAS  Article  Google Scholar 

  63. Frassinetti S, Moccia E, Caltavuturo L, Gabriele M, Longo V, Bellani L, Giorgi G, Giorgetti L (2018) Nutraceutical potential of hemp (Cannabis sativa L.) seeds and sprouts. Food Chem 262:56–66. https://doi.org/10.1016/j.foodchem.2018.04.078

    CAS  Article  Google Scholar 

  64. Gallos A, Paës G, Allais F, Beaugrand J (2017) Lignocellulosic fibers: a critical review of the extrusion process for enhancement of the properties of natural fiber composites. RSC Adv 7:34638. https://doi.org/10.1039/c7ra05240e

    CAS  Article  Google Scholar 

  65. Gedik G, Avinc O (2018) Bleaching of hemp (Cannabis sativa L.) fibers with peracetic acid for textiles industry purposes. Fibers Polym 19:82–93. https://doi.org/10.1007/s12221-018-7165-0

    CAS  Article  Google Scholar 

  66. George M, Chae M, Bressler DC (2016) Composite materials with bast fibres: structural, technical, and environmental properties. Prog Mater Sci 83:1–23. https://doi.org/10.1016/j.pmatsci.2016.04.002

    CAS  Article  Google Scholar 

  67. Gholampour A, Ozbakkaloglu T (2020) A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. J Mater Sci 55:829–892. https://doi.org/10.1007/s10853-019-03990-y

    CAS  Article  Google Scholar 

  68. Gibson K (2006) Hemp in the British Isles. J Ind Hemp 11:57–67

    Article  Google Scholar 

  69. Girgih AT, Alashi A, He R, Malomo S, Aluko RE (2014a) Preventive and treatment effects of a hemp seed (Cannabis sativa L.) meal protein hydrolysate against high blood pressure in spontaneously hypertensive rats. Eur J Nutr 53:1237–1246

    CAS  Article  Google Scholar 

  70. Girgih AT, Alashi AM, He R, Malomo SA, Raj P, Netticadan T, Aluko RE (2014b) A novel hemp seed meal protein hydrolysate reduces oxidative stress factors in spontaneously hypertensive rats. Nutrients 6:5652–5666

    CAS  Article  Google Scholar 

  71. Girgih AT, He R, Malomo S, Offengenden M, Wu J, Aluko RE (2014c) Structural and functional characterization of hemp (Cannabis sativa L.) protein-derived antioxidant and antihypertensive peptides. J Funct Foods 6:384–394. https://doi.org/10.1016/j.jff.2013.11.005

    CAS  Article  Google Scholar 

  72. Gomes HI (2012) Phytoremediation for bioenergy: challenges and opportunities. Environ Technol Rev 1:59–66. https://doi.org/10.1080/09593330.2012.696715

    CAS  Article  Google Scholar 

  73. Górski R, Szklarz M, Kaniewski R (2009) Efficacy of hemp essential oil in the control of rosy apple aphid (Dysaphis plantaginea Pass.) occurring on apple tree. Prog Plant Prot 49:2013–2016

    Google Scholar 

  74. Gourlay E, Gle P, Marceau S, Foy C, Moscardelli S (2017) Effect of water content on the acoustical and thermal properties of hemp concretes. Constr Build Mater 139:513–523. https://doi.org/10.1016/j.conbuildmat.2016.11.018

    CAS  Article  Google Scholar 

  75. Gupta AK, Verma SK, Khan K, Verma RK (2013) Phytoremediation using aromatic plants: a sustainable approach for remediation of heavy metal polluted sites. Environ Sci Technol 47:10115–10116. https://doi.org/10.1021/es403469c

    CAS  Article  Google Scholar 

  76. Hadnađev M, Dapčević-Hadnađev T, Lazaridou A, Moschakis T, Michaelidou AM, Popović S, Biliaderis CG (2018) Hempseed meal protein isolates prepared by different isolation techniques. Part I. Physicochemical properties. Food Hydrocoll 79:526–533. https://doi.org/10.1016/j.foodhyd.2017.12.015

    CAS  Article  Google Scholar 

  77. Hanus LO (2009) Pharmacological and therapeutics secrets of plant and brain (endo) cannabinoids. Med Res Rev 29:213–271

    CAS  Article  Google Scholar 

  78. Harris AT, Riddlestone S, Bell Z, Hatwell PR (2008) Towards zero emission pulp and paper production: the bioregional minimill. J Clean Prod 16:1971–1979. https://doi.org/10.1016/j.jclepro.2008.02.005

    CAS  Article  Google Scholar 

  79. Hartsel JA, Eades J, Hickory B, Makriyannis A (2016) Cannabis sativa and hemp. In: Gupta RC (ed) Nutraceuticals—efficacy, safety and toxicity. Elsevier, Amsterdam, pp 735–754. https://doi.org/10.1016/B978-0-12-802147-7.00053-X

    Google Scholar 

  80. Holler JM, Bosy TZ, Dunkley CS, Levine B, Past MR, Jacobs A (2008) Δ9-Tetrahydrocannabinol content of commercially available hemp products. J Anal Toxicol 32:428–432

    CAS  Article  Google Scholar 

  81. Ingrao C, Lo Giudice A, Bacenetti J, Tricase C, Dotelli G, Fiala M, Siracusa V, Mbohwa C (2015) Energy and environmental assessment of industrial hemp for building applications: a review. Renew Sustain Energy Rev 51:29–42. https://doi.org/10.1016/j.rser.2015.06.002

    CAS  Article  Google Scholar 

  82. Ionescu N, Popescu M, Bratu A, Istrati D, Ott C, Meghea A (2015) Valuable Romanian vegetable oils and extracts with high pharmaco-cosmetic potential. Rev Chim 66:1267–1272

    CAS  Google Scholar 

  83. Ip K, Miller A (2012) Life cycle greenhouse gas emissions of hemp-lime wall constructions in the UK. Resour Conserv Recycl 69:1–9. https://doi.org/10.1016/j.resconrec.2012.09.001

    Article  Google Scholar 

  84. Isman MB (2015) A renaissance for botanical insecticides? Pest Manag Sci 71:1587–1590. https://doi.org/10.1002/ps.4088

    CAS  Article  Google Scholar 

  85. Jami T, Rawtani D, Agrawal YK (2016) Hemp concrete: carbon-negative construction. Emerg Mater Res 5:1–7. https://doi.org/10.1680/jemmr.16.00122

    Article  Google Scholar 

  86. Jami T, Karade SR, Singh LP (2019) A review of the properties of hemp concrete for green building applications. J Clean Prod 239:117852. https://doi.org/10.1016/j.jclepro.2019.117852

    Article  Google Scholar 

  87. Jeske S, Zannini E, Arendt EK (2018) Past, present and future: the strength of plant-based dairy substitutes based on gluten-free raw materials. Food Res Int 110:42–51. https://doi.org/10.1016/j.foodres.2017.03.045

    CAS  Article  Google Scholar 

  88. Jiang Y, Lawrence M, Ansell MP, Hussain A (2018) Cell wall microstructure, pore size distribution and absolute density of hemp shiv. R Soc Open Sci 5:171945. https://doi.org/10.1098/rsos.171945

    CAS  Article  Google Scholar 

  89. Johnson P (1999) A critical review of claimed potentials for Cannabis sativa. Tappi J 82:113–123

    CAS  Google Scholar 

  90. Johnson R (2018) Hemp as an agricultural commodity. Congressional Research Service 7-5700, pp 1–48. www.crs.gov

  91. Jonaitiene V, Jankauskiene Z, Stuoge I (2016) Hemp cultivation opportunities and perspectives in Lithuania. In: Fangueiro R, Rana S (eds) Natural fibers: advances in science and technology toward industrial applications. From science to market. Springer, Berlin, pp 407–415. https://doi.org/10.1007/978-94-017-7515-1

    Google Scholar 

  92. Jørgensen CE, Abrahamsen RK, Rukke EO, Hoffmann TK, Johansen AG, Skeie SB (2019) Processing of high-protein yoghurt—a review. Int Dairy J 88:42–59. https://doi.org/10.1016/j.dairyl.2018.08.002

    Article  Google Scholar 

  93. Kallakas H, Narep M, Narep A, Poltimae T, Kers J (2018) Mechanical and physical properties of industrial hemp-based insulation materials. Proc Estonian Acad Sci 67:183–192. https://doi.org/10.3176/proc.2018.2.10

    Article  Google Scholar 

  94. Karaduman Y, Ozdemir H, Karaduman NS, Ozdemir G (2018) Interfacial modification of hemp fiber-reinforced composites. IntechOpen 2:17–39. https://doi.org/10.5772/intechopen.70519

    CAS  Article  Google Scholar 

  95. Karche T, Singh RM (2019) The application of hemp (Cannabis sativa L.) for a green economy: a review. Turk J Bot 43:710–723. https://doi.org/10.3906/bot-1907-15

    Article  CAS  Google Scholar 

  96. Karus M, Vogt D (2004) European hemp industry: cultivation, processing and product lines. Euphytica 140:7–12. https://doi.org/10.1007/s10681-004-4810-7

    Article  Google Scholar 

  97. Khattab MM, Dahman Y (2019) Production and recovery of poly-3-hydrobutyrate bioplastics using agro-industrial residues of hemp hurd biomass. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-019-02109-6

    Article  Google Scholar 

  98. King JW (2019) The relationship between cannabis/hemp use in foods and processing methodology. Curr Opin Food Sci 28:32–40. https://doi.org/10.1016/j.cofs.2019.04.007

    Article  Google Scholar 

  99. Kinnane O, Reilly A, Grimes J, Pavia S, Walker R (2016) Acoustic absorption of hemp-lime construction. Constr Build Mater 122:674–682. https://doi.org/10.1016/j.conbuildmat.2016.06.106

    CAS  Article  Google Scholar 

  100. Kiruthika AV (2017) A review on physico-mechanical properties of bast fibre reinforced polymer composites. J Build Eng 9:91–99. https://doi.org/10.1016/j.jobe.2016.12.003

    Article  Google Scholar 

  101. Kolodziejczyk P, Ozimek L, Kozlowska J (2012) The application of flax and hemp seeds in food, animal feed and cosmetics production. In: Kozlowski RM (ed) Handbook of natural fibres, vol 2. Elsevier, Amsterdam, pp 329–366. https://doi.org/10.1016/B978-1-84569-698-6.50011-5

    Google Scholar 

  102. Korus J, Witczak M, Ziobro R, Juszczak L (2017) Hemp (Cannabis sativa subsp. sativa) flour and protein preparation as natural nutrients and structure forming agents in starch based gluten-free bread. Lebensm Wiss Technol 84:143–150. https://doi.org/10.1016/j.lwt.2017.05.046

    CAS  Article  Google Scholar 

  103. Kostić MM, Skundric PD, Milosavljevic S (2003) Hemp is coming back (in Serbia). Tekstilna Ind 51:9–16

    Google Scholar 

  104. Kostić MM, Pejić BM, Skundric PD (2008) Quality of chemically modified hemp fibres. Bioresour Technol 99:94–99. https://doi.org/10.1016/j.biortech.2006.11.050

    CAS  Article  Google Scholar 

  105. Kostić MM, Pejić BM, Asanovic KA, Aleksic VM, Skundric PD (2010) Effect of hemicelluloses and lignin on the sorption and electric properties of hemp fibres. Ind Crops Prod 32:169–174. https://doi.org/10.1016/j.indcrop.2010.04.014

    CAS  Article  Google Scholar 

  106. Kostić M, Vukčević M, Pejić B, Kalijadis A (2014) Hemp fibers: old fibers—new applications. In: Ibrahim MD, Mondal M (eds) Textiles: history, properties and performance and applications. Nova Science Publishers Inc, New York, pp 399–446

    Google Scholar 

  107. Kostić M, Pejić B, Vukčević M (2018) Waste hemp (Cannabis sativa) fibers as a biosorbent and a precursor for biocarbon sorbents: influence of their chemical composition on Pb(II) removal. In: Stevanovic T (ed) Chemistry of lignocellulosics: current trends. CRC Press, Boca Raton, pp 3–21. https://doi.org/10.1201/b20936

    Google Scholar 

  108. Kozlowski R, Baraniecki P, Barriga-Bedoya J (2005) Bast fibres (flax, hemp, jute, ramie, kenaf, abaca). In: Blackburn RS (ed) Biodegradable and sustainable fibres. CRC Press, Cambridge, pp 36–88. https://doi.org/10.1533/9781845690991.36

    Google Scholar 

  109. Kreuger E, Sipos B, Zacchi G, Svensson SE, Björnsson L (2011) Bioconversion of industrial hemp to ethanol and methane: the benefits of steam pretreatment and co-production. Bioresour Technol 102:3457–3465. https://doi.org/10.1016/j.biortech.2010.10.126

    CAS  Article  Google Scholar 

  110. Kuglarz M, Gunnarsson IB, Svensson SE, Prade T, Johansson E, Angelidaki I (2014) Ethanol production from industrial hemp: effect of combined dilute acid/steam pretreatment and economic aspects. Bioresour Technol 163:236–243. https://doi.org/10.1016/j.biortech.2014.04.049

    CAS  Article  Google Scholar 

  111. Kuglarz M, Alvarado-Morales M, Karakashev D, Angelidaki I (2016) Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept. Bioresour Technol 200:639–647. https://doi.org/10.1016/j.biortech.2015.10.081

    CAS  Article  Google Scholar 

  112. Kumar R, Ul Haq MI, Raina A, Anand A (2019) Industrial applications of natural fibre-reinforced polymer composites—challenges and opportunities. Int J Sustain Eng 12:212–220. https://doi.org/10.1080/19397038.2018.1538267

    Article  Google Scholar 

  113. Kyzas GZ, Terzopoulou Z, Nikolaidis V, Alexopoulou E, Bikiaris DN (2015) Low-cost hemp biomaterials for nickel ions removal from aqueous solutions. J Mol Liq 209:209–218. https://doi.org/10.1016/j.molliq.2015.05.060

    CAS  Article  Google Scholar 

  114. Lamberti DD, Sarkar AK (2017) Hemp fiber for furnishing applications. In: 17th World textile conference AUTEX 2017. IOP Publishing, Mat Sci Eng 254:192009. https://doi.org/10.1088/1757-899X/254/19/192009

  115. Latif E, Lawrence M, Shea A, Walker P (2015) Moisture buffer potential of experimental wall assemblies incorporating formulated hemp-lime. Build Environ 93:199–209. https://doi.org/10.1016/j.buildenv.2015.07.011

    Article  Google Scholar 

  116. Leonard W, Zhang PZ, Ying DY, Fang ZX (2020) Hempseed in food industry: nutritional value, health benefits, and industrial applications. Compr Rev Food Sci Food Saf 19:282–308. https://doi.org/10.1111/1541-4337.12517

    Article  Google Scholar 

  117. Leson G (2013) Hemp seeds for nutrition. In: Bouloc P, Allegret S, Arandu L (eds) hemp—industrial production and uses. CABI, Wallingford, pp 229–238

    Google Scholar 

  118. Li SY, Stuart JD, Li Y, Parnas RS (2010) The feasibility of converting Cannabis sativa L. oil into biodiesel. Bioresour Technol 101:8457–8460. https://doi.org/10.1016/j.biortech.2010.05.064

    CAS  Article  Google Scholar 

  119. Liberalato D (2003) Prospect of hemp utilization in the European textile industry. Agroindustria 2(3):147–148

    Google Scholar 

  120. Ligeza M, Wygladacz D, Tobiasz A, Jaworecka K, Reich A (2016) Natural cold pressed oils as cosmetic products. Family Med Primary Care Rev 18:443–447. https://doi.org/10.5114/fmpcr.2016.63699

    Article  Google Scholar 

  121. Linger P, Müssig J, Fischer H, Kobert J (2002) Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: fibre quality and phytoremediation potential. Ind Crops Prod 16:33–42

    CAS  Article  Google Scholar 

  122. Liu M, Thygesen A, Summerscales J, Meyer AS (2017) Targeted pre-treatment of hemp bast fibres for optimal performance in biocomposites materials: a review. Ind Crops Prod 108:660–683. https://doi.org/10.1016/j.indcrop.2017.07.027

    CAS  Article  Google Scholar 

  123. Liuzzi S, Sanarica S, Stefanizzi P (2017) Use of agro-wastes in building materials in the Mediterranean area: a review. Energy Procedia 126:242–249

    Article  Google Scholar 

  124. Loiacono S, Morin-Crini N, Cosentino C, Torri G, Chanet G, Winterton P, Crini G (2017a) Simultaneous removal of Cd Co, Cu, Mn, Ni and Zn from synthetic solutions on a hemp-based felt: experimental design. J Appl Polym Sci 134:1–11. https://doi.org/10.1002/app.44422

    CAS  Article  Google Scholar 

  125. Loiacono S, Crini G, Martel B, Chanet G, Cosentino C, Raschetti M, Placet V, Torri G, Morin-Crini N (2017b) Simultaneous removal of Cd Co, Cu, Mn, Ni and Zn from synthetic solutions on a hemp-based felt. 2: chemical modification. J Appl Polym Sci 134:1–16. https://doi.org/10.1002/app.45138

    CAS  Article  Google Scholar 

  126. Loiacono S, Morin-Crini G, Cosentino C, Chanet G, Winterton P, Torri G, Crini G (2017c) La canapa: un material interessante per il trattamento delle acque contaminate da metalli. Chim Ind 2:8–12. https://doi.org/10.17374/CI.2017.99.2

    Article  Google Scholar 

  127. Loiacono S, Morin-Crini N, Martel B, Chanet G, Bradu C, Torri G, Crini G (2018a) Zinc, copper, and manganese complexation by hemp: chemical abatement and ecotoxicological impact. Environ Risque Santé 17:240–252. https://doi.org/10.1684/ers.2018.1174

    Article  Google Scholar 

  128. Loiacono S, Crini G, Chanet G, Raschetti M, Placet V, Morin-Crini N (2018b) Metals in aqueous solutions and real effluents: biosorption behavior of a hemp-based felt. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.5612

    Article  Google Scholar 

  129. Lu X, Clarke RC (1995) The cultivation and use of hemp (Cannabis sativa L.) in ancient China. J Int Hemp Assoc 2:26–32

    Google Scholar 

  130. Lupul I, Yperman J, Carleer R, Gryglewicz G (2015a) Adsorption of atrazine on hemp stem-based activated carbons with different surface chemistry. Adsorpt J Int Adsorpt Soc 21:489–498. https://doi.org/10.1007/s10450-015-9689-1

    CAS  Article  Google Scholar 

  131. Lupul I, Yperman J, Carleer R, Gryglewicz G (2015b) Tailoring of porous texture of hemp stem-based activated carbon produced by phosphoric acid activation in steam atmosphere. J Porous Mater 22:283–289. https://doi.org/10.1007/s10934-014-9894-4

    CAS  Article  Google Scholar 

  132. Malomo SA, Aluko RE (2015a) A comparative study of the structural and functional properties of isolated hemp seed (Cannabis sativa L.) albumin and globulin fractions. Food Hydrocoll 43:743–752. https://doi.org/10.1016/j.foodhyd.2014.08.001

    CAS  Article  Google Scholar 

  133. Malomo SA, Aluko RE (2015b) Conversion of a low protein hemp seed meal into a functional protein concentrate through enzymatic digestion of fibre coupled with membrane ultrafiltration. Innov Food Sci Emerg Technol 31:151–159. https://doi.org/10.1016/j.ifset.2015.08.004

    CAS  Article  Google Scholar 

  134. Malomo SA, He R, Aluko RE (2014) Structural and functional properties of hemp seed protein products. J Food Sci 79(8):C1512–C1521. https://doi.org/10.1111/1750-3841.12537

    CAS  Article  Google Scholar 

  135. Mamone G, Picariello G, Ramondo A, Nicolai MA, Ferranti P (2019) Production, digestibility and allergenicity of hemp (Cannabis sativa L.). Food Res Int 115:562–571. https://doi.org/10.1016/j.foodres.2018.09.017

    CAS  Article  Google Scholar 

  136. Manaia JP, Manaia AT, Rodriges L (2019) Industrial hemp fibers: an overview. Fibers 7:106. https://doi.org/10.3390/fib7120106

    CAS  Article  Google Scholar 

  137. Manosroi A, Chankhampan C, Kietthanakorn BO, Ruksiriwanich W, Chaikul P, Boonpisuttinant K, Sainakham M, Manosroi W, Tangjai T, Manosroi J (2019) Pharmaceutical and cosmeceutical biological activities of hemp (Cannabis sativa L var. sativa) leaf and seed extracts. Chiang Mai J Sci 46:180–195

    CAS  Google Scholar 

  138. Mazhoud B, Collet F, Pretot S, Lanos C (2017) Mechanical properties of hemp-clay and hemp stabilized clay composites. Constr Build Mater 155:1126–1137. https://doi.org/10.1016/j.conbuildmat.2017.08.121

    Article  Google Scholar 

  139. Miao C, Hui LF, Liu Z, Tang X (2014) Evaluation of hemp root bast as a new material for papermaking. BioResources 9:132–142

    CAS  Article  Google Scholar 

  140. Mikulcová V, Kašpárková V, Humpolίček P, Buňková L (2017) Formulation, characterization and properties of hemp seed oil and its emulsions. Molecules 22:700. https://doi.org/10.3390/molecules22050700

    CAS  Article  Google Scholar 

  141. Mikulec A, Kowalski S, Sabat R, Skoczylas L, Tabaszewska M, Wywrocka-Gurgul A (2019) Hemp flour as a valuable component for enriching physicochemical and antioxidant properties of wheat bread. LWT Food Sci Technol 102:64–172. https://doi.org/10.1016/j.lwt.2018.12.028

    CAS  Article  Google Scholar 

  142. Milanovic J, Kostić M, Milanovic P, Skundric P (2012) Influence of TEMPO-mediated oxidation on properties of hemp fibres. Ind Eng Chem Res 51:9750–9759. https://doi.org/10.1021/ie300713x

    CAS  Article  Google Scholar 

  143. Miller SA (2018) Natural fiber textile reinforced bio-based composites: mechanical properties, creep, and environmental impacts. J Clean Prod 198:612–623. https://doi.org/10.1016/j.jclepro.2018.07.038

    CAS  Article  Google Scholar 

  144. Mirski R, Boruszewski P, Trociński A, Dziurka D (2017) The possibility to use long fibres from fast growing hemp (Cannavis sativa L.) for the production of boards for the building and furniture industry. BioResources 12:3521–3529. https://doi.org/10.1016/j.indcrop.2017.07.027

    CAS  Article  Google Scholar 

  145. Morin-Crini N, Loiacono S, Placet V, Torri G, Bradu C, Kostić M, Cosentino C, Chanet G, Martel B, Lichtfouse E, Crini G (2018) Hemp-based materials for metal removal. In: Crini G, Lichtfouse E (eds) Green adsorbents for pollutant removal, vol 19. Springer, Cham, pp 1–34. https://doi.org/10.1007/978-3-319-92162-4_1

    Google Scholar 

  146. Morin-Crini N, Loiacono S, Placet V, Torri G, Bradu C, Kostić M, Cosentino C, Chanet G, Martel B, Lichtfouse É, Crini G (2019) Hemp-based adsorbents for sequestration of metals: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-018-0812-x

    Article  Google Scholar 

  147. Moujalled B, Aït Ouméziane Y, Moissette S, Bart M, Lanos C, Samri D (2018) Experimental and numerical evaluation of the hygrothermal performance of a hemp lime concrete building: a long term case study. Build Environ 136:11–27. https://doi.org/10.1016/j.buildenv.2018.03.025

    Article  Google Scholar 

  148. Mukhtar T, Kayani MZ, Hussain MA (2013) Nematicidal activities of Cannabis sativa L. and Zanthoxylum alatum Roxb. against Meloidogyne incognita. Ind Crops Prod 42:447–453. https://doi.org/10.1016/j.indcrop.2012.06.027

    Article  Google Scholar 

  149. Musio S, Müssig J, Amaducci S (2018) Optimizing hemp fiber production for high performance composite applications. Front Plant Sci 9:1702. https://doi.org/10.3389/fpls.2018.01702

    Article  Google Scholar 

  150. Müssig J (2010) Industrial applications of natural fibres. Structure, properties and technical applications. Willey, Chichester. ISBN 978-0-470-69501-1

  151. Niyigena C, Amziane S, Chateauneuf A, Arnaud L, Bessette L, Collet F, Lanos C, Escadeillas G, Lawrence M, Magniont C, Marceau S, Pavia S, Peter U, Picandet V, Sonebi M, Walker P (2016) Variability of mechanical properties of hemp concrete. Mater Today Commun 7:122–133. https://doi.org/10.1016/j.mtcomm.2016.03.003

    CAS  Article  Google Scholar 

  152. Nováková P (2018) Use of technical hemp in the construction industry. MATEC Web of Conf 146:03011. https://doi.org/10.1051/matecconf/201814603011

    CAS  Article  Google Scholar 

  153. Nunes L (2017) Nonwood bio-based materials. In: Jones D, Brischke C (eds) Performance of bio-based building materials. Elsevier, Amsterdam, pp 97–186. https://doi.org/10.1016/B978-0-08-100982-6.00003-3

    Google Scholar 

  154. Nurazzi NM, Khalina A, Sapuan SM, Laila AHAMD, Rahmah M, Hanafee Z (2017) A review: fibres, polymer matrices and composites. Pertanika J Sci Technol 25:1085–1102

    Google Scholar 

  155. Pacaphol K, Aht-Ong D (2017) Preparation of hemp nanofibers from agricultural waste by mechanical defibrillation in water. J Clean Prod 142:1283–1295. https://doi.org/10.1016/j.jclepro.2016.09.008

    CAS  Article  Google Scholar 

  156. Parian A, Limketkai BN (2016) Dietary supplement therapies for inflammatory bowel disease: Crohn’s disease and ulcerative colitis. Curr Pharm Des 22:180–188

    Article  CAS  Google Scholar 

  157. Pathak T, Kaur J, Kumar R, Kuldeep K (2016) Development of electrochemical biosensor for detection of asparagine in leukemic samples. Int J Pharm Sci Res 7:783–788

    Google Scholar 

  158. Pavela R, Benelli G (2016) Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci 21:1000–1007. https://doi.org/10.1016/j.tplants.2016.10.005

    CAS  Article  Google Scholar 

  159. Pejić BM, Kostić MM, Skundric PD, Praskalo JZ (2008) The effects of hemicelluloses and lignin removal on water uptake behavior of hemp fibres. Bioresour Technol 99:7152–7159. https://doi.org/10.1016/j.biortech.2007.12.073

    CAS  Article  Google Scholar 

  160. Pejić BM, Vukčević MM, Kostić MP, Skundric PD (2009) Biosorption of heavy metal ions from aqueous solutions by short hemp fibres: effect of chemical composition. J Hazard Mater 164:146–153. https://doi.org/10.1016/j.jhazmat.2008.07.139

    CAS  Article  Google Scholar 

  161. Pejić BM, Vukčević MM, Pajić-Lijaković ID, Laušević MD, Kostić MM (2011) Mathematical modeling of heavy metal ions (Cd2+, Zn2+ and Pb2+) biosorption by chemically modified short hemp fibres. Chem Eng J 172:354–360. https://doi.org/10.1016/j.cej.2011.06.016

    CAS  Article  Google Scholar 

  162. Pichardo PP, Martínez-Barrera G, Martínez-López M, Ureña-Núñez F, Ávila-Córdoba LI (2018) Waste and recycled textiles as reinforcements of building materials. IntechOpen 6:89–105. https://doi.org/10.5772/intechopen.70620

    CAS  Article  Google Scholar 

  163. Pihlanto A, Mattila P, Mäkinen S, Pajari AM (2017) Bioactivities of alternative protein sources and their potential health benefits. Food Funct 8:3443–3458. https://doi.org/10.1039/C7FO00302A

    CAS  Article  Google Scholar 

  164. Pil L, Bensadoun F, Pariset J, Verpoest I (2016) Why are designers fascinated by flax and hemp fibres composites? Compos Part A 83:193–205. https://doi.org/10.1016/j.compositesa.2015.11.004

    CAS  Article  Google Scholar 

  165. Pittau F, Krause F, Lumia G, Habert G (2018) Fast-growing bio-based materials as an opportunity for storing carbon in exterior walls. Build Environ 129:117–129. https://doi.org/10.1016/j.buildenv.2017.12.006

    Article  Google Scholar 

  166. Prade T, Svensson SE, Andersson A, Mattsson JE (2011) Biomass and energy yield of industrial hemp grown for biogas and solid fuel. Biomass Bioenergy 35:3040–3049. https://doi.org/10.1016/j.biombioe.2011.04.006

    Article  Google Scholar 

  167. Prade T, Svensson SE, Mattsson JE (2012) Energy balances for biogas and solid biofuel production from industrial hemp. Biomass Bioenergy 40:36–52. https://doi.org/10.1016/j.biombioe.2012.01.045

    CAS  Article  Google Scholar 

  168. Pretot S, Collet F, Garnier C (2014) Life cycle assessment of a hemp concrete wall: impact of thickness and coating. Build Environ 72:223–231. https://doi.org/10.1016/j.buildenv.2013.11.010

    Article  Google Scholar 

  169. Przybysz Buzala K, Kalinowska H, Przybysz P, Malachowska E (2017) Conversion of various types of lignocellulosic biomass to fermentable sugars using kraft pulping and enzymatic hydrolysis. Wood Sci Technol 51:873–885. https://doi.org/10.1007/s00226-017-0916-7

    CAS  Article  Google Scholar 

  170. Ranalli P (1999) Advances in hemp research. Food Product Press, Binghamton, p 272. ISBN 978-1-560-22872-1

    Google Scholar 

  171. Ranalli P, Venturi G (2004) Hemp as a raw material for industrial applications. Euphytica 140:1–6. https://doi.org/10.1007/s10681-004-4749-8

    Article  Google Scholar 

  172. Rehman MSU, Rashid N, Saif A, Mahmood T, Han JI (2013) Potential of bioenergy production from industrial hemp (Cannabis sativa): Pakistan perspective. Renew Sustain Energy Rev 18:154–164. https://doi.org/10.1016/j.rser.2012.10.019

    Article  Google Scholar 

  173. Rezić I (2013) Cellulosic fibres—biosorptive materials and indicators of heavy metal pollution. Microchem J 107:63–69

    Article  CAS  Google Scholar 

  174. Rice B (2008) Hemp as feedstock for biomass-to-energy conversion. J Ind Hemp 13:145–156. https://doi.org/10.1080/15377880802391274

    CAS  Article  Google Scholar 

  175. Richard D, Dejean C (2013) Medicinal uses of hemp. In: Bouloc P (ed) Hemp—industrial production and uses. CABI International, Wallingford, pp 222–228. ISBN 978-1-84593-793-5

    Google Scholar 

  176. Rijavec T, Janjić S, Ačko DK (2017) Revitalization of industrial hemp Cannabis sativa L. var. sativa in Slovenia: a study of green hemp fibres. Tekstilec 60:36–48. https://doi.org/10.14502/Tekstilec2017.60.36-48

    Article  Google Scholar 

  177. Robinson R (1996) The great book of hemp. The complete guide to the environmental, commercial and medicinal uses of the world’s most extraordinary plant. Park Street Press, Rochester. ISBN 978-0-892-81541-8

    Google Scholar 

  178. Rodriguez-Leyva D, Pierce GN (2010) The cardiac and haemostatic effects of dietary hempseed. Nutr Metab 7:32–40

    Article  CAS  Google Scholar 

  179. Rosas JM, Bedia J, Rodriguez-Mirasol J, Cordero T (2009) Hemp-derived activated carbon fibres by chemical activation with phosphoric acid. Fuel 88:19–26. https://doi.org/10.1016/j.fuel.2008.08.004

    CAS  Article  Google Scholar 

  180. Rossi E, Di Nicolantonio M, Barcarolo P, Lagatta J (2020) Sustainable 3D printing: design opportunities and research perspectives. Adv Intell Syst Comput 975:3–15. https://doi.org/10.1007/978-3-030-20216-3_1

    Article  Google Scholar 

  181. Roulac JW (1997) Hemp horizons: the comeback of the world’s most promising plant, 1st edn. The real goods solar living book. Chelsea Green Pub Co, Vermont, p 226. ISBN 978-0-930-03193-0

    Google Scholar 

  182. Russo EB (2007) History of cannabis and its preparations in saga, science and sobriquet. Chem Biodivers 4:1614–1648

    CAS  Article  Google Scholar 

  183. Russo R, Reggiani R (2013) Variability in antinutritional compounds in hempseed meal of Italian and French varieties. Plant 1:25–29. https://doi.org/10.11648/j.plant.201301102.13

    Article  Google Scholar 

  184. Sadrmanesh V, Chen Y (2019) Bast fibres: structure, processing, properties and applications. Int Mater Rev 64:381–406. https://doi.org/10.1080/09506608.2018.1501171

    CAS  Article  Google Scholar 

  185. Salentijn EMJ, Zhang Q, Amaducci S, Yang M, Trindade LM (2015) New developments in fiber hemp (Cannabis sativa L.) breeding. Ind Crops Prod 68:32–41. https://doi.org/10.1016/j.indcrop.2014.08.011

    Article  Google Scholar 

  186. Salentijn EMJ, Petit J, Trindade LM (2019) The complex interactions between flowering behavior and fiber quality in hemp. Front Plant Sci 10:164. https://doi.org/10.3389/fpls.2019.00614

    Article  Google Scholar 

  187. Sarasini F, Fiore V (2018) A systematic literature review on less common natural fibres and their biocomposites. J Clean Prod 195:240–267. https://doi.org/10.1016/j.jclepro.2018.05.197

    CAS  Article  Google Scholar 

  188. Sawler J, Stout JM, Gardner KM, Hudson D, Vidmar J, Butler L, Page JE, Myles S (2015) The genetic structure of marijuana and hemp. PLoS ONE 10:e133292. https://doi.org/10.1371/journal.pone.0133292

    CAS  Article  Google Scholar 

  189. Saxena G, Purchase D, Mulla SI, Saratale GD, Bharagava RN (2020) Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, field studies, sustainability issues, and future prospects. Rev Environ Contam Toxicol 249:71–131. https://doi.org/10.1007/398_2019_24

    CAS  Article  Google Scholar 

  190. Schluttenhofer C, Yuan L (2017) Challenges towards revitalizing hemp: a multifaced crop. Trends Plant Sci 22:917–929. https://doi.org/10.1016/j.tplants.2017.08.004

    CAS  Article  Google Scholar 

  191. Schultes RE (1970) Random thoughts and queries on the botany of Cannabis. In: Joyce RB, Curry SH (eds) The botany and chemistry of Cannabis. J&A Churchill, London, pp 11–34. ISBN 0-700-01479-9

    Google Scholar 

  192. Sepe R, Bollino F, Boccarusso L, Caputo F (2018) Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Compos Part B 133:210–217. https://doi.org/10.1016/j.compositesb.2017.09.030

    CAS  Article  Google Scholar 

  193. Shahzad A (2012) Hemp fiber and its composites—a review. J Compos Mater 46:973–986. https://doi.org/10.1177/002199831143623

    CAS  Article  Google Scholar 

  194. Sipos B, Kreuger E, Svensson SE, Réczey K, Björnsoon L, Zacchi G (2010) Steam pretreatment of dry and ensiled industrial hemp for ethanol production. Biomass Bioenergy 34:1721–1731. https://doi.org/10.1016/j.biombioe.2010.07.003

    CAS  Article  Google Scholar 

  195. Small E, Marcus D (2002) Hemp: a new crop with new uses for North America. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. ASHS Press, Alexandria, pp 284–326

    Google Scholar 

  196. Spierling S, Knüpffer E, Behnsen H, Muderbasch M, Krieg H, Springer S, Albrecht S, Herrmann C, Endres HJ (2018) Bio-based plastics—a review of environmental, social and economic impact assessments. J Clean Prod 185:476–491. https://doi.org/10.1016/j.jclepro.2018.03.014

    Article  Google Scholar 

  197. Sponner J, Toth L, Cziger S, Franck RE (2005) Hemp. In: Franck RE (ed) Bast and other plant fibres. Woodhead publishing series in textiles. Elsevier, Amsterdam, pp 176–206. https://doi.org/10.1533/9781845690618.176

    Google Scholar 

  198. Stevulova N, Cigasova J, Estokova A, Terpakova E, Geffert A, Kacik F, Singovszka E, Holub M (2014) Properties and characterization of chemically modified hemp hurds. Materials 7:8131–8150. https://doi.org/10.3390/ma7128131

    Article  Google Scholar 

  199. Sun JJ, Gao JM, Hao XM, Cui XY, Ma T, Yang Y (2013) Effects of air-phosphoric acid activation on pore structure and adsorption property of mesoporous carbon from hemp stem. Book Ser Adv Mater Res 821–822:41–46. https://doi.org/10.4028/www.scientific.net/AMR.821-822.41

    CAS  Article  Google Scholar 

  200. Sun W, Lipka SM, Swartz C, Williams D, Yang F (2016) Hemp-derived activated carbons for supercapacitors. Carbon 103:181–192. https://doi.org/10.1016/j.carbon.2016.02.090

    CAS  Article  Google Scholar 

  201. The SS, Birch J (2014) Effect of ultrasonic treatment on the polyphenol content and antioxidant capacity of extract from defatted hemp, flax and canola seed cakes. Ultrasonics Sonochem 21:346–353. https://doi.org/10.1016/j.ultsonch.2013.08.002

    CAS  Article  Google Scholar 

  202. The SS, Bekhit AED, Carne A, Birch J (2016) Antioxidant and ACE-inhibitory activities of hemp (Cannabis sativa L.) protein hydrolysates produced by the proteases AFP, HT, Pro-G, actinidin and zingibain. Food Chem 203:199–206. https://doi.org/10.1016/j.foodchem.2016.02.05

    Article  Google Scholar 

  203. Thoma TG, Sharma SK, Prakash A, Sharma BR (2000) Insecticidal properties of essential oil of Cannabis sativa Linn. against mosquito larvae. Entomonology 25:21–24

    Google Scholar 

  204. Thomas S, Paul SA, Pothan LA, Deepa B (2011) Natural fibres: structure, properties and applications. In: Kalia S, Kaith BS, Kaur I (eds) cellulose fibers: bio- and nano-polymer composites. Springer, Berlin, pp 3–42. https://doi.org/10.1007/978-3-642-17370-7_1

    Google Scholar 

  205. Tofan L, Păduraru C, Volf I (2009) Concentration of cadmium (II) trace amounts from large volumes of aqueous samples of chemically modified hemp fibres. Sci Pap J Agron Ser 52:506–511

    Google Scholar 

  206. Tofan L, Păduraru C, Volf I (2010a) Comparative study concerning the retention thermodynamics of some heavy metal ions on hemp fibres. Bul Inst Politech Iasi LVI(LX):137–145

    Google Scholar 

  207. Tofan L, Păduraru C, Volf I, Balan C (2010b) Kinetic and thermodynamic profile of Pb(II) sorption by untreated hemp fibres. Sci Pap J Agron Ser 53:146–150

    Google Scholar 

  208. Tofan L, Păduraru C, Volf I, Balan C (2010c) Removal of lead(II) from aqueous solution by sorption by on natural hemp fibres. Sci Pap J Agron Ser 53:150–153

    Google Scholar 

  209. Tofan L, Teodosiu C, Păduraru C, Wenkert R (2013) Cobalt(II) removal from aqueous solutions by natural hemp fibres: batch and fixed-bed columns studies. Appl Surf Sci 285:33–39. https://doi.org/10.1016/j.apsusc.2013.06.151

    CAS  Article  Google Scholar 

  210. Tofan L, Păduraru C, Teodosiu C, Toma O (2015) Fixed bed columns study on the removal of chromium(III) ions from aqueous solutions by hemp fibres with improved sorption performance. Cellul Chem Technol 49:219–229

    CAS  Google Scholar 

  211. Tofan L, Păduraru C, Toma O (2016a) Zinc remediation of aqueous solutions by natural hemp fibres: batch desorption/regeneration study. Des Water Treat 57:12644–12652. https://doi.org/10.1080/19443994.2015.1052566

    CAS  Article  Google Scholar 

  212. Tofan L, Wenkert R, Păduraru C (2016b) Natural and waste materials as green sorbents for Cd(II) removal from aqueous effluents. Environ Eng Manag J 15:1049–1058

    CAS  Article  Google Scholar 

  213. Ummartyotin S, Pechyen C (2016) Strategies for development and implementation of bio-based materials as effective renewable resources of energy: a comprehensive review on adsorbent technology. Renew Sustain Energy Rev 62:654–664. https://doi.org/10.1016/j.rser.2016.04.066

    CAS  Article  Google Scholar 

  214. Usmani MA, Anas M (2018) Study of natural fibre reinforced composites. In: 1st International conference contemporary res mechanical engineering ICCRME-2018. Book series: IOP conference series materials science and engineering vol 404, pp 012048. https://doi.org/10.1088/1757-899X/404/1/012048

  215. Väisänen T, Batello P, Lappalainen R, Tomppo L (2018) Modification of hemp fibers (Cannabis sativa L.) for composite applications. Ind Crops Prod 111:422–429. https://doi.org/10.1016/j.indcrop.2017.10.049

    CAS  Article  Google Scholar 

  216. Vandenhove H, Van Hees M (2003) Fibre crops as alternative land use for radioactively contaminated arable land. J Environ Radioact 81:131–141. https://doi.org/10.1016/j.jenvrad.2005.01.002

    CAS  Article  Google Scholar 

  217. VanDolah HJ, Bauer BA, Mauck KF (2019) Clinicians’s guide to cannabidiol and hemp oils. Mayo Clinic Proc 94:1840–1851. https://doi.org/10.1016/j.mayocp.2019.01.003

    CAS  Article  Google Scholar 

  218. Vavilov NI (1992) Origin and geography of cultivated plants. Cambridge University Press, Cambridge, Cambridge, p 498. ISBN 978-0-521-40427-3

    Google Scholar 

  219. Verma RS, Padalia RC, Verma SK, Chauhan A, Darokar MP (2014) The essential oil of bhang (Cannabis sativa L.) for non-narcotic applications. Curr Sci 107:645–650

    Google Scholar 

  220. Vogl CR, Mölleken H, Lissek-Wolf G, Surböck A, Kobert J (2004) Hemp (Cannabis sativa L.) as a resource for green cosmetics: yield of seed and fatty acid compositions of 20 varieties under the growing conditions of organic farming in Austria. J Ind Hem 9:51–68. https://doi.org/10.1300/J237v09n01_06

    CAS  Article  Google Scholar 

  221. Vukčević M, Kalijadis A, Radisic M, Pejić B, Kostić M, Laušević Z, Laušević M (2012) Application of carbonized hemp fibres as a new solid-phase extraction sorbent for analysis of pesticides in water samples. Chem Eng J 211:224–232. https://doi.org/10.1016/j.cej.2012.09.059

    CAS  Article  Google Scholar 

  222. Vukčević M, Pejić B, Laušević M, Pajić-Lijaković I, Kostić M (2014a) Influence of chemically modified short hemp fiber structure on biosorption process of Zn2+ ions from waste water. Fibres Polym 15:687–697. https://doi.org/10.1007/s12221-014-0687-9

    CAS  Article  Google Scholar 

  223. Vukčević M, Pejić B, Kalijadis A, Pajić-Lijaković I, Kostić M, Laušević Z, Laušević M (2014b) Carbon materials from waste short hemp fibres as a sorbent for heavy metal ions—mathematical modeling of sorbent structure and ions transport. Chem Eng J 235:284–292. https://doi.org/10.1016/j.cej.2013.09.047

    CAS  Article  Google Scholar 

  224. Vukčević M, Kalijadis AM, Vasiljevic TM, Babic BM, Laušević ZV, Laušević MD (2015) Production of activated carbon derived from waste hemp (Cannabis sativa) fibres and its performance in pesticide adsorption. Microporous Mesoporous Mater 214:156–165. https://doi.org/10.1016/j.micromeso.2015.05.012

    CAS  Article  Google Scholar 

  225. Walker R, Pavía S (2014) Moisture transfer and thermal properties of hemp-lime concretes. Const Build Mater 64:270–276. https://doi.org/10.1016/j.conbuildmat.2014.04.081

    Article  Google Scholar 

  226. Walker R, Pavía S, Mitchell R (2014) Mechanical properties and durability of hemp-lime concretes. Constr Build Mater 30:340–348. https://doi.org/10.1016/j.conbuildmat.2014.02.065

    Article  Google Scholar 

  227. Wang QL, Xiong YL (2019) Processing, nutrition, and functionality of hempseed protein: a review. Compr Rev Food Sci Food Saf 18:936–952. https://doi.org/10.1111/1541-4337.12450

    CAS  Article  Google Scholar 

  228. Wang HM, Postle R, Kessler RW, Kessler W (2003) Removing pectin and lignin during chemical processing of hemp for textile applications. Text Res J 73:664–669. https://doi.org/10.1177/004051750307300802

    CAS  Article  Google Scholar 

  229. Wang Y, Yang R, Li M, Zhao ZJ (2015) Hydrothermal preparation of highly porous carbon spheres from hemp (Cannabis sativa L.) stem hemicellulose for use in energy-related applications. Ind Crops Prod 65:216–226. https://doi.org/10.1016/j.indcrop.2014.12.008

    CAS  Article  Google Scholar 

  230. Werz O, Seerges J, Shaible AM, Weinigel C, Barz D, Koeberle A, Allegrone G, Pollastro F, Zampieri L, Grassi G, Appendino G (2014) Cannaflavins from hemp sprouts, a novel cannabinoid-free hemp food product, target microsomal prostaglandin E2 synthase-1 and 5-lypoxygenase. Pharma Nutr 2:53–60. https://doi.org/10.1016/j.phanu.2014.05.001

    CAS  Article  Google Scholar 

  231. Yang R, Liu GQ, Xu XH, Li M, Zhang JC, Hao XM (2011) Surface texture, chemistry and adsorption properties of acid blue 9 of hemp (Cannabis sativa L.) bast-based activated carbon fibres prepared by phosphoric acid activation. Biomass Bioenergy 35:437–445. https://doi.org/10.1016/j.biombioe.2010.08.061

    CAS  Article  Google Scholar 

  232. Yang R, Liu GQ, Li M, Zhang JC, Hao XM (2012) Preparation and N2, CO2 and H2 adsorption of super activated carbon derived from biomass source hemp (Cannabis sativa L.) stem. Microporous Mesoporous Mater 158:108–116. https://doi.org/10.1016/j.micromeso.2012.03.004

    CAS  Article  Google Scholar 

  233. Yin SW, Tang CH, Cao JS, Hu EK, Wen QB, Yang XQ (2008) Effects of limited enzymatic hydrolysis with trypsin on the functional properties of hemp (Cannabis sativa L.) protein isolate. Food Chem 106:1004–1013. https://doi.org/10.1016/j.foodchem.2007.07.030

    CAS  Article  Google Scholar 

  234. Yin SW, Tang CH, Wen QB, Yang XQ (2009) Functional and structural properties and in vitro digestibility of acylated hemp (Cannabis sativa L.) protein isolates. Int J Food Sci Technol 44:2653–2661. https://doi.org/10.1111/j.1365-2621.2009.02098.x

    CAS  Article  Google Scholar 

  235. Yu Y, Zhan JB, Wan H, Zhang Y, Li LW, Yu J, Yu TT, Xie J, Yue BS (2017) Manufacturing technology and application of hemp cigarette paper with dense ash integration. In: 3rd international conference energy material environmental engineering. Book series: IOP conference series earth and environmental science 61. UNSP 012078. https://doi.org/10.1088/1755-1315/61/1/012078

  236. Zabalza Bribián I, Valero Capilla A, Aranda Usón A (2011) Life cycle assessment of building materials: comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build Environ 46:1133–1140. https://doi.org/10.1016/J.BUILDENV.2010.12.002

    Article  Google Scholar 

  237. Zajac M, Guzik P, Kulawik P, Tkaczewska J, Florkiewicz A, Migdal W (2019) The quality of pork loaves with the addition of hemp seeds, de-hulled hemp seeds, hemp protein and hemp flour. LWT Food Sci Technol 105:190–199. https://doi.org/10.1016/j.lwt.2019.02.013

    CAS  Article  Google Scholar 

  238. Zhang H, Zhong Z, Feng L (2016) Advances in the performance and application of hemp fiber. Int J Simul Syst Sci Technol 17:181–185. https://doi.org/10.5013/IJSSST.a.17.09.18

    Article  Google Scholar 

  239. Zhou Y, Wang S, Lou H, Fan P (2018) Chemical constituents of hemp (Cannabis sativa L.) seed with potential anti-neuroinflammatory activity. Phytochem Lett 23:57–61. https://doi.org/10.1016/j.phytol.2017.11.013

    CAS  Article  Google Scholar 

  240. Zou XQ, El Fallah J, Goupil JM, Zhu GS, Valtchev V, Mintova S (2012) Green removal of aromatic organic pollutants from aqueous solutions with a zeolite-hemp composite. RSC Adv 2:3115–3122. https://doi.org/10.1039/c2ra01176j

    CAS  Article  Google Scholar 

  241. Żuk-Gołaszewska K, Gołaszewski J (2018) Cannabis sativa L.—Cultivation and quality or raw material. J Elem 23:971–984. https://doi.org/10.5601/jelem.2017.22.3.1500

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Grégorio Crini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Crini, G., Lichtfouse, E., Chanet, G. et al. Applications of hemp in textiles, paper industry, insulation and building materials, horticulture, animal nutrition, food and beverages, nutraceuticals, cosmetics and hygiene, medicine, agrochemistry, energy production and environment: a review. Environ Chem Lett (2020). https://doi.org/10.1007/s10311-020-01029-2

Download citation

Keywords

  • Hemp applications
  • Textiles
  • Paper
  • Building materials
  • Food
  • Beverages
  • Cosmetics
  • Biocomposites
  • Energy production
  • Biofuel
  • Environmental uses