CO2 electrochemical reduction using single-atom catalysts. Preparation, characterization and anchoring strategies: a review

Abstract

Electrochemical reduction of CO2 into value-added chemicals should reduce the consumption of fossil fuels and counteract global warming caused by CO2 generation. Nonetheless, CO2 is rather stable and chemically inert, calling for effective electrocatalysts to avoid problems such as sluggish kinetics, low reaction efficiency and poor product selectivity during CO2 conversion. Recently, single-atom catalysts have shown maximum atom utilization and unique catalytic performance during electrochemical reactions. Catalysts used have been developed from poorly controlled nanoparticles or nanoclusters to isolated atomic structures. Herein, we review the preparation, characterization, anchoring strategies and electrochemical applications of single-atom catalysts. Concerning methods of preparation, the use of organometallic ligands shows high potential for synthesis and industrial applications. Both characterization and calculations using the density functional theory allow to assess the atomic distribution, the coordination environment and the catalytic mechanism. To improve synthesis, we present four anchoring strategies: defect engineering, atom coordination, spatial confinement and sacrifice template. Applications in electrochemical reduction of CO2 to liquid and gaseous products reveal Faraday efficiency higher than 90%, excellent activity, selectivity, stability and kinetic properties.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Copyright 2017, American Chemical Society

Fig. 7
Fig. 8
Fig. 9
Fig. 10

Copyright 2017, American Chemical Society. Modified after Liu et al. (2017)

Fig. 11
Fig. 12
Fig. 13

Abbreviations

CO:

Carbon monoxide

CO2 :

Carbon dioxide

CO2RR:

CO2 reduction reaction

C:

Carbon

N:

Nitrogen

O:

Oxygen

S:

Sulfur

CH4 :

Methane

ALD:

Atomic layer deposition

NH3BH3 :

Ammonia borane

H2 :

Hydrogen

HCHO:

Formaldehyde

OH:

Hydroxyl

HCOOH:

Formic acid

TS1:

Transition state 1

TS2:

Transition state 2

TS3:

Transition state 3

MCM:

Multichannel carbon matrix

HCNS:

Hollow carbon nitride microsphere

TCNFs:

Through-hole carbon nanofibers

PHMs:

Porous hollow microspheres

FE:

Faraday efficiency

HPC:

Hollow porous carbon

PS:

Polystyrene

N–C:

Nitrogen–doped carbon

S–C:

Sulfur–doped carbon

G:

Graphene

N–G:

Nitrogen–doped graphene

CNS:

Carbon nanosheets

ISAS:

Isolated single-atom sites

SA:

Single atom

ISA:

Isolated single atom

SAA:

Single-atom alloys

Def:

Defective

NP:

Nanoparticles

NRR:

Nitrogen reduction reaction

OER:

Oxygen evolution reaction

HER:

Hydrogen evolution reaction

STEM:

Scanning transmission electron microscopy

HAADF-STEM:

High-angle annular dark-field scanning transmission electron microscopy

XRD:

X-ray diffraction

TEM:

Transmission electron microscopy

XPS:

X-ray photoelectron spectroscopy

XAS:

X-ray spectroscopy

XANES:

X-ray absorption structure spectroscopy

EXAFS:

Extended X-ray absorption fine structure spectroscopy

DRIFTS:

Diffuse reflected Fourier transform infrared spectroscopy

NMR:

Nuclear magnetic resonance

DFT:

Density functional theory calculation

EDS:

Energy dispersive X-ray spectroscopy

EELS:

Electron energy loss spectroscopy

PHMs:

Porous hollow microspheres

E. coli :

Escherichia coli

WT:

Wavelet transform

ICP:

Inductively coupled plasma

HAP:

Hydroxyapatite

HNPCS:

Hollow N-doped porous carbon spheres

References

  1. Abbet S, Sanchez A, Heiz U, Schneider WD, Ferrari AM, Pacchioni G, Rosch N (2000) Acetylene cyclotrimerization on supported size-selected Pd-n clusters (1 <= n <= 30): one atom is enough. J Am Chem Soc 122:3453–3457. https://doi.org/10.1021/ja9922476

    CAS  Article  Google Scholar 

  2. Ahmed H (1996) Single atom scale lithography for single electron devices. Phys B Condens Matter 227:259–263. https://doi.org/10.1016/0921-4526(96)00415-2

    CAS  Article  Google Scholar 

  3. Aleksandrov HA, Neyman KM, Vayssilov GN (2015) The structure and stability of reduced and oxidized mononuclear platinum species on nanostructured ceria from density functional modeling. Phys Chem Chem Phys 17:14551–14560. https://doi.org/10.1039/c5cp01685a

    CAS  Article  Google Scholar 

  4. Ammal SC, Heyden A (2019) Understanding the nature and activity of supported platinum catalysts for the water-gas shift reaction: from metallic nanoclusters to alkali-stabilized single-atom cations. ACS Catal 9:7721–7740. https://doi.org/10.1021/acscatal.9b01560

    CAS  Article  Google Scholar 

  5. Basset JM, Lefebvre F, Santini C (1998) Surface organometallic chemistry: some fundamental features including the coordination effects of the support. Coord Chem Rev 178:1703–1723. https://doi.org/10.1016/S0010-8545(98)00159-3

    Article  Google Scholar 

  6. Bordiga S, Groppo E, Agostini G, van Bokhoven JA, Lamberti C (2013) Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. Chem Rev 113:1736–1850. https://doi.org/10.1021/cr2000898

    CAS  Article  Google Scholar 

  7. Chang K, Jian X, Jeong HM, Kwon Y, Lu Q, Cheng M-J (2020) Improving CO2 electrochemical reduction to CO using space confinement between gold or silver nanoparticles. J Phys Chem Lett 11:1896–1902. https://doi.org/10.1021/acs.jpclett.0c00082

    CAS  Article  Google Scholar 

  8. Chen ZP, Mitchell S, Vorobyeva E, Leary RK, Hauert R, Furnival T, Ramasse QM, Thomas JM, Midgley PA, Dontsova D et al (2017) Stabilization of single metal atoms on graphitic carbon nitride. Adv Func Mater 27:1605785. https://doi.org/10.1002/adfm.201605785

    CAS  Article  Google Scholar 

  9. Chen Y, Ji S, Chen C, Peng Q, Wang D, Li Y (2018a) Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2:1242–1264. https://doi.org/10.1016/j.joule.2018.06.019

    CAS  Article  Google Scholar 

  10. Chen D, Qiao M, Lu YR, Hao L, Liu D, Dong CL, Li Y, Wang S (2018b) Preferential cation vacancies in perovskite hydroxide for the oxygen evolution reaction. Angew Chem Int Ed 57(20):8691–8696. https://doi.org/10.1002/anie.201805520

    CAS  Article  Google Scholar 

  11. Chen W, Ma Y, Li F, Pan L, Gao W, Xiang Q, Shang W, Song C, Tao P, Zhu H et al (2019) Strong electronic interaction of amorphous Fe2O3 nanosheets with single-atom Pt toward enhanced carbon monoxide oxidation. Adv Func Mater 29:1904278. https://doi.org/10.1002/adfm.201904278

    CAS  Article  Google Scholar 

  12. Chen Q, Li S, Liu Y, Zhang X, Tang Y, Chai H, Huang Y (2020a) Size-controllable Fe-N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase. Sens Actuators B Chem 305:127511. https://doi.org/10.1016/j.snb.2019.127511

    CAS  Article  Google Scholar 

  13. Chen ZX, Liu CB, Liu J, Li J, Xi SB, Chi X, Xu HS, Park IH, Peng XW, Li X et al (2020b) Cobalt single-atom-intercalated molybdenum disulfide for sulfide oxidation with exceptional chemoselectivity. Adv Mater 32:1906437. https://doi.org/10.1002/adma.201906437

    CAS  Article  Google Scholar 

  14. Cui XJ, Li W, Ryabchuk P, Junge K, Beller M (2018) Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat Catal 1:385–397. https://doi.org/10.1038/s41929-018-0090-9

    CAS  Article  Google Scholar 

  15. De Groot F, Gr Vankó, Glatzel P (2009) The 1s x-ray absorption pre-edge structures in transition metal oxides. J Phys Condens Matter 21:104207. https://doi.org/10.1088/0953-8984/21/10/104207

    CAS  Article  Google Scholar 

  16. Ding SP, Guo YL, Hulsey MJ, Zhang B, Asakura H, Liu LM, Han Y, Gao M, Hasegawa JY, Qiao BT et al (2019a) Electrostatic stabilization of single-atom catalysts by ionic liquids. Chem 5:3207–3219. https://doi.org/10.1016/j.chempr.2019.10.007

    CAS  Article  Google Scholar 

  17. Ding SP, Hulsey MJ, Perez-Ramirez J, Yang N (2019b) Transforming energy with single-atom catalysts. Joule 3:2897–2929. https://doi.org/10.1016/j.joule.2019.09.015

    CAS  Article  Google Scholar 

  18. Dominguez-Ramos A, Singh B, Zhang X, Hertwich EG, Irabiena A (2015) Global warming footprint of the electrochemical reduction of carbon dioxide to formate. J Clean Prod 104:148–155. https://doi.org/10.1016/j.jclepro.2013.11.046

    CAS  Article  Google Scholar 

  19. Esrafili MD (2019) Catalytic reduction of N2O over Si-embedded MoS2 monolayer: a single-atom catalyst approach. Inorg Chem Commun 108:107504. https://doi.org/10.1016/j.inoche.2019.107504

    CAS  Article  Google Scholar 

  20. Ewing CS, Bagusetty A, Patriarca EG, Lambrecht DS, Gt Veser, Johnson JK (2016) Impact of support interactions for single-atom molybdenum catalysts on amorphous silica. Ind Eng Chem Res 55:12350–12357. https://doi.org/10.1021/acs.iecr.6b03558

    CAS  Article  Google Scholar 

  21. Fang S, Zhu X, Liu X, Gu J, Liu W, Wang D, Zhang W, Lin Y, Lu J, Wei S et al (2020) Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nat Commun 11:1029. https://doi.org/10.1038/s41467-020-14848-2

    CAS  Article  Google Scholar 

  22. Fei H, Dong J, Arellano-Jiménez MJ, Ye G, Dong Kim N, Samuel ELG, Peng Z, Zhu Z, Qin F, Bao J (2015) Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat Commun 6:8668. https://doi.org/10.1038/ncomms9668

    CAS  Article  Google Scholar 

  23. Feng Q, Zhao S, Wang Y, Dong J, Chen W, He D, Wang D, Yang J, Zhu Y, Zhu H et al (2017) Isolated single-atom Pd sites in intermetallic nanostructures: high catalytic selectivity for semihydrogenation of alkynes. J Am Chem Soc 139:7294–7301. https://doi.org/10.1021/jacs.7b01471

    CAS  Article  Google Scholar 

  24. Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301:935–938. https://doi.org/10.1126/science.1085721

    CAS  Article  Google Scholar 

  25. Funke H, Scheinost AC, Chukalina M (2005) Wavelet analysis of extended x-ray absorption fine structure data. Phys Rev B Condens Matter Mater Phys 71:094110.1–094110.7. https://doi.org/10.1016/j.physb.2018.04.039

    CAS  Article  Google Scholar 

  26. Gao S, Lin Y, Jiao X, Sun Y, Luo Q, Zhang W, Li D, Yang J, Xie Y (2016) Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529:68–71. https://doi.org/10.1038/nature16455

    CAS  Article  Google Scholar 

  27. Gao LQ, Xiao ML, Jin Z, Liu CP, Zhu J, Ge JJ, Xing W (2018) Correlating Fe source with Fe-N-C active site construction: guidance for rational design of high-performance ORR catalyst. J Energy Chem 27:1668–1673. https://doi.org/10.1016/j.jechem.2018.06.008

    Article  Google Scholar 

  28. Garg S, Li MR, Weber AZ, Ge L, Li LY, Rudolph V, Wang GX, Rufford TE (2020) Advances and challenges in electrochemical CO2 reduction processes: an engineering and design perspective looking beyond new catalyst materials. J Mater Chem A 8:1511–1544. https://doi.org/10.1039/c9ta13298h

    CAS  Article  Google Scholar 

  29. Gates CB (1995) Supported metal clusters: synthesis, structure, and catalysis. Chem Rev 95:511–522. https://doi.org/10.1021/cr00035a003

    CAS  Article  Google Scholar 

  30. Guo XG, Fang GZ, Li G, Ma H, Fan HJ, Yu L, Ma C, Wu X, Deng DH, Wei MM et al (2014) Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344:616–619. https://doi.org/10.1126/science.1253150

    CAS  Article  Google Scholar 

  31. Guo Y, Mei S, Yuan K, Wang D-J, Liu H-C, Yan C-H, Zhang Y-W (2018) Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal-support interactions and H-spillover effect. ACS Catal 8:6203–6215. https://doi.org/10.1021/acscatal.7b04469

    CAS  Article  Google Scholar 

  32. Guo XY, Lin SR, Gu JX, Zhang SL, Chen ZF, Huang SP (2019) Simultaneously achieving high activity and selectivity toward two-electron O-2 electroreduction: the power of single-atom catalysts. ACS Catal 9:11042–11054. https://doi.org/10.1021/acscatal.9b02778

    CAS  Article  Google Scholar 

  33. Han AJ, Wang BQ, Kumar A, Qin YJ, Jin J, Wang XH, Yang C, Dong B, Jia Y, Liu JF et al (2019a) Recent advances for MOF-derived carbon-supported single-atom catalysts. Small Methods. https://doi.org/10.1002/smtd.201800471

    Article  Google Scholar 

  34. Han J, Meng X, Lu L, Bian J, Li Z, Sun C (2019b) Single-atom Fe-Nx-C as an efficient electrocatalyst for zinc-air batteries. Adv Func Mater 29:1808872. https://doi.org/10.1002/adfm.201808872

    CAS  Article  Google Scholar 

  35. Han YL, Zhang Q, Liang ZB, Geng JM, Dong XF (2020) Mn0.3Cd0.7S nanorods modified with NiS clusters as photocatalysts for the H-2 evolution reaction. J Mater Sci 55:5390–5401. https://doi.org/10.1007/s10853-020-04405-z

    CAS  Article  Google Scholar 

  36. Hardeveld RV, Hartog F (2004) The statistics of surface atoms and surface sites on metal crystals. Surf Sci 15:189–230. https://doi.org/10.1016/0039-6028(69)90148-4

    Article  Google Scholar 

  37. Hu P, Huang Z, Amghouz Z, Makkee M, Xu F, Kapteijn F, Dikhtiarenko A, Chen Y, Gu X, Tang X (2014) Innentitelbild: electronic metalâ support interactions in single-atom catalysts. Angew Chem 126:3350. https://doi.org/10.1002/ange.201401100

    Article  Google Scholar 

  38. Huang ZW, Gu X, Cao QQ, Hu PP, Hao JM, Li JH, Tang XF (2012) Catalytically active single-atom sites fabricated from silver particles. Angew Chem Int Ed 51:4198–4203. https://doi.org/10.1002/anie.201109065

    CAS  Article  Google Scholar 

  39. Huang P, Cheng M, Zhang H, Zuo M, Xiao C, Xie Y (2019) Single Mo atom realized enhanced CO2 electro-reduction into formate on N-doped graphene. Nano Energy 61:428–434. https://doi.org/10.1016/j.nanoen.2019.05.003

    CAS  Article  Google Scholar 

  40. Jiang K, Siahrostami S, Zheng T, Hu Y, Hwang S, Stavitski E, Peng Y, Dynes J, Gangisetty M, Su D et al (2018) Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ Sci 11:893–903. https://doi.org/10.1039/C7EE03245E

    CAS  Article  Google Scholar 

  41. Jiao Y, Zheng Y, Jaroniec M, Qiao SZ (2015) Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 44:2060–2086. https://doi.org/10.1039/c4cs00470a

    CAS  Article  Google Scholar 

  42. Jones J, Xiong H, DeLaRiva AT, Peterson EJ, Pham H, Challa SR, Qi G, Oh S, Wiebenga MH, Pereira Hernandez XI (2016) Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353:150–154. https://doi.org/10.1126/science.aaf8800

    CAS  Article  Google Scholar 

  43. Junkermeier CE, Luben JP, Paupitz R (2019) N-Carbophenes: two-dimensional covalent organic frameworks derived from linear N-phenylenes. Mater Res Express. https://doi.org/10.1088/2053-1591/ab4513

    Article  Google Scholar 

  44. Kaden WE, Wu T, Kunkel WA, Anderson SL (2009) Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science 326:826–829. https://doi.org/10.1126/science.1180297

    CAS  Article  Google Scholar 

  45. Kistler JD, Chotigkrai N, Xu PH, Enderle B, Praserthdam P, Chen CY, Browning ND, Gates BC (2014) A single-site platinum CO oxidation catalyst in zeolite KLTL: microscopic and spectroscopic determination of the locations of the platinum atoms. Angew Chem Int Ed 53:8904–8907. https://doi.org/10.1002/anie.201403353

    CAS  Article  Google Scholar 

  46. Krivanek OL, Chisholm MF, Nicolosi V, Pennycook TJ, Corbin GJ, Dellby N, Murfitt MF, Own CS, Szilagyi ZS, Oxley MP (2010) Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464:571–574

    CAS  Article  Google Scholar 

  47. Kuang HH, Cheng Y, Cui CQ, Jiang SP (2020) Carbon nanotubes-supported Pt electrocatalysts for O-2 reduction reaction-effect of number of nanotube walls. J Nanosci Nanotechnol 20:2736–2745. https://doi.org/10.1038/nature08879

    CAS  Article  Google Scholar 

  48. Kyriakou G, Boucher MB, Jewell AD, Lewis EA, Lawton TJ, Baber AE, Tierney HL, Flytzani-Stephanopoulos M, Sykes ECH (2012) Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335:1209–1212. https://doi.org/10.1126/science.1215864

    CAS  Article  Google Scholar 

  49. Lakhlifi A, Dahoo PR (2011) Enhanced localization of tunneling of the NH3 umbrella mode in nano-cage fullerene. Chem Phys 386:73–80. https://doi.org/10.1016/j.chemphys.2011.06.005

    CAS  Article  Google Scholar 

  50. Lang R, Li T, Matsumura D, Miao S, Zhang T (2016a) Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh 3) 3. Angew Chem Int Ed 128:16054. https://doi.org/10.1002/anie.201607885

    CAS  Article  Google Scholar 

  51. Lang R, Li TB, Matsumura D, Miao S, Ren YJ, Cui YT, Tan Y, Qiao BT, Li L, Wang AQ et al (2016b) Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)(3). Angew Chem Int Ed 55:16054–16058. https://doi.org/10.1002/ange.201610872

    CAS  Article  Google Scholar 

  52. Li ZY, Yuan Z, Li X-N, Zhao Y-X, He S-G (2014) CO oxidation catalyzed by single gold atoms supported on aluminum oxide clusters. J Am Chem Soc 136:14307–14313. https://doi.org/10.1021/ja508547z

    CAS  Article  Google Scholar 

  53. Li H, Wang S, Sawada H, Han GGD, Warner JH (2017) Atomic structure and dynamics of single platinum atom interactions with monolayer MoS2. ACS Nano 11:3392–3403. https://doi.org/10.1021/acsnano.7b00796

    CAS  Article  Google Scholar 

  54. Li F, Hao Y, Li W, Sun L (2018) Device fabrication for water oxidation, hydrogen generation, and CO2 reduction via molecular engineering. Joule 2:36–60. https://doi.org/10.1016/j.joule.2017.10.012

    CAS  Article  Google Scholar 

  55. Li HN, Cao CY, Liu J, Shi Y, Si R, Gu L, Song WG (2019a) Cobalt single atoms anchored on N-doped ultrathin carbon nanosheets for selective transfer hydrogenation of nitroarenes. Sci China Mater 62:1306–1314. https://doi.org/10.1007/s40843-019-9426-x

    CAS  Article  Google Scholar 

  56. Li JJ, Guan QQ, Wu H, Liu W, Lin Y, Sun ZH, Ye XX, Zheng XS, Pan HB, Zhu JF et al (2019b) Highly active and stable metal single-atom catalysts achieved by strong electronic metal-support interactions. J Am Chem Soc 141:14515–14519. https://doi.org/10.1021/jacs.9b06482

    CAS  Article  Google Scholar 

  57. Li YJ, Zhou P, Li H, Gao TT, Zhou L, Zhang YL, Xiao N, Xia ZH, Wang L, Zhang QH et al (2020a) A freestanding flexible single-atom cobalt-based multifunctional interlayer toward reversible and durable lithium-sulfur batteries. Small Methods. https://doi.org/10.1002/smtd.201900701

    Article  Google Scholar 

  58. Li Z, Ji S, Liu Y, Cao X, Tian S, Chen Y, Niu Z, Li Y (2020b) Well-defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites. Chem Rev 120:623–682. https://doi.org/10.1021/acs.chemrev.9b00311

    CAS  Article  Google Scholar 

  59. Li ZX, Ren TQ, Geng ZX, Yang ZX (2020c) Preparation and electrocatalytic performance of flake Co9S8/ZnS/C composites for oxygen evolution reduction. Chin J Inorg Chem 35:2318–2322. https://doi.org/10.11862/CJIC.2019.266

    Article  Google Scholar 

  60. Liang S, Guo H, Shen H, Gong H, Fan F, Lv M, Thomas T, Liu J, Yang M, Zhao Z (2020) Ordered mesoporous carbon assisted Fe-N-C for efficient oxygen reduction catalysis in both acidic and alkaline media. Nanotechnology 31:165708. https://doi.org/10.1088/1361-6528/ab674c

    Article  Google Scholar 

  61. Liu L, Corma A (2018) Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev. https://doi.org/10.1021/acs.chemrev.7b00776

    Article  Google Scholar 

  62. Liu J, Duan S, Xu J, Qiao B, Lou Y (2016a) Catalysis by supported single metal atoms. Microsc Microanal 22:860–861. https://doi.org/10.1017/S1431927616005146

    Article  Google Scholar 

  63. Liu JC, Wang Y-G, Li J (2016b) Toward rational design of oxide-supported single-atom catalysts: atomic dispersion of gold on ceria. J Am Chem Soc. https://doi.org/10.1021/jacs.7b01602

    Article  Google Scholar 

  64. Liu P, Zhao Y, Qin R, Mo S, Chen G, Gu L, Chevrier DM, Zhang P, Guo Q, Zang D (2016c) Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352:797–800. https://doi.org/10.1126/science.aaf5251

    CAS  Article  Google Scholar 

  65. Liu W, Zhang L, Liu X, Liu X, Yang X, Miao S, Wang W, Wang A, Zhang T (2017) Discriminating Catalytically Active FeNx Species of Atomically Dispersed Fe-N-C Catalyst for Selective Oxidation of the C-H Bond. Journal Of the American Chemical Society 139:10790–10798. https://doi.org/10.1021/jacs.7b05130

    CAS  Article  Google Scholar 

  66. Liu D, Li JC, Shi QR, Feng S, Lyu ZY, Ding SC, Hao LD, Zhang Q, Wang CH, Xu MJ et al (2019a) Atomically isolated iron atom anchored on carbon nanotubes for oxygen reduction reaction. ACS Appl Mater Interfaces 11:39820–39826. https://doi.org/10.1021/acsami.9b12054

    CAS  Article  Google Scholar 

  67. Liu JL, Uhlman MB, Montemore MM, Trimpalis A, Giannakakis G, Shan JJ, Cao SF, Hannagan RT, Sykes ECH, Flytzani-Stephanopoulos M (2019b) Integrated catalysis-surface science-theory approach to understand selectivity in the hydrogenation of 1-Hexyne to 1-Hexene on PdAu single-atom alloy catalysts. ACS Catal 9:8757–8765. https://doi.org/10.1021/acscatal.9b00491

    CAS  Article  Google Scholar 

  68. Liu D, Li JC, Ding SH, Lyu ZY, Feng S, Tian HY, Huyan CX, Xu MJ, Li T, Du D et al (2020) 2D single-atom catalyst with optimized iron sites produced by thermal melting of metal-organic frameworks for oxygen reduction reaction. Small Methods. https://doi.org/10.1002/smtd.201900827

    Article  Google Scholar 

  69. Lopez N, Janssens TVW, Clausen BS, Xu Y, Mavrikakis M, Bligaard T, Nrskov JK (2004) On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation J Catal 223:232–235. https://doi.org/10.1016/j.jcat.2004.01.001

    CAS  Article  Google Scholar 

  70. Lou Y, Zheng Y, Li X, Ta N, Xu J, Nie Y, Cho K, Liu J (2019) Pocketlike active site of Rh1/MoS2 single-atom catalyst for selective crotonaldehyde hydrogenation. J Am Chem Soc 141:19289–19295. https://doi.org/10.1021/jacs.9b06628

    CAS  Article  Google Scholar 

  71. Lu J, Aydin C, Browning ND, Gates BC (2012) Imaging isolated gold atom catalytic sites in zeolite NaY. Angew Chem Int Ed 51:5842–5846. https://doi.org/10.1002/anie.201107391

    CAS  Article  Google Scholar 

  72. Lu Y, Kuo CT, Kovarik L, Hoffman AS, Boubnov A, Driscoll DM, Morris JR, Bare SR, Karim AM (2019) A versatile approach for quantification of surface site fractions using reaction kinetics: the case of CO oxidation on supported Ir single atoms and nanoparticles. J Catal 378:121–130. https://doi.org/10.1016/j.jcat.2019.08.023

    CAS  Article  Google Scholar 

  73. Luo Y, Zhang S, Pan H, Xiao S, Guo Z, Tang L, Khan U, Ding BF, Li M, Cai Z et al (2020) Unsaturated single atoms on monolayer transition metal dichalcogenides for ultrafast hydrogen evolution. ACS Nano 14:767–776. https://doi.org/10.1021/acsnano.9b07763

    CAS  Article  Google Scholar 

  74. Ma YF, Chi BL, Liu W, Cao LN, Lin Y, Zhang XH, Ye XX, Wei SQ, Lu JL (2019) Tailoring of the proximity of platinum single atoms on CeO2 using phosphorus boosts the hydrogenation activity. ACS Catal 9:8404–8412. https://doi.org/10.1021/acscatal.9b01536

    CAS  Article  Google Scholar 

  75. Matsubu JC, Yang VN, Christopher P (2015) Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J Am Chem Soc 137:3076–3084. https://doi.org/10.1021/ja5128133

    CAS  Article  Google Scholar 

  76. McInroe B, Astley HC, Gong CH, Kawano SM, Schiebel PE, Rieser JM, Choset H, Blob RW, Goldman DI (2016) Tail use improves performance on soft substrates in models of early vertebrate land locomotors. Science 353:154–158. https://doi.org/10.1126/science.aaf0984

    CAS  Article  Google Scholar 

  77. Mohanty B, Jena BK, Basu S (2020) Single atom on the 2D matrix: an emerging electrocatalyst for energy applications. ACS Omega 5:1287–1295. https://doi.org/10.1021/acsomega.9b03515

    CAS  Article  Google Scholar 

  78. Moses-DeBusk M, Yoon M, Allard L, Mullins D, Wu ZL, Yang XF, Veith G, Stocks GM, Narula CK (2013) CO oxidation on supported single Pt atoms: experimental and ab initio density functional studies of CO interaction with PtAtom on θ-Al2O3 (010) surface. J Am Chem Soc 135:12634–12645. https://doi.org/10.1021/ja401847c

    CAS  Article  Google Scholar 

  79. Neitzel A, Figueroba A, Lykhach Y, Skala T, Vorokhta M, Tsud N, Mehl S, Sevcikova K, Prince KC, Neyman KM et al (2016) Atomically dispersed Pd, Ni, and Pt species in ceria-based catalysts: principal differences in stability and reactivity. J Phys Chem C 120:9852–9862. https://doi.org/10.1021/acs.jpcc.6b02264

    CAS  Article  Google Scholar 

  80. Ni WP, Gao Y, Zhang Y, Younus HA, Guo XG, Ma C, Zhang Y, Duan JF, Zhang JH, Zhang SG (2019) O-doping boosts the electrochemical oxygen reduction activity of a single fe site in hydrophilic carbon with deep mesopores. ACS Appl Mater Interfaces 11:45825–45831. https://doi.org/10.1021/acsami.9b18510

    CAS  Article  Google Scholar 

  81. Pan Y, Lin R, Chen Y, Liu S, Zhu W, Cao X, Chen W, Wu K, Cheong WC, Wang Y et al (2018) Design of single-atom Co-N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J Am Chem Soc 140:4218–4221. https://doi.org/10.1021/jacs.8b00814

    CAS  Article  Google Scholar 

  82. Patil KC, Aruna ST, Ekambaram S (2002) Combustion synthesis. Curr Opin Solid State Mater Sci 2:165. https://doi.org/10.1016/s1359-0286(02)00123-7

    Article  Google Scholar 

  83. Pei GX, Liu XY, Yang XF, Zhang LL, Wang AQ, Li L, Wang H, Wang XD, Zhang T (2017) Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal 7:1491–1500. https://doi.org/10.1021/acscatal.6b03293

    CAS  Article  Google Scholar 

  84. Pfennig V, Seppelt K (1996) Crystal and molecular structures of hexamethyltungsten and hexamethylrhenium. Science 271:626–628. https://doi.org/10.1126/science.271.5249.626

    CAS  Article  Google Scholar 

  85. Pitters JL, Urban R, Wolkow RA (2012) Creation and recovery of a W(111) single atom gas field ion source. J Chem Phys 136:154704-0. https://doi.org/10.1063/1.3702209

    CAS  Article  Google Scholar 

  86. Pranudta A, Klysubun W, El-Moselhy MM, Padungthon S (2020) Synthesis optimization and X-ray absorption spectroscopy investigation of polymeric anion exchanger supported binary Fe/Mn oxides nanoparticles for enhanced As(III) removal. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2019.104441

    Article  Google Scholar 

  87. Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T (2011) Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 3:634–641. https://doi.org/10.1038/nchem.1095

    CAS  Article  Google Scholar 

  88. Qiao B, Liu J, Wang YG, Lin Q, Liu J (2015) Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catal 5:150917155511007. https://doi.org/10.1021/acscatal.5b01114

    CAS  Article  Google Scholar 

  89. Qiao Y, Ma MY, Liu Y, Han RM, Cheng XG, Li QL, Li XN, Dong HY, Yin YH, Yang ST (2017) Tailoring the sodium storage performance of carbon nanowires by microstructure design and surface modification with N, O and S heteroatoms. Chemelectrochem 4:2877–2883. https://doi.org/10.1002/celc.201700554

    CAS  Article  Google Scholar 

  90. Qin R, Liu P, Gang F, Zheng N (2018) Strategies for stabilizing atomically dispersed metal catalysts. Small Methods 2:1700286

    Article  Google Scholar 

  91. Qin X, Zhu S, Xiao F, Zhang L, Shao M (2019) Active sites on heterogeneous single-iron-atom electrocatalysts in CO2 reduction reaction. ACS Energy Lett 4:1778–1783. https://doi.org/10.1021/acsenergylett.9b01015

    CAS  Article  Google Scholar 

  92. Qiu HJ, Ito Y, Cong W, Tan Y, Liu P, Hirata A, Fujita T, Tang Z, Chen M (2015) Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew Chem Int Ed 54:14031–14035. https://doi.org/10.1002/anie.201507381

    CAS  Article  Google Scholar 

  93. Qu YT, Li ZJ, Chen WX, Lin Y, Yuan TW, Yang ZK, Zhao CM, Wang J, Zhao C, Wang X et al (2018) Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat Catal 1:781–786. https://doi.org/10.1038/s41929-018-0146-x

    CAS  Article  Google Scholar 

  94. Regalbuto JR, Agashe K, Navada A, Bricker ML, Chen Q (1998) A scientific description of Pt adsorption onto alumina. Stud Surf Sci Catal 118:147–156. https://doi.org/10.1016/S0167-2991(98)80177-8

    CAS  Article  Google Scholar 

  95. Ren XL, Li JD, Wang SF, Zhang DS, Wang YJ (2019) Preparation and hydrogenation performance of single atom Pt catalytic active sites anchored on the surface of metallic supports. Catal Commun. https://doi.org/10.1016/j.catcom.2019.105709

    Article  Google Scholar 

  96. Ryczkowski J (2010) ChemInform abstract: IR spectroscopy in catalysis. Cheminform. https://doi.org/10.1002/chin.200147300

    Article  Google Scholar 

  97. Samantaray MK, Callens E, Abou-Hamad E, Rossini AJ, Widdifield CM, Dey R, Emsley L, Basset JM (2014) WMe6 Tamed by Silica: Si–O–WMe5 as an efficient, well-defined species for alkane metathesis, leading to the observation of a supported W-Methyl/Methylidyne species. J Am Chem Soc 136:1054–1061. https://doi.org/10.1021/ja410747g

    CAS  Article  Google Scholar 

  98. Samantaray MK, Dey R, Kavitake S, Abou-Hamad E, Bendjeriou-Sedjerari A, Hamieh A, Basset J-M (2016) Synergy between two metal catalysts: a highly active silica supported bimetallic W/Zr catalyst for metathesis of n-Decane. J Am Chem Soc. https://doi.org/10.1021/jacs.6b04307

    Article  Google Scholar 

  99. Samantaray MK, D’Elia V, Pump E, Falivene L, Harb M, Ould Chikh S, Cavallo L, Basset JM (2020) The comparison between single atom catalysis and surface organometallic catalysis. Chem Rev 120:734–813. https://doi.org/10.1021/acs.chemrev.9b00238

    CAS  Article  Google Scholar 

  100. Sarma BB, Kim J, Amsler J, Agostini G, Weidenthaler C, Pfaender N, Arenal R, Concepción P, Plessow P, Studt F, Prieto G (2020) One-pot cooperation of single-atom Rh and Ru solid catalysts for a selective tandem olefin isomerization-hydrosilylation process. Angew Chem Int Ed. https://doi.org/10.1002/anie.201915255

    Article  Google Scholar 

  101. Sha F, Zhu N, Bai Y, Li Q, Guo B, Zhao T, Zhang F, Zhang J (2016) Controllable synthesis of various CaCO3 morphologies based on a CCUS Idea. ACS Sustain Chem Eng 4:3032–3044. https://doi.org/10.1021/acssuschemeng.5b01793

    CAS  Article  Google Scholar 

  102. Sharifi T, Gracia-Espino E, Chen AR, Hu GZ, Wagberg T (2019) Oxygen reduction reactions on single- or few-atom discrete active sites for heterogeneous catalysis. Adv Energy Mater. https://doi.org/10.1002/aenm.201902084

    Article  Google Scholar 

  103. Song W-G, Shen Q, Cao C, Huang R, Lei Zhu XZ, Zhang Q, Gu L (2019) Single chromium atoms supported on titanium dioxide nanoparticles for synergic catalytic methane conversion under mild condition. Angewandte Chemie International Edition. https://doi.org/10.1002/anie.201913309

    Article  Google Scholar 

  104. Sun SH, Zhang GX, Gauquelin N, Chen N, Zhou JG, Yang SL, Chen WF, Meng XB, Geng DS, Banis MN et al (2013) Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci Rep. https://doi.org/10.1038/srep01775

    Article  Google Scholar 

  105. Sun Z, Liu Q, Yao T, Yan W, Wei S (2015) X-ray absorption fine structure spectroscopy in nanomaterials. Sci China Mater 58:313–341. https://doi.org/10.1007/s40843-015-0043-4

    CAS  Article  Google Scholar 

  106. Sun Q, Wang N, Zhang T, Bai R, Mayoral A, Zhang P, Zhang Q, Terasaki O, Yu J (2019) Zeolite-encaged single-atom rhodium catalysts: highly-efficient hydrogen generation and shape-selective tandem hydrogenation of nitroarenes. Angew Chem Int Ed 58:18570–18576. https://doi.org/10.1002/anie.201914720

    CAS  Article  Google Scholar 

  107. Takahashi Y, Hikichi S, Akita M, Moro-Oka Y (1999) A coordinatively unsaturated species with an agostic C–H interaction, [(κ4 Tp iPr)Ru(dppe)]OSO2 CF3, and its addition reaction. Organometallics 18:2571–2573. https://doi.org/10.1021/om990250s

    CAS  Article  Google Scholar 

  108. Tang Y, Wang Y-G, Liang J-X, Li J (2017a) Investigation of water adsorption and dissociation on Au 1/CeO2 single-atom catalysts using density functional theory. Chin J Catal 38:1558–1565. https://doi.org/10.1016/S1872-2067(17)62829-8

    CAS  Article  Google Scholar 

  109. Tang Y, Wang YG, Li J (2017b) Theoretical investigations of P1@CeO2 single-atom catalyst for CO oxidation. J Phys Chem C 121:11281–11289. https://doi.org/10.1021/acs.jpcc.7b00313

    CAS  Article  Google Scholar 

  110. Tang Y, Asokan C, Xu M, Graham GW, Pan X, Christopher P, Li J, Sautet P (2019) Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their site. Nat Commun 10:4488. https://doi.org/10.1038/s41467-019-12461-6

    CAS  Article  Google Scholar 

  111. Telychko M, Mutombo P, Ondracek M, Hapala P, Bocquet FC, Kolorenc J, Vondracek M, Jelinek P, Svec M (2014) Achieving high-quality single-atom nitrogen doping of graphene/SiC(0001) by ion implantation and subsequent thermal stabilization. ACS Nano 8:7318–7324. https://doi.org/10.1021/nn502438k

    CAS  Article  Google Scholar 

  112. Thomson PF, Parrish D, Pradhan P, Lakshman MK (2015) Modular, metal-catalyzed cycloisomerization approach to angularly fused polycyclic aromatic hydrocarbons and their oxidized derivatives. J Org Chem 80:7435–7446. https://doi.org/10.1021/acs.joc.5b00931

    CAS  Article  Google Scholar 

  113. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281:1647–1650. https://doi.org/10.1126/science.281.5383.1647

    CAS  Article  Google Scholar 

  114. Vilé G, Albani D, Nachtegaal M, Chen ZP, Dontsova D, Antonietti M, López N, Pérez-Ramírez J (2018) A stable single-site palladium catalyst for hydrogenations. Angew Chem Int Ed 54:11265–11269. https://doi.org/10.1002/anie.201505073

    CAS  Article  Google Scholar 

  115. Wan J, Chen W, Jia C, Zheng L, Dong J, Zheng X, Wang Y, Yan W, Chen C, Peng Q et al (2018) Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties. Adv Mater. https://doi.org/10.1002/adma.201705369

    Article  Google Scholar 

  116. Wang L, Zhang W, Wang S, Gao Z, Luo Z, Wang X, Zeng R, Li A, Li H, Wang M (2016) Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst. Nat Commun 7:14036. https://doi.org/10.1038/ncomms14036

    CAS  Article  Google Scholar 

  117. Wang AQ, Li J, Zhang T (2018) Heterogeneous single-atom catalysis. Nat Rev Chem 2:65–81. https://doi.org/10.1038/s41570-018-0010-1

    CAS  Article  Google Scholar 

  118. Wang C-M, Wang Y-D, Ge J-W, Xie Z-K (2019a) Reaction: industrial perspective on single-atom catalysis. Chemistry 5:2736–2737. https://doi.org/10.1016/j.chempr.2019.10.006

    CAS  Article  Google Scholar 

  119. Wang CT, Guan E, Wang L, Chu XF, Wu ZY, Zhang J, Yang ZY, Jiang YW, Zhang L, Meng XJ et al (2019b) Product selectivity controlled by nanoporous environments in zeolite crystals enveloping rhodium nanoparticle catalysts for CO2 hydrogenation. J Am Chem Soc 141:8482–8488. https://doi.org/10.1021/jacs.9b01555

    CAS  Article  Google Scholar 

  120. Wang DD, Shen YL, Chen YL, Liu LL, Zhao YF (2019c) Microwave-assistant preparation of N/S co-doped hierarchical porous carbons for hydrogen adsorption. Chem Eng J 367:260–268. https://doi.org/10.1016/j.cej.2019.02.150

    CAS  Article  Google Scholar 

  121. Wang TT, Zhao QD, Fu YY, Lei CJ, Yang B, Li ZJ, Lei LC, Wu G, Hou Y (2019d) Carbon-rich nonprecious metal single atom electrocatalysts for CO2 reduction and hydrogen evolution. Small Methods. https://doi.org/10.1002/smtd.201900210

    Article  Google Scholar 

  122. Wang Y, Tang YJ, Zhou K (2019e) Self-adjusting activity induced by intrinsic reaction intermediate in Fe-N-C single-atom catalysts. J Am Chem Soc 141:14115–14119. https://doi.org/10.1021/jacs.9b07712

    CAS  Article  Google Scholar 

  123. Wang F, Ma JZ, Xin SH, Wang Q, Xu J, Zhang CB, He H, Zeng XC (2020) Resolving the puzzle of single-atom silver dispersion on nanosized gamma-Al2O3 surface for high catalytic performance. Nat Commun. https://doi.org/10.1038/s41467-019-13937-1

    Article  Google Scholar 

  124. Warner JH, Lin Y-C, He K, Koshino M, Suenaga K (2014) Stability and spectroscopy of single nitrogen dopants in graphene at elevated temperatures. ACS Nano 8:11806–11815. https://doi.org/10.1021/nn5054798

    CAS  Article  Google Scholar 

  125. Wei H, Liu X, Wang A, Zhang L, Zhang T (2014a) FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat Commun 5:5634. https://doi.org/10.1038/ncomms6634

    CAS  Article  Google Scholar 

  126. Wei HS, Liu XY, Wang AQ, Zhang LL, Qiao BT, Yang XF, Huang YQ, Miao S, Liu JY, Zhang T (2014b) FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat Commun. https://doi.org/10.1002/anie.201913309

    Article  Google Scholar 

  127. Wei J, Hu Y, Liang Y, Kong B, Zhang J, Song J, Bao Q, Simon GP, Jiang SP, Wang H (2015) Nitrogen-doped nanoporous carbon/graphene nano-sandwiches: synthesis and application for efficient oxygen reduction. Adv Funct Mater 25:5768–5777. https://doi.org/10.1002/adfm.201502311

    CAS  Article  Google Scholar 

  128. Westre TE, Kennepohl P, DeWitt JG (1997) A multiplet analysis of Fe K-edge 1s → 3d pre-edge features of iron complexes. J Am Chem Soc 119:6297–6314. https://doi.org/10.1021/ja964352a

    CAS  Article  Google Scholar 

  129. Xia D, Liu H, Xu B, Wang Y, Liao Y, Huang Y, Ye L, He C, Wong PK, Qiu R (2019) Single Ag atom engineered 3D-MnO2 porous hollow microspheres for rapid photothermocatalytic inactivation of E. coli under solar light. Appl Catal B Environ 245:177–189. https://doi.org/10.1016/j.apcatb.2018.12.056

    CAS  Article  Google Scholar 

  130. Xilong Wang JD, Zhang Qinghua, Lin Gu, Cao Lijuan, Liang Han-Pu (2020) In situ synthesis of sustainable highly efficient single iron atoms anchored on nitrogen doped carbon derived from renewable biomass. Carbon 157:614–621. https://doi.org/10.1016/j.carbon.2019.10.054

    CAS  Article  Google Scholar 

  131. Xin Rong H-JW, Xiu-Li Lu, Si Rui, Tong-Bu Lu (2019) Control synthesis of vacancy-defect single-atom catalyst for boosting CO2 Electroreduction. Angew Chem Int Ed. https://doi.org/10.1002/anie.201912458

    Article  Google Scholar 

  132. Xu HX, Xu CQ, Cheng DJ, Li J (2017) Identification of activity trends for CO oxidation on supported transition-metal single-atom catalysts. Catal Sci Technol 7:5860–5871. https://doi.org/10.1039/c7cy00464h

    CAS  Article  Google Scholar 

  133. Xu Q, Zhang H, Guo Y, Qian J, Yang S, Luo D, Gao P, Wu DK, Li XP, Jiang Z et al (2019) Standing carbon-supported trace levels of metal derived from covalent organic framework for electrocatalysis. Small. https://doi.org/10.1002/smll.201905363

    Article  Google Scholar 

  134. Xu YQ, Zhang WF, Li YG, Lu PF, Wu ZS (2020) A general bimetal-ion adsorption strategy to prepare nickel single atom catalysts anchored on graphene for efficient oxygen evolution reaction. J Energy Chem 43:52–57. https://doi.org/10.1016/j.jechem.2019.08.006

    Article  Google Scholar 

  135. Yamamoto T (2008) Assignment of pre-edge peaks in K-edge X-ray absorption spectra of 3D transition metal compounds: electric dipole or quadrupole. X-Ray Spectrom. https://doi.org/10.1002/xrs.1103

    Article  Google Scholar 

  136. Yan QQ, Wu DX, Chu SQ, Chen ZQ, Lin Y, Chen MX, Zhang J, Wu XJ, Liang HW (2019) Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution. Nat Commun 10:4977. https://doi.org/10.1038/s41467-019-12851-w

    CAS  Article  Google Scholar 

  137. Yang M, Li S, Wang Y, Herron JA, Xu Y, Allard LF, Lee S, Huang J, Mavrikakis M, Flytzani-Stephanopoulos M (2014) Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 346:1498–1501. https://doi.org/10.1126/science.1260526

    CAS  Article  Google Scholar 

  138. Yang H, Shang L, Zhang Q, Shi R, Waterhouse GIN, Gu L, Zhang T (2019a) A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat Commun 10:4585. https://doi.org/10.1038/s41467-019-12510-0

    CAS  Article  Google Scholar 

  139. Yang H, Wu Y, Li G, Lin Q, Hu Q, Zhang Q, Liu J, He C (2019b) Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J Am Chem Soc 141:12717–12723. https://doi.org/10.1021/jacs.9b04907

    CAS  Article  Google Scholar 

  140. Yang Q, Yang CC, Lin CH, Jiang HL (2019c) Metal-organic-framework-derived hollow N-doped porous carbon with ultrahigh concentrations of single Zn atoms for efficient carbon dioxide conversion. Angew Chem Int Ed 58:3511–3515. https://doi.org/10.1002/anie.201813494

    CAS  Article  Google Scholar 

  141. Yang T, Song TT, Zhou J, Wang SJ, Chi DZ, Shen L, Yang M, Feng YP (2020a) High-throughput screening of transition metal single atom catalysts anchored on molybdenum disulfide for nitrogen fixation. Nano Energy. https://doi.org/10.1016/j.nanoen.2019.104304

    Article  Google Scholar 

  142. Yang W, Zhao M, Ding X, Ma K, Wu C, Gates ID, Gao Z (2020b) The effect of coordination environment on the kinetic and thermodynamic stability of single-atom iron catalysts. Phys Chem Chem Phys 22:3983–3989. https://doi.org/10.1039/c9cp05349b

    CAS  Article  Google Scholar 

  143. Yates JT, Duncan TM, Worley SD, Vaughan RW (1979) Infrared spectra of chemisorbed CO on Rh. J Chem Phys 70:1219. https://doi.org/10.1063/1.437603

    CAS  Article  Google Scholar 

  144. Yusefi S, Akhbari K, White J, Phuruangrat A (2020) Conversion of kinetically stable metal-organic product to thermodynamically stable one approved by thermal treatment and sonochemical reaction. J Mol Struct. https://doi.org/10.1016/j.molstruc.2019.127443

    Article  Google Scholar 

  145. Zang WJ, Kou ZK, Pennycook SJ, Wang J (2019) Heterogeneous single atom electrocatalysis, where “singles” are “married”. Adv Energy Mater. https://doi.org/10.1002/aenm.202070037

    Article  Google Scholar 

  146. Zhang L, Wang A, Miller JT, Liu X, Yang X, Wang W, Li L, Huang Y, Mou C-Y, Zhang T (2014) Efficient and durable Au alloyed Pd single-atom catalyst for the ullmann reaction of aryl chlorides in water. ACS Catal 4:1546–1553. https://doi.org/10.1021/cs500071c

    CAS  Article  Google Scholar 

  147. Zhang B, Asakura H, Zhang J, Zhang JG, De S, Yan N (2016) Stabilizing a platinum(1) single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew Chem Int Ed 55:8319–8323. https://doi.org/10.1002/anie.201602801

    CAS  Article  Google Scholar 

  148. Zhang S, Huang Z-Q, Ma Y, Gao W, Li J, Cao F, Li L, Chang C-R, Qu Y (2017a) Solid frustrated-Lewis-pair catalysts constructed by regulations on surface defects of porous nanorods of CeO2. Nat Commun 8:15266. https://doi.org/10.1038/ncomms15266

    CAS  Article  Google Scholar 

  149. Zhang Z, Zhu Y, Asakura H, Zhang B, Zhang J, Zhou M, Han Y, Tanaka T, Wang A, Zhang T (2017b) Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat Commun 8:16100. https://doi.org/10.1038/ncomms16100

    CAS  Article  Google Scholar 

  150. Zhang H, Liu G, Shi L, Ye J (2018a) Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis. Adv Energy Mater 8:1–24. https://doi.org/10.1002/aenm.201701343

    CAS  Article  Google Scholar 

  151. Zhang H, Yu L, Chen T, Zhou W, Lou XWD (2018b) Surface modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution. Adv Funct Mater 28:1807086. https://doi.org/10.1002/adfm.201807086

    CAS  Article  Google Scholar 

  152. Zhang J, Wu X, Cheong WC, Chen W, Lin R, Li J, Zheng L, Yan W, Gu L, Chen C et al (2018c) Cation vacancy stabilization of single-atomic-site Pt1/Ni(OH)x catalyst for diboration of alkynes and alkenes. Nat Commun 9:1002. https://doi.org/10.1038/s41467-018-03380-z

    CAS  Article  Google Scholar 

  153. Zhang JF, Liu CB, Zhang B (2019a) Insights into single-atom metal-support interactions in electrocatalytic water splitting. Small Methods. https://doi.org/10.1002/smtd.201800481

    Article  Google Scholar 

  154. Zhang R, Jiao L, Yang W, Wan G, Jiang H-L (2019b) Single-atom catalysts templated by metal-organic frameworks for electrochemical nitrogen reduction. J Mater Chem A 7:26371–26377. https://doi.org/10.1039/C9TA10206J

    CAS  Article  Google Scholar 

  155. Zhang T, Nie X, Yu W, Guo X, Song C, Si R, Liu Y, Zhao Z (2019c) Single atomic Cu-N2 catalytic sites for highly active and selective hydroxylation of benzene to phenol. Science 22:97–108. https://doi.org/10.1016/j.isci.2019.11.010

    CAS  Article  Google Scholar 

  156. Zhang Z, Ma C, Tu Y, Si R, Wei J, Zhang S, Wang Z, Li J-F, Wang Y, Deng D (2019d) Multiscale carbon foam confining single iron atoms for efficient electrocatalytic CO2 reduction to CO. Nano Res 12:2313–2317. https://doi.org/10.1007/s12274-019-2316-9

    CAS  Article  Google Scholar 

  157. Zhang ZQ, Chen YG, Zhou LQ, Chen C, Han Z, Zhang BS, Wu Q, Yang LJ, Du LY, Bu YF et al (2019e) The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring. Nat Commun. https://doi.org/10.1038/s41467-019-09596-x

    Article  Google Scholar 

  158. Zhang LL, Zhou MX, Wang AQ, Zhang T (2020a) Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chem Rev 120:683–733. https://doi.org/10.1021/acs.chemrev.9b00230

    CAS  Article  Google Scholar 

  159. Zhang Z, Feng C, Liu C, Zuo M, Qin L, Yan X, Xing Y, Li H, Si R, Zhou S et al (2020b) Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nat Commun 11:1215. https://doi.org/10.1038/s41467-020-14917-6

    CAS  Article  Google Scholar 

  160. Zhao Z, Lu G (2019) Cu-based single-atom catalysts boost electroreduction of CO2 to CH3OH: first-principles predictions. J Phys Chem C 123:4380–4387. https://doi.org/10.1021/acs.jpcc.8b12449

    CAS  Article  Google Scholar 

  161. Zhao L, He R, Rim KT, Schiros T, Kim KS, Zhou H, Gutierrez C, Chockalingam SP, Arguello CJ, Palova L (2011) Visualizing individual nitrogen dopants in monolayer graphene. Science 333:999–1003. https://doi.org/10.1126/science.1208759

    CAS  Article  Google Scholar 

  162. Zhou W, Prange M, Oxley M, Pantelides S, Idrobo JC (2011) Atomic scale study of point defects in graphene using STEM. Microsc Microanal 17:1498–1499. https://doi.org/10.1017/S1431927611008361

    Article  Google Scholar 

  163. Zhou P, Li N, Chao YG, Zhang WY, Lv F, Wang K, Yang WX, Gao P, Guo SJ (2019) Thermolysis of noble metal nanoparticles into electron-rich phosphorus-coordinated noble metal single atoms at low temperature. Angew Chem Int Ed 58:14184–14188. https://doi.org/10.1002/anie.201908351

    CAS  Article  Google Scholar 

  164. Zhu YQ, Sun WM, Luo J, Chen WX, Cao T, Zheng LR, Dong JC, Zhang J, Zhang ML, Han YH et al (2018) A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nat Commun 9:9. https://doi.org/10.1038/s41467-018-06296-w

    CAS  Article  Google Scholar 

  165. Zhu YD, Zhao K, Shi JL, Ren XY, Zhao XJ, Shang Y, Xue XL, Guo HZ, Duan XM, He H et al (2019) Strain engineering of a defect-free, single-layer MoS2 substrate for highly efficient single-atom catalysis of CO oxidation. ACS Appl Mater Interfaces 11:32887–32894. https://doi.org/10.1021/acsami.9b06435

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are very grateful for the financial support of the National Natural Science Foundation of China (Grant Nos. 21978043, U1662130), and we sincerely thank the reviewers for their valuable time and constructive comments.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Qin-Qin Xu or Jian-Zhong Yin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Wu, J., Xu, Q. et al. CO2 electrochemical reduction using single-atom catalysts. Preparation, characterization and anchoring strategies: a review. Environ Chem Lett (2020). https://doi.org/10.1007/s10311-020-01023-8

Download citation

Keywords

  • Single atom catalyst
  • Preparation methods
  • Characterization
  • Synthesis strategy
  • CO2 electrochemical reduction