Biofuels, biodiesel and biohydrogen production using bioprocesses. A review

Abstract

Energy demands, pollution and global warming induced by globalization are rising, thus calling for alternative sources of energies. In particular, biofuels are increasingly used for transportation, electric power and heat energy generation. Biofuels can mitigate greenhouse gas emissions by up to 50%. Biofuels are produced from organic matter and waste such as dry lignocellulose, algae, yeast, restaurant greases, food grain, non-food grain and animal fats. Biofuel from crop residues can be promoted by government subsidies to reduce the fuel price and meet the requirement of industries, transportation and agricultural sectors.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

ACP:

Acyl carrier protein

BTL:

Biomass to liquid

BTUs:

British thermal units

Cas:

CRISPR associated

CCS:

Carbon capture and storage

CHP:

Carbon heat and power

CO2 :

Carbon dioxide

CSLF:

Cellulose solvent-based lignocellulose fractionation

CRISPR:

Clustered regularly interspaced short palindromic repeats

DME:

Dimethyl ether

DOE:

Department of Energy

ER:

Endoplasmic reticulum

EtOH:

Bioethanol

eq/M.J:

Equivalent per megajoule

2-EH:

2-Ethylhexanol

FAs:

Fatty acids

FT:

Fischer–Tropsch

g/g:

Gram by gram

Gt:

Gigatonnes

GHGs:

Greenhouse gases

H2 :

Biohydrogen

H2O:

Water

H2S:

Hydrogen sulfide

IBPGM:

Integrated biomass pyrolysis, gasification and methanol synthesis

KOH:

Potassium hydroxide

LHV:

Lower heating value

MEC:

Microbial electrolysis cell

MeOH:

Methanol

MEF:

Microbial electrolysis cell

MFC:

Microbial fuel cell

Mo/Pt/WOx :

Molybdenum/platinum/tungsten oxide

MT:

Million tonnes

Mteo:

Million tonnes of oil equivalent

NaOH:

Sodium hydroxide

NER:

Net energy ratio

NOX :

Nitrogen oxides

NMB:

National mission on biodiesel

OPEFB:

Oil palm empty fruit bunch

PAHs:

Polycyclic aromatic hydrocarbons

PBRs:

Photo-bioreactors

PEM:

Polymer electrolyte membrane

PS:

Photo-system

PoGA15A:

Starch-digesting glucoamylase

S. cerevisiae :

Saccharomyces cerevisiae

SNG:

Synthetic natural gas

SPSC01:

Self-flocculating yeast strain

SO2 :

Sulfur dioxide

SO3 :

Sulfur trioxide

SSF:

Separate hydrolysis and fermentation

TAG:

Triacylglycerol

w/v:

Weight by volume

US:

United States

USA:

United States of America

XUSE:

Xylose-utilizing engineered S. cerevisiae strain

v/v:

Volume by volume

References

  1. Abukhadra MR, Dardir FM, Shaban M Ezzat, Ahmed A, Soliman MF (2018) Spongy Ni/Fe carbonate-fluorapatite catalyst for efficient conversion of cooking oil waste into biodiesel. Environ Chem Lett 16:665–670. https://doi.org/10.1007/s10311-017-0695-2

    CAS  Article  Google Scholar 

  2. Adegoke TV, Osho A, Palmer OG, Olodun OA, Adeyelu AT (2018) Production of biodiesel from green alga Oedogonium capillare. J Chem Environ Biol Eng 2(2):70–73. https://doi.org/10.11648/j.jcebe.20180202.15

    Article  Google Scholar 

  3. Aghbashlo M, Tabatabaei M, Soltanian S, Ghanavati H (2019) Biopower and biofertilizer production from organic municipal solid waste: an energy environmental analysis. Renew Energy 143:64–76. https://doi.org/10.1016/j.renene.2019.04.109

    Article  Google Scholar 

  4. Alam F, Mobin S, Chowdhury H (2015) Third generation biofuel from algae. Procedia Eng 105:763–768. https://doi.org/10.1016/j.proeng.2015.05.068

    CAS  Article  Google Scholar 

  5. Al-Fadhli FM, Baaqeel H, El-Halwagi MM (2019) Modular design of carbon–hydrogen–oxygen symbiosis networks over a time horizon with limited natural resources. Chem Eng Process Process Intensif 141:107535. https://doi.org/10.1016/j.cep.2019.107535

    CAS  Article  Google Scholar 

  6. Anandarajah G, Dowall WM, Ekins P (2013) Decarbonizing road transport with hydrogen and electricity: long term global technology learning scenarios. Int J Hydrog Energy 38(8):3419–3432. https://doi.org/10.1016/j.ijhydene.2012.12.110

    CAS  Article  Google Scholar 

  7. Ansari FA, Ravindran B, Gupta SK, Rawat MNI, Bux F (2019) Techno-economic estimation of wastewater phycoremediation and environmental benefits using Scenedesmus obliquus microalgae. J Environ Manag 240:293–302. https://doi.org/10.1016/j.jenvman.2019.03.123

    CAS  Article  Google Scholar 

  8. Anto S, Mukherjee SS, Muthappa R, Mathimani T, Deviram G, Kumar SS, Verma TN, Pugazhendhi A (2019) Algae as green energy reserve: technological outlook on biofuel production. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.125079

    Article  Google Scholar 

  9. Aresta M, Dibenedetto A, Colonna M, Carone T, Fragale C (2005) Production of biodiesel from macroalgae by supercritical CO2 extraction and thermochemical liquefaction. Environ Chem Lett 3:136–139. https://doi.org/10.1007/s10311-005-0020-3

    CAS  Article  Google Scholar 

  10. Arifin Y, Tanudjaja E, Dimyati A, Pinontoan R (2014) A second generation biofuel from cellulosic agricultural by-product fermentation using Clostridium species for electricity generation. Energy Procedia 47:310–315. https://doi.org/10.1016/j.egypro.2014.01.230

    CAS  Article  Google Scholar 

  11. Baldino C, Pavlenko N, Searle S, Christensen A (2018) The potential for low-carbon renewable methane as a transport fuel in France, Italy, and Spain. Working paper, International Council on Clean Transportation, pp 1–16. https://theicct.org/publications/potential-renewable-methane-france-italy-spain. Accessed June 2019

  12. Baliga R, Powers SE (2010) Sustainable algae biodiesel production in cold climates. In a special issue of bioprocess development for biofuels and bioproducts. Int J Chem Eng. https://doi.org/10.1155/2010/102179

    Article  Google Scholar 

  13. Banja M, Jégard M, Motola V, Sikkema R (2019) Support for biogas in the EU electricity sector—a comparative analysis. Biomass Bioenergy 128:105313. https://doi.org/10.1016/j.biombioe.2019.105313

    Article  Google Scholar 

  14. Barreiro DL, Prins W, Ronsse F, Brilman W (2013) Hydrothermal liquefaction (HTL) of microalgae for biofuel production: state of the art review and prospects. Biomass Bioenergy 53:113–127. https://doi.org/10.1016/j.biombioe.2012.12.029

    CAS  Article  Google Scholar 

  15. Basso LC, Amorin HV, Oliveira AJ, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8:1155–1163. https://doi.org/10.1111/j.1567-1364.2008.00428.x

    CAS  Article  Google Scholar 

  16. Beagle E, Belmont E (2019) Comparative life cycle assessment of biomass utilization for electricity generation in the European Union and the United States. Energy Policy 128:267–275. https://doi.org/10.1016/j.enpol.2019.01.006

    Article  Google Scholar 

  17. Bertrand V, Dequiedt B, Cadre EL (2014) Biomass for electricity in the EU-27: potential demand, CO2 abatements and breakeven prices for co-firing. Energy Policy 73:631–644. https://doi.org/10.1016/j.enpol.2014.06.007

    CAS  Article  Google Scholar 

  18. Bourgeois E, Dequiedt S, Lelièvre M, van Oort F, Lamy O, Ranjard L, Maron AP (2015) Miscanthus bioenergy crop stimulates nutrient-cycler bacteria and fungi in wastewater-contaminated agricultural soil. Environ Chem Lett 13:503–511. https://doi.org/10.1007/s10311-015-0532-4

    CAS  Article  Google Scholar 

  19. Breetza HL, Salon D (2018) Do electric vehicles need subsidies? Ownership costs for conventional, hybrid, and electric vehicles in 14 U.S. cities. Energy Policy 120:238–249. https://doi.org/10.1016/j.enpol.2018.05.038

    Article  Google Scholar 

  20. Brigljević B, Liu JJ, Lim H (2019) Comprehensive feasibility assessment of a poly-generation process integrating fast pyrolysis of S. japonica and the Rankine cycle. Appl Energy 254:113704. https://doi.org/10.1016/j.apenergy.2019.113704

    CAS  Article  Google Scholar 

  21. Buijs NA, Siewers V, Nielsen J (2013) Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr Opin Chem Biol 17(3):480–488. https://doi.org/10.1016/j.cbpa.2013.03.036

    CAS  Article  Google Scholar 

  22. Buitrón G, Carrillo-Reyes J, Morales M, Faraloni C, Torzillo G (2017) Biohydrogen production from microalgae. In: Gonzalez-Fernandez C, Muñoz R (eds) Chapter 9, From feedstock cultivation to end-products, microalgae-based biofuels and bioproducts. Woodhead Publishing Series in Energy, Sawston, pp 209–234. https://doi.org/10.1016/b978-0-08-101023-5.00009-1

    Google Scholar 

  23. Bull JW, Jobstvogt N, Böhnke-Henrichs A, Mascarenhas A, Sitas N, Baulcomb C, Lambini CK, Rawlins M, Baral H, Zähringer J, Carter-Silk E, Balzan MV, Kenter JO, Häyhä T, Petz K, Koss R (2016) Strengths, weaknesses, opportunities and threats: a SWOT analysis of the ecosystem services framework. Ecosyst Serv 17:99–111. https://doi.org/10.1016/j.ecoser.2015.11.012

    Article  Google Scholar 

  24. Cerazy-Waliszewska J, Jeżowski S, Łysakowski P, Waliszewska B, Zborowska M, Sobańska K, Ślusarkiewicz-Jarzina A, Białas W, Pniewski T (2019) Potential of bioethanol production from biomass of various Miscanthus genotypes cultivated in three-year plantations in west-central Poland. Ind Crops Prod 141:111790. https://doi.org/10.1016/j.indcrop.2019.111790

    CAS  Article  Google Scholar 

  25. Chauhan SK, Gangopadhyay S, Singh N (2009) Environmental aspects of biofuels in road transportation. N. Environ Chem Lett 7:289–299. https://doi.org/10.1007/s10311-008-0185-7

    CAS  Article  Google Scholar 

  26. Chemodanov A, Robin A, Golberg A (2017) Design of marine macroalgae photobioreactor integrated into the building to support agriculture for biorefinery and bioeconomy. Bioresour Technol 241:1084–1093. https://doi.org/10.1016/j.biortech.2017.06.061

    CAS  Article  Google Scholar 

  27. Cheng J, Sun J, Huang Y, Feng J, Zhou J, Cen K (2013) Dynamic microstructures and fractal characterization of cell wall disruption for microwave irradiation-assisted lipid extraction from wet microalgae. Bioresour Technol 150:67–72. https://doi.org/10.1016/j.biortech.2013.09.126

    CAS  Article  Google Scholar 

  28. Cherubini F, Strømman AH (2011) Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresour Technol 102:437–451. https://doi.org/10.1016/j.biortech.2010.08.010

    CAS  Article  Google Scholar 

  29. Cherubini F, Strømman AH, Hertwich E (2011) Effects of boreal forest management practices on the climate impact of CO2 emissions from bioenergy. Ecol Model 223(1):59–66. https://doi.org/10.1016/j.ecolmodel.2011.06.021

    CAS  Article  Google Scholar 

  30. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001

    CAS  Article  Google Scholar 

  31. Cho K, Hoffmann MR (2017) Molecular hydrogen production from wastewater electrolysis cell with multi-junction BiOx/TiO2 anode and stainless steel cathode: Current and energy efficiency. Appl Catal B Environ 202:671–682. https://doi.org/10.1016/j.apcatb.2016.09.067

    CAS  Article  Google Scholar 

  32. Cho S, Kim J (2019) Multi-site and multi-period optimization model for strategic planning of a renewable hydrogen energy network from biomass waste and energy crops. Energy 185:527–540. https://doi.org/10.1016/j.energy.2019.07.053

    Article  Google Scholar 

  33. Choi YY, Patel AK, Hong ME, Chang WS, Sim SJ (2019) Microalgae bioenergy with carbon capture and storage (BECCS): an emerging sustainable bioprocess for reduced CO2 emission and biofuel production. Bioresour Technol Rep 7:100270. https://doi.org/10.1016/j.biteb.2019.100270

    Article  Google Scholar 

  34. Chollacoop N, Saisirirat P, Sukkasi S, Tongroon M, Fukuda T, Fukuda A, Nivitchanyong S (2013) Potential of greenhouse gas emission reduction in Thai road transport by ethanol bus technology. Appl Energy 102:112–123. https://doi.org/10.1016/j.apenergy.2012.07.039

    CAS  Article  Google Scholar 

  35. Das GG (2017) Food–feed–biofuel trilemma: biotechnological innovation policy for sustainable development. J Policy Model. 39(3):410–442. https://doi.org/10.1016/j.jpolmod.2017.03.004

    Article  Google Scholar 

  36. Denton J (2019) Icebergs of fat, oil, and grease are growing in the sewers beneath our feet. Here’s why. https://psmag.com/environment/teenage-mutant-ninja-fatbergs. Accessed June 2019

  37. Dijk M, Erdei B, Galbe M, Nygård Y, Olsson L (2019) Strain-dependent variance in short-term adaptation effects of two xylose-fermenting strains of Saccharomyces cerevisiae. Bioresour Technol 292:121922. https://doi.org/10.1016/j.biortech.2019.121922

    CAS  Article  Google Scholar 

  38. Dimitriou I, Goldingay H, Bridgwater AV (2018) Techno-economic and uncertainty analysis of biomass to liquid (BTL) systems for transport fuel production. Renew Sustain Energy Rev 88:160–175. https://doi.org/10.1016/j.rser.2018.02.023

    CAS  Article  Google Scholar 

  39. Doloman A, Pererva Y, Cortez MH, Sims RC, Miller CD (2019) Augmentation of granular anaerobic sludge with algalytic bacteria enhances methane production from microalgal biomass. Fermentation 5(4):88. https://doi.org/10.3390/fermentation5040088

    Article  Google Scholar 

  40. dos Santos RG, Ventura P, Bordado JC, Mateus MM (2017) Direct and efficient liquefaction of potato peel into bio-oil. Environ Chem Lett 15:453–458. https://doi.org/10.1007/s10311-017-0620-8

    CAS  Article  Google Scholar 

  41. Dumortier J (2016) Impact of agronomic uncertainty in biomass production and endogenous commodity prices on cellulosic biofuel feedstock composition. GCB Bioenergy 8:35–50. https://doi.org/10.1111/gcbb.12238

    CAS  Article  Google Scholar 

  42. Elegbede I, Matemilola S, Kies F, Fadeyi O, Saba A, Rios PDL, Adekunbi F, Lawal-Are A, Fashina-Bombata H (2017) Risk analysis and development of algae biofuel from aquatic and terrestrial systems. Energy Procedia 128:324–331. https://doi.org/10.1016/j.egypro.2017.08.320

    Article  Google Scholar 

  43. Elkady M, Zaatout A, Balbaa O (2015) Production of biodiesel from waste vegetable oil via KM micromixer. J Chem 630168:9. https://doi.org/10.1155/2015/630168

    CAS  Article  Google Scholar 

  44. Esposito DV (2017) Membraneless electrolyzers for low-cost hydrogen production in a renewable energy future. Joule 1:651–658. https://doi.org/10.1016/j.joule.2017.07.003

    CAS  Article  Google Scholar 

  45. Fernandez-Moya R, Da Silva NA (2017) Engineering Saccharomyces cerevisiae for high-level synthesis of fatty acids and derived products. FEMS Yeast Res. 17(7):fox71. https://doi.org/10.1093/femsyr/fox071

    CAS  Article  Google Scholar 

  46. Fontes S (2010) World Energy Council. Biofuels: policies, standards and technologies World Energy Council. World Energy Council. https://www.worldenergy.org/assets/downloads/PUB_Biofuels_Policies_Standards_and_Technologies_2010_WEC.pdf. Accessed June 2019

  47. Fulvio FD, Forsell N, Korosuo A, Obersteiner M, Hellweg S (2019) Spatially explicit LCA analysis of biodiversity losses due to different bioenergy policies in the European Union. Science Total Environ 651:1505–1516. https://doi.org/10.1016/j.scitotenv.2018.08.419

    CAS  Article  Google Scholar 

  48. García-Olivares A, Solé J, Osychenko O (2018) Transportation in a 100% renewable energy system. Energy Convers Manag 158:266–285. https://doi.org/10.1016//j.enconman.2017.12.053

    Article  Google Scholar 

  49. Gargalo CL, Cheali P, Posada JA, Carvalho A, Gernaey KV, Sin G (2016) Assessing the environmental sustainability of early stage design for bioprocesses under uncertainties: an analysis of glycerol bioconversion. J Clean Prod 139:1245–1260. https://doi.org/10.1016/j.jclepro.2016.08.156

    CAS  Article  Google Scholar 

  50. Ge X, Burner DM, Xu J, Phillips GC, Sivakumar G (2011) Bioethanol production from dedicated energy crops and residues in Arkansas, USA. Biotechnol J 6(1):66–73. https://doi.org/10.1002/biot.201000240

    CAS  Article  Google Scholar 

  51. Gendy TS, El-Temtamy SA (2013) Commercialization potential aspects of microalgae for biofuel production: an overview. Egypt J Pet 22:43–51. https://doi.org/10.1016/j.ejpe.2012.07.001

    Article  Google Scholar 

  52. Goerndt ME, Wilson BT, Aguilar FX (2019) Comparison of small area estimation methods applied to biopower feedstock supply in the Northern U.S. region. Biomass Bioenergy 121:64–77. https://doi.org/10.1016/j.biombioe.2018.12.008

    Article  Google Scholar 

  53. Gomes V, Saade M, Lim B, Silva M (2018) Exploring lifecycle energy and greenhouse gas emissions of a case study with ambitious energy compensation goals in a cooling-dominated climate. Energy Build 173:302–314. https://doi.org/10.1016/j.enbuild.2018.04.063

    Article  Google Scholar 

  54. Gonçalves AL, Pires JCM, Simões M (2013) Green fuel production: processes applied to microalgae. Environ Chem Lett 11:315–324. https://doi.org/10.1007/s10311-013-0425-3

    CAS  Article  Google Scholar 

  55. Gonzalez-Salazar MA, Venturini M, Poganietz WR, Finkenrath M, Kirsten T, Acevedo H, Spina PR (2016) Development of a technology roadmap for bioenergy exploitation including biofuels, waste-to-energy and power generation & CHP. Appl Energy 180:338–352. https://doi.org/10.1016/j.apenergy.2016.07.120

    Article  Google Scholar 

  56. Harnesk D (2019) Biomass-based energy on the move—the geographical expansion of the European Union’s liquid biofuel regulation. Geoforum 98:25–35. https://doi.org/10.1016/j.geoforum.2018.09.019

    Article  Google Scholar 

  57. Haro P, Johnsson F, Thunman H (2016) Improved syngas processing for enhanced Bio-SNG production: a techno-economic assessment. Energy 101:380–389. https://doi.org/10.1016/j.energy.2016.02.037

    CAS  Article  Google Scholar 

  58. Hemaiswarya S, Raja R, Carvalho IS, Ravikumar R, Zambare V, Barh D (2012) An Indian scenario on renewable and sustainable energy sources with emphasis on algae. Appl Microbiol Biotechnol 96(5):1125–1135. https://doi.org/10.1007/s00253-012-4487-0

    CAS  Article  Google Scholar 

  59. Henriques TM, Pereira SR, Serafim LS, Xavier AMRB (2018) Two-stage aeration fermentation strategy to improve bioethanol production by Scheffersomyces stipitis. Fermentation 4:97. https://doi.org/10.3390/fermentation4040097

    CAS  Article  Google Scholar 

  60. Hibino T, Kobayashi K, Ito M, Nagao M, Fukui M, Teranishi S (2018) Direct electrolysis of waste newspaper for sustainable hydrogen production: an oxygen-functionalized porous carbon anode. Appl Catal B Environ 231:191–199. https://doi.org/10.1016/j.apcatb.2018.03.021

    CAS  Article  Google Scholar 

  61. Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A, Chan JS (2013) Characterization and optimization of carbohydrate production from an indigenous microalga Chlorella vulgaris FSP-E. Bioresour Technol 135:157–165. https://doi.org/10.1016/j.biortech.2012.10.100

    CAS  Article  Google Scholar 

  62. Hoang PTN, Ko JK, Gong G, Um Y, Lee SM (2018) Genomic and phenotypic characterization of a refactored xylose-utilizing Saccharomyces cerevisiae strain for lignocellulosic biofuel production. Biotechnol Biofuels 11:268. https://doi.org/10.1186/s13068-018-1269-7

    CAS  Article  Google Scholar 

  63. How SB, Ngan SL, Hong BH, Lam LH, Ng WPQ, Yusup S, Ghani WAWAK, Kansha Y, Chan YH, Cheah KW, Shahbazh M, Singhd HKG, Yusuf NR, Shuhailide AFA, Rambli J (2019) An outlook of Malaysian biomass industry commercialization: Perspectives and challenges. Renew Sustain Energy Rev 113:109277. https://doi.org/10.1016/j.rser.2019.109277

    Article  Google Scholar 

  64. Hu BB, Li MY, Wang YT, Zhu MJ (2018) Enhanced biohydrogen production from dilute acid pretreated sugarcane bagasse by detoxification and fermentation strategy. Int J Hydrog Energy 43(42):19366–19374. https://doi.org/10.1016/j.ijhydene.2018.08.164

    CAS  Article  Google Scholar 

  65. Hu Y, Zhu Z, Nielsen J, Siewers V (2019) Engineering Saccharomyces cerevisiae cells for production of fatty acid-derived biofuels and chemicals. Open Biol 9:190049. https://doi.org/10.1098/rsob.190049

    CAS  Article  Google Scholar 

  66. Huang Y, Yi Q, Wei G, Kang J, Li W, Feng J, Xie K (2018) Energy use, greenhouse gases emission and cost effectiveness of an integrated high- and low-temperature Fisher–Tropsch synthesis plant from a lifecycle viewpoint. Appl Energy 228:1009–1019. https://doi.org/10.1016/j.apenergy.2018.07.007

    CAS  Article  Google Scholar 

  67. Hundt KB, Reddy V (2011) Algal biodiesel production from power plant exhaust and its potential to replace petrodiesel and reduce greenhouse gas emissions. Int J Low Carbon Technol 6(4):294–298. https://doi.org/10.1093/ijlct/ctr017

    CAS  Article  Google Scholar 

  68. Hwang JH, Kabra AN, Ji MK, Choi J, El-Dalatony MM, Jeon BH (2016) Enhancement of continuous fermentative bioethanol production using combined treatment of mixed microalgal biomass. Algal Res 17:14–20. https://doi.org/10.1016/j.algal.2016.03.029

    Article  Google Scholar 

  69. Im-orb K, Arpornwichanop A (2020) Process and sustainability analyses of the integrated biomass pyrolysis, gasification, and methanol synthesis process for methanol production. Energy 193:116788. https://doi.org/10.1016/j.energy.2019.116788

    CAS  Article  Google Scholar 

  70. Ishak S, Kamari A (2019) Biodiesel from black soldier fly larvae grown on restaurant kitchen waste. Environ Chem Lett 17:1143–1150. https://doi.org/10.1007/s10311-018-00844-y

    CAS  Article  Google Scholar 

  71. Ito M, Hori T, Teranishi S, Nagao M, Hibino T (2018) Intermediate-temperature electrolysis of energy grass Miscanthus sinensis for sustainable hydrogen production. Sci Rep 8:16186. https://doi.org/10.1038/s41598-018-34544-y

    CAS  Article  Google Scholar 

  72. Jia J, Seitz LC, Benck JD, Huo Y, Chen Y, Ng JWD, Bilir T, Harris JS, Jaramillo TF (2016) Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat Commun 7:13237. https://doi.org/10.1038/ncomms13237

    CAS  Article  Google Scholar 

  73. Jin E, Sutherland JW (2018) An integrated sustainability model for a bioenergy system: forest residues for electricity generation. Biomass Bioenergy 119:10–21. https://doi.org/10.1016/j.biombioe.2018.09.005

    Article  Google Scholar 

  74. Jo S, Park S, Kim HJ, Lee JT (2019) Combustion improvement and emission reduction through control of ethanol ratio and intake air temperature in reactivity controlled compression ignition combustion engine. Appl Energy 250:1418–1431. https://doi.org/10.1016/j.apenergy.2019.05.012

    CAS  Article  Google Scholar 

  75. John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102(1):186–193. https://doi.org/10.1016/j.biortech.2010.06.139

    CAS  Article  Google Scholar 

  76. Jong S, Hoefnagels R, Wetterlund E, Pettersson K, Faaij A, Junginger M (2017) Cost optimization of biofuel production—the impact of scale, integration, transport and supply chain configurations. Appl Energy 195:1055–1070. https://doi.org/10.1016/j.apenergy.2017.03.109

    Article  Google Scholar 

  77. Jorquera O, Kiperstok A, Sales EA, Embirucu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101(4):1406–1413. https://doi.org/10.1016/j.biortech.2009.09.038

    CAS  Article  Google Scholar 

  78. Jrad A, Hmadeh M, Tarboush BJA, Awada G, Ahmad M (2020) Structural engineering of Zr-based metal–organic framework catalysts for optimized biofuel additives production. Chem Eng J 382:122793. https://doi.org/10.1016/j.cej.2019.122793

    CAS  Article  Google Scholar 

  79. Kara K, Ouanji F, Mahi ME, Lotfi EM, Kacimi M, Mahfoud Z (2019) Biodiesel synthesis from vegetable oil using eggshell waste as a heterogeneous catalyst. J Biofuel. https://doi.org/10.1080/17597269.2019.1580972

    Article  Google Scholar 

  80. Karl (2011) Hawaiian utility uses 100% biofuel in 90 MW oil-fired turbine—make biofuel. www.makebiofuel.co.uk/hawaiian-utility-uses-100-biofuel-in-90mw-oil-fired-turbine/. Accessed June 2019

  81. Kaza N (2020) Urban form and transportation energy consumption. Energy Policy 136:111049. https://doi.org/10.1016/j.enpol.2019.111049

    Article  Google Scholar 

  82. Kazemifard S, Nayebzadeh H, Saghatoleslami N, Safakish E (2019) Application of magnetic alumina-ferric oxide nanocatalyst supported by KOH for in situ transesterification of microalgae cultivated in wastewater medium. Biomass Bioenergy 129:105338. https://doi.org/10.1016/j.biombioe.2019.105338

    CAS  Article  Google Scholar 

  83. Kim S, Sung T, Kim KC (2018) Performance and greenhouse gas reduction analysis of biogas-fueled solid-oxide fuel cells for a sewage sludge and food waste treatment facility. Energy 11:600. https://doi.org/10.3390/en11030600

    CAS  Article  Google Scholar 

  84. Kojima E, Zhang K (1999) Growth and hydrocarbon production of microalga Botryococcus braunii in bubble column photobioreactors. J Biosci Bioeng 87(6):811–815. https://doi.org/10.1016/s1389-1723(99)80158-3

    CAS  Article  Google Scholar 

  85. Kommers N (2013) Algae biofuel can cut CO2 emissions by up to 68 percent compared to petroleum fuels finds new peer reviewed study. MINNEAPOLIS (September19). https://algaebiomass.org/algae-biofuel-can-cut-co2-emissions-by-more-than-50-compared-to-petroleum-fuels-finds-new-peer-reviewed-study/. Accessed June 2019

  86. Kothari R, Pandey A, Ahmad S, Kumar A, Pathak VV, Tyagi VV (2017) Microalgal cultivation for value-added products: a critical enviro-economical assessment. 3 Biotech 7(4):243. https://doi.org/10.1007/s13205-017-0812-8

    Article  Google Scholar 

  87. Kovač A, Marciuš D, Budin L (2019) Solar hydrogen production via alkaline water electrolysis. Int J Hydrog Energy 44(20):9841–9848. https://doi.org/10.1016/j.ijhydene.2018.11.007

    CAS  Article  Google Scholar 

  88. Kumar R, Kumar P (2017) Future microbial applications for bioenergy production: a perspective. Front Microbiol 8:450. https://doi.org/10.3389/fmicb.2017.00450

    Article  Google Scholar 

  89. Kumar L, Maithel S, Raju KV, Ram Mohan MP (2006) Liquid biofuels for transportation: India country study on potential and implications for sustainable agriculture and energy. https://www.researchgate.net/publication/259225852. Accessed June 2019

  90. Kumar AN, Chatterjee S, Hemalatha M, Avanthi A, Min B, Kim SH, Mohan SV (2019a) Deoiled algal biomass derived renewable sugars for bioethanol and biopolymer production in biorefinery framework. Bioresour Technol 296:122315. https://doi.org/10.1016/j.biortech.2019.122315

    CAS  Article  Google Scholar 

  91. Kumar MD, Kaliappan S, Gopikumar S, Zhen G, Banu JR (2019b) Synergetic pretreatment of algal biomass through H2O2 induced microwave in acidic condition for biohydrogen production. Fuel 253:833–839. https://doi.org/10.1016/j.fuel.2019.05.066

    CAS  Article  Google Scholar 

  92. Kumari N, Singh RK (2019) Biofuel and co-products from algae solvent extraction. J Environ Manag 247:196–204. https://doi.org/10.1016/j.jenvman.2019.06.042

    CAS  Article  Google Scholar 

  93. Kuo TC, Lin S-H, Tseng M-L, Chiu ASF, Hsue C-W (2019) Biofuels for vehicles in Taiwan: using system dynamics modeling to evaluate government subsidy policies. Resour Conserv Recycl 145:31–39. https://doi.org/10.1016/j.resconrec.2019.02.005

    Article  Google Scholar 

  94. Larsson M, Grönkvist S, Alvfors P (2016) Upgraded biogas for transport in Sweden—effects of policy instruments on production, infrastructure deployment and vehicle sales. J Clean Prod 112:3774–3784. https://doi.org/10.1016/j.jclepro.2015.08.056

    CAS  Article  Google Scholar 

  95. Lee YG, Jin YS, Cha YL, Seo JH (2017) Bioethanol production from cellulosic hydrolysates by engineered industrial Saccharomyces cerevisiae. Bioresour Technol 228:355–361. https://doi.org/10.1016/j.biortech.2016.12.042

    CAS  Article  Google Scholar 

  96. Lenhart S, Nelson-Marsh N, Wilson EJ, Solan D (2016) Electricity governance and the Western energy imbalance market in the United States: the necessity of interorganizational collaboration. Energy Res Soc Sci 19:94–107. https://doi.org/10.1016/j.erss.2016.05.015

    Article  Google Scholar 

  97. Li S, Chen G (2018) Factors affecting the effectiveness of bioelectrochemical system applications: data synthesis and meta-analysis. Batteries 4(3):34. https://doi.org/10.3390/batteries4030034

    CAS  Article  Google Scholar 

  98. Li M, Xu J, Xie H, Wang Y (2018) Transport biofuels technological paradigm based conversion approaches towards a bio-electric energy framework. Energy Convers Manag 172:554–566. https://doi.org/10.1016/j.enconman.2018.07.049

    CAS  Article  Google Scholar 

  99. Liu Z, Johnson TG, Altman I (2016) The moderating role of biomass availability in biopower co-firing—a sensitivity analysis. J Clean Prod 135:523–532. https://doi.org/10.1016/j.jclepro.2016.06.101

    Article  Google Scholar 

  100. Liu H, Wang X, Wu Y, Zhang X, Jin C, Zheng Z (2019) Effect of diesel/PODE/ethanol blends on combustion and emissions of a heavy duty diesel engine. Fuel 257:116064. https://doi.org/10.1016/j.fuel.2019.116064

    CAS  Article  Google Scholar 

  101. Lu C, Zhang H, Zhang Q, Chu C, Tahir N, Ge X, Jing Y, Hu J, Li Y, Zhang Y, Zhang T (2019) An automated control system for pilot-scale biohydrogen production: design, operation and validation. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2019.04.28

    Article  Google Scholar 

  102. Macedo IC, Seabra JEA, Silva JEAR (2008) Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: the 2005/2006 averages and a prediction for 2020. Biomass Bioenergy 32:582–595. https://doi.org/10.1016/j.biombioe.2007.12.006

    CAS  Article  Google Scholar 

  103. Machado IMP, Atsumi S (2012) Cyanobacterial biofuel production. J Biotechnol 162(1):50–56. https://doi.org/10.1016/j.jbiotec.2012.03.005

    CAS  Article  Google Scholar 

  104. Mahbub N, Gemechu E, Zhang H, Kumar A (2019) The life cycle greenhouse gas emission benefits from alternative uses of biofuel coproducts. Sustain Energy Technol Assess 34:173–186. https://doi.org/10.1016/j.seta.2019.05.001

    Article  Google Scholar 

  105. Mahmoud R, Ibrahim M, Ali G (2016) Closed photobioreactor for microalgae biomass production under indoor growth conditions. J Algal Biomass Util 7(1):86–92

    Google Scholar 

  106. Mamadzhanov A, McCluskey JJ, Li T (2019) Willingness to pay for a second-generation bioethanol: a case study of Korea. Energy Policy 127:464–474. https://doi.org/10.1016/j.enpol.2018.12.001

    Article  Google Scholar 

  107. Manolis EN, Zagas TD, Karetsos GK, Poravou CA (2019) Ecological restrictions in forest biomass extraction for a sustainable renewable energy production. Renew Sustain Energy Rev 110:290–297. https://doi.org/10.1016/j.rser.2019.04.078

    Article  Google Scholar 

  108. Martín M (2017) Artificial versus natural reuse of CO2 for DME production: are we any closer? Engineering 3(2):166–170. https://doi.org/10.1016/j.eng.2017.02.002

    CAS  Article  Google Scholar 

  109. Masmoudi O, Delorme X, Gianessi P (2019) Job-shop scheduling problem with energy consideration. Int J Prod Econ 216:12–22. https://doi.org/10.1016/j.ijpe.2019.03.021

    Article  Google Scholar 

  110. Mathimania T, Pugazhendhi A (2019) Utilization of algae for biofuel, bio-products and bio-remediation. Biocatal Agric Biotechnol 17:326–330. https://doi.org/10.1016/j.bcab.2018.12.007

    Article  Google Scholar 

  111. Matsushika A, Sawayama S (2011) Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase. Enzym Microb Technol 48(6–7):466–471. https://doi.org/10.1016/j.enzmictec.2011.02.002

    CAS  Article  Google Scholar 

  112. Mayur M, Gerard M, Schott P, Bessler WG (2018) Lifetime prediction of a polymer electrolyte membrane fuel cell under automotive load cycling using a physically-based catalyst degradation model. Energy 11:2054. https://doi.org/10.3390/en11082054

    CAS  Article  Google Scholar 

  113. Méndez A, Gascó G, Ruiz B, Fuente E (2019) Hydrochars from industrial macroalgae “Gelidium Sesquipedale” biomass wastes. Bioresour Technol 275:386–393. https://doi.org/10.1016/j.biortech.2018.12.074

    CAS  Article  Google Scholar 

  114. Mirza SS, Qazi JI, Liang Y, Chen S (2019) Growth characteristics and photofermentative biohydrogen production potential of purple non sulfur bacteria from sugar cane bagasse. Fuel 255:115805. https://doi.org/10.1016/j.fuel.2019.115805

    CAS  Article  Google Scholar 

  115. Mondou M, Skogstad G, Bognar J (2018) What are the prospects for deploying advanced biofuels in Canada? Biomass Bioenergy 116:171–179. https://doi.org/10.1016/j.biombioe.2018.06.014

    Article  Google Scholar 

  116. Montpart N, Ribot-Llobet E, Garlapati VK, Rago L, Baeza JA, Guisasola A (2014) Methanol opportunities for electricity and hydrogen production in bioelectrochemical systems. Int J Hydrog Energy 39(2):770–777. https://doi.org/10.1016/j.ijhydene.2013.10.151

    CAS  Article  Google Scholar 

  117. Moriarty P, Yan X, Wang SJ (2019) Liquid biofuels: not a long-term transport solution. Energy Procedia 158:3265–3270. https://doi.org/10.1016/j.egypro.2019.01.986

    Article  Google Scholar 

  118. Mulholland E, Rogan F, Gallachóir BPÓ (2017) From technology pathways to policy roadmaps to enabling measures—a multi-model approach. Energy 138:1030–1041. https://doi.org/10.1016/j.energy.2017.07.116

    Article  Google Scholar 

  119. Mutter A (2019) Mobilizing sociotechnical imaginaries of fossil-free futures—electricity and biogas in public transport in Linköping, Sweden. Energy Res Soc Sci 49:1–9. https://doi.org/10.1016/j.erss.2018.10.025

    Article  Google Scholar 

  120. Narala RR, Garg S, Sharma KK, Thomas-Hall SR, Deme M, Li Y, Schenk PM (2016) Comparison of microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system. Front Energy Res 4:29. https://doi.org/10.3389/fenrg.2016.00029

    Article  Google Scholar 

  121. Nedbalová L, Střížek A, Sigler K, Řezanka T (2016) Effect of salinity on the fatty acid and triacylglycerol composition of five haptophyte algae from the genera Coccolithophora, Isochrysis and Prymnesium determined by LC-MS/APCI. Phytochemistry 130:64–76. https://doi.org/10.1016/j.phytochem.2016.06.001

    CAS  Article  Google Scholar 

  122. Nguyen T, Abdin Z, Holm T, Mérida W (2019) Grid-connected hydrogen production via large-scale water electrolysis. Energy Convers Manag 200:112108. https://doi.org/10.1016/j.enconman.2019.112108

    CAS  Article  Google Scholar 

  123. Oliveira O, Gianesella S, Silva V, Mata T, Caetano N (2017) Lipid and carbohydrate profile of a microalga isolated from wastewater. Energy Procedia 136:468–473. https://doi.org/10.1016/j.egypro.2017.10.305

    CAS  Article  Google Scholar 

  124. Parra-Ramírez D, Martinez A, Cardona CA (2018) Technical and economic potential evaluation of the strain Escherichia coli MS04 in the ethanol production from glucose and xylose. Biochem Eng J 140:123–129. https://doi.org/10.1016/j.bej.2018.09.015

    CAS  Article  Google Scholar 

  125. Paz-Mireles CL, Razo-Flores E, Trejo G, Cercado B (2019) Inhibitory effect of ethanol on the experimental electrical charge and hydrogen production in microbial electrolysis cells (MECs). J Electroanal Chem 835:106–113. https://doi.org/10.1016/j.jelechem.2019.01.028

    CAS  Article  Google Scholar 

  126. Pereira LG, Chagas MF, Dias MOS, Cavalett O, Bonomi A (2015) Life cycle assessment of butanol production in sugarcane biorefineries in Brazil. J Clean Prod 96:557–568. https://doi.org/10.1016/j.jclepro.2014.01.059

    CAS  Article  Google Scholar 

  127. Pérez-Camacho MN, Curry R, Cromie T (2019) Life cycle environmental impacts of biogas production and utilisation substituting for grid electricity, natural gas grid and transport fuels. Waste Manag 95:90–101. https://doi.org/10.1016/j.wasman.2019.05.045

    Article  Google Scholar 

  128. Pfaffingera CE, Severin TS, Apel AC, Göbel J, Sauter J, Weuster-Bo D (2019) Light-dependent growth kinetics enable scale-up of well-mixed phototrophic bioprocesses in different types of photobioreactors. J Biotechnol 297:41–48

    Article  CAS  Google Scholar 

  129. Pick MJ (2019) The renewable energy strategies of oil majors—from oil to energy? Energy Strat Rev 26:100370. https://doi.org/10.1016/j.esr.2019.100370

    Article  Google Scholar 

  130. Poudel J, Karki S, Sanjel N, Shah M, Oh SC (2017) Comparison of biodiesel obtained from virgin cooking oil and waste cooking oil using supercritical and catalytic transesterification. Energy 10:546. https://doi.org/10.3390/en10040546

    CAS  Article  Google Scholar 

  131. Preethi, Mohamed Usman TM, Banu JR, Gunasekaran M, Kumar G (2019) Biohydrogen production from industrial wastewater: an overview. Bioresour Technol Rep 7:100287. https://doi.org/10.1016/j.biteb.2019.100287

    Article  Google Scholar 

  132. Quéméner EDL, Bridier A, Tian JH, Madigou C, Bureau C, Qi Y, Bouchez T (2019) Biorefinery for heterogeneous organic waste using microbial electrochemical technology. Bioresour Technol 292:121943. https://doi.org/10.1016/j.biortech.2019.121943

    CAS  Article  Google Scholar 

  133. Rabin E (2003) Biodiesel: a cleaner, greener fuel for the 21st century. https://www.greenbiz.com/news/2003/01/26/biodiesel-cleaner-greener-fuel-21st-century. Accessed June 2019

  134. Raheem A, Prinsen P, Vuppaladadiyam AK, Zhao M, Luque R (2018) A review on sustainable microalgae-based biofuel and bioenergy production: recent developments. J Clean Prod 181:42–59. https://doi.org/10.1016/j.jclepro.2018.01.125

    CAS  Article  Google Scholar 

  135. Ram M, Aghahosseini A, Breyer C (2019) Job creation during the global energy transition towards 100% renewable power system by 2050. Technol Forecast Soc Change 151:119682. https://doi.org/10.1016/j.techfore.2019.06.008

    Article  Google Scholar 

  136. Ramirez JA, Rainey TJ (2019) Comparative techno-economic analysis of biofuel production through gasification, thermal liquefaction and pyrolysis of sugarcane bagasse. J Clean Prod 229:513–527. https://doi.org/10.1016/j.jclepro.2019.05.017

    CAS  Article  Google Scholar 

  137. Rassoulinejad-Mousavi SM, Mao Y, Zhang Y (2018) Reducing greenhouse gas emissions in Sandia methane-air flame by using a biofuel. Renew Energy 128:313–323. https://doi.org/10.1016/j.renene.2018.05.079

    CAS  Article  Google Scholar 

  138. Raud M, Kikas T, Sippula O, Shurpali NJ (2019) Potentials and challenges in lignocellulosic biofuel production technology. Renew Sustain Energy Rev 111:44–56. https://doi.org/10.1016/j.rser.2019.05.020

    CAS  Article  Google Scholar 

  139. Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88(10):3411–3424. https://doi.org/10.1016/j.apenergy.2010.11.025

    CAS  Article  Google Scholar 

  140. Röder M, Thiffault E, Martínez-Alonso C, Senez-Gagnon F, Paradis L, Thornley P (2019) Understanding the timing and variation of greenhouse gas emissions of forest bioenergy systems. Biomass Bioenergy 121:99–114. https://doi.org/10.1016/j.biombioe.2018.12.019

    CAS  Article  Google Scholar 

  141. Romaní A, Pereira F, Johansson B, Domingues L (2015) Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation. Bioresour Technol 179:150–158. https://doi.org/10.1016/j.biortech.2014.12.020

    CAS  Article  Google Scholar 

  142. Roux JM, Lamotte H, Achard JL (2017) An overview of microalgae lipid extraction in a biorefinery framework. Energy Procedia 112:680–688. https://doi.org/10.1016/j.egypro.2017.03.1137

    Article  Google Scholar 

  143. Runguphan W, Keasling JD (2013) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab Eng 21:103–113. https://doi.org/10.1016/j.ymben.2013.07.003

    CAS  Article  Google Scholar 

  144. Sa MT, Vb AKH, Dc S, Kothari S (2011) Utility of microbes for production of future biofuel. Int J Curr Sci Res 1(3):139–145

    Google Scholar 

  145. Sadaf S, Iqbal J, Ullah I, Bhatti HN, Nourene S, Rehman H, Nisar J, Iqbal M (2018) Biodiesel production from waste cooking oil: an efficient technique to convert waste into biodiesel. Sustain Cities Soc 41:220–226. https://doi.org/10.1016/j.scs.2018.05.037

    Article  Google Scholar 

  146. Salleh MM, Ibrahim MF, Roslan AM, Abd-Aziz S (2019) Fermentation with delayed yeast extract feeding and in situ recovery. Sci Rep 9:7443. https://doi.org/10.1038/s41598-019-43718-1

    CAS  Article  Google Scholar 

  147. Santana A, Maçaira J, Larrayoz MA (2012) Continuous production of biodiesel from vegetable oil using supercritical ethanol/carbon dioxide mixtures. Fuel Process Technol 96:214–219. https://doi.org/10.1016/j.fuproc.2011.12.021

    CAS  Article  Google Scholar 

  148. Sayed ET, Saito Y, Tsujiguchi T, Nakagawa N (2012) Catalytic activity of yeast extract in biofuel cell. J Biosci Bioeng 114(5):521–525. https://doi.org/10.1016/j.jbiosc.2012.05.021

    CAS  Article  Google Scholar 

  149. Schemme S, Breuer JL, Köller M, Meschede S, Walman F, Samsun RC, Peters R, Stolten D (2019) H2-based synthetic fuels: a techno-economic comparison of alcohol, ether and hydrocarbon production. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2019.05.028

    Article  Google Scholar 

  150. Shafiei E, Davidsdottir B, Leaver J, Stefansson H, Asgeirsson EI (2015) Comparative analysis of hydrogen, biofuels and electricity transitional pathways to sustainable transport in a renewable-based energy system. Energy 83(1):614–627. https://doi.org/10.1016/j.energy.2015.02.071

    CAS  Article  Google Scholar 

  151. Shafiei E, Leaver J, Davidsdottir B (2017) Cost-effectiveness analysis of inducing green vehicles to achieve deep reductions in greenhouse gas emissions in New Zealand. J Clean Prod 150:339–351. https://doi.org/10.1016/j.jclepro.2017.03.032

    Article  Google Scholar 

  152. Sharma A, Arya SK (2017) Hydrogen from algal biomass: a review of the production process. Biotechnol Rep (Amst) 5:63–69. https://doi.org/10.1016/j.btre.2017.06.001

    Article  Google Scholar 

  153. Sharma J, Kumar SS, Bishnoi NR, Pugazhendhi A (2018a) Enhancement of lipid production from algal biomass through various growth parameters. J Mol Liq 269:712–720. https://doi.org/10.1016/j.molliq.2018.08.103

    CAS  Article  Google Scholar 

  154. Sharma PK, Saharia M, Srivstava R, Kumar S, Sahoo L (2018b) Tailoring microalgae for efficient biofuel production. Front Mar Sci 5:382. https://doi.org/10.3389/fmars.2018.00382

    Article  Google Scholar 

  155. Sheng J, Feng X (2015) Metabolic engineering of yeast to produce fatty acid-derived biofuels: bottlenecks and solutions. Front Microbiol 6:554. https://doi.org/10.3389/fmicb.2015.00554

    Article  Google Scholar 

  156. Shi Z, Zhao B, Tang S, Yang X (2018) Hydrotreating lipids for aviation biofuels derived from extraction of wet and dry algae. J Clean Prod 204:906–915. https://doi.org/10.1016/j.jclepro.2018.08.351

    CAS  Article  Google Scholar 

  157. Shittu E, Kamdem BG, Weigelt C (2019) Heterogeneities in energy technological learning: evidence from the U.S. electricity industry. Energy Policy 132:1034–1049. https://doi.org/10.1016/j.enpol.2019.06.052

    Article  Google Scholar 

  158. Shobana S, Saratale GD, Pugazhendhi A, Arvindnarayan S, Periyasamy S, Kumar G, Kim S-H (2017) Fermentative hydrogen production from mixed and pure microalgae biomass: key challenges and possible opportunities. Int J Hydrog Energy 42(42):26440–26453. https://doi.org/10.1016/j.ijhydene.2017.07.050

    CAS  Article  Google Scholar 

  159. Silva De Souza A, Oliveira Junior AM, De Farias Silva CE, Abud De Souza AK (2016) Inhibitors influence on ethanol fermentation by Pichia stipitis. Chem Eng Trans 49:367–372. https://doi.org/10.3303/CET1649062

    Article  Google Scholar 

  160. Singh TS, Verma TN (2019) An assessment study of using Turel Kongreng (river mussels) as a source of heterogeneous catalyst for biofuel production. Biocatal Agric Biotechnol 20:101185. https://doi.org/10.1016/j.bcab.2019.101185

    Article  Google Scholar 

  161. Siqueira SF, Francisco ÉC, Queiroz MI, de Menezes CR, Zepka LQ, Jacob-Lopes E (2016) Third generation biodiesel production from microalgae Phormidium autumnale. Braz J Chem Eng 33(03):427–433. https://doi.org/10.1590/0104-6632.20160333s20150134

    CAS  Article  Google Scholar 

  162. Slade R, Bauen A (2013) Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass Bioengy 53:29–38. https://doi.org/10.1016/j.biombioe.2012.12.019

    Article  Google Scholar 

  163. Solé J, García-Olivares A, Turiel A, Ballabrera-Poy J (2018) Renewable transitions and the net energy from oil liquids: a scenarios study. Renew Energy Part A 116:258–271. https://doi.org/10.1016/j.renene.2017.09.035

    Article  Google Scholar 

  164. Sotirov M, Storch S (2018) Resilience through policy integration in Europe? Domestic forest policy changes as response to absorb pressure to integrate biodiversity conservation, bioenergy use and climate protection in France, Germany, the Netherlands and Sweden. Land Use Policy 79:977–989. https://doi.org/10.1016/j.landusepol.2017.04.034

    Article  Google Scholar 

  165. Sun M, Sheng GP, Zhang L, Xia CR, Mu ZX, Liu XW, Wang HL, Yu HQ, Qi R, Yu T, Yang M (2008) An MEC-MFC-coupled system for biohydrogen production from acetate. Environ Sci Technol 42(21):8095–8100. https://doi.org/10.1021/es801513c

    CAS  Article  Google Scholar 

  166. Sun H, Luo S, Jin R, He Z (2017) Ensemble engineering and statistical modeling for parameter calibration towards optimal design of microbial fuel cells. J Power Sources 356:288–298. https://doi.org/10.1016/j.jpowsour.2017.02.051

    CAS  Article  Google Scholar 

  167. Swain RB, Karimu A (2020) Renewable electricity and sustainable development goals in the EU. World Dev 125:104693. https://doi.org/10.1016/j.worlddev.019.104693

    Article  Google Scholar 

  168. Tan JS, Phapugrangkul P, Lee CK, Lai Z-W, Bakar MHA, Murugan P (2019) Banana frond juice as novel fermentation substrate for bioethanol production by Saccharomyces cerevisiae. Biocatal Agric Biotechnol 21:101293. https://doi.org/10.1016/j.bcab.2019.101293

    Article  Google Scholar 

  169. Tani T, Taguchi H, Akamatsu T (2017) Analysis of metabolisms and transports of xylitol using xylose- and xylitol-assimilating Saccharomyces cerevisiae. J Biosci Bioeng 123(5):613–620. https://doi.org/10.1016/j.jbiosc.2016.12.012

    CAS  Article  Google Scholar 

  170. Tylor J, Halfmann JC, Zahler JD, Zhou R, Gibbons WR (2016) Increasing the tolerance of filamentous cyanobacteria to next-generation biofuels via directed evolution. Algal Res 18:250–256. https://doi.org/10.1016/j.algal.2016.06.023

    Article  Google Scholar 

  171. Unrean P, Fui BCL, Rianawati E, Acda M (2018) Comparative techno-economic assessment and environmental impacts of rice husk-to-fuel conversion technologies. Energy 151:581–593. https://doi.org/10.1016/j.energy.2018.03.112

    Article  Google Scholar 

  172. Väisänen S, Havukainen J, Uusitalo V, Havukainen M, Soukka R, Luoranen M (2016) Carbon footprint of biobutanol by ABE fermentation from corn and sugarcane. Renew Energy 89:401–410. https://doi.org/10.1016/j.renene.2015.12.016

    CAS  Article  Google Scholar 

  173. Verdezoto PLC, Vidoza JA, Gallo WLR (2019) Analysis and projection of energy consumption in Ecuador: energy efficiency policies in the transportation sector. Energy Policy 134:110948. https://doi.org/10.1016/j.enpol.2019.110948

    Article  Google Scholar 

  174. Vidales AG, Omanovic S, Tartakovsky B (2019) Combined energy storage and methane bioelectrosynthesis from carbon dioxide in a microbial electrosynthesis system. Bioresour Technol Rep 8:100302. https://doi.org/10.1016/j.biteb.2019.100302

    Article  Google Scholar 

  175. Walls LE, Velasquez-Orta SB, Romero-Frasca E, Learya P, Noguez IY, Ledesma MTO (2019) Non-sterile heterotrophic cultivation of native wastewater yeast and microalgae for integrated municipal wastewater treatment and bioethanol production. Biochem Eng J 151:107319. https://doi.org/10.1016/j.bej.2019.107319

    CAS  Article  Google Scholar 

  176. Wang J, Zhangm Q, Wei Y, Yang G, Wei F (2019) Integrated furnace for combustion/gasification of biomass fuel for tobacco curing. Waste Biomass Valoris 10:2037. https://doi.org/10.1007/s12649-018-0205-1

    CAS  Article  Google Scholar 

  177. Water T (2017) Company report, media news-releases. Monster Whitechapel fatberg given new lease of biodiesel life. https://corporate.thameswater.co.uk/Media/News-releases/Monster-Whitechapel-fatberg-given-new-lease-of-biodiesel-life. Accessed June 2019

  178. Woertz IC, Benemann JR, Du N, Unnasch S, Mendola D, Mitchell BG, Lundquist TJ (2014) Life cycle greenhouse gases emissions from microalgal biodiesel—a CA-GREET model. Environ Sci Technol 48:6060–6068. https://doi.org/10.1021/es403768q

    CAS  Article  Google Scholar 

  179. Woodbury PB, Kemanian AR, Jacobson M, Langholtz M (2018) Improving water quality in the Chesapeake Bay using payments for ecosystem services for perennial biomass for bioenergy and biofuel production. Biomass Bioenergy 114:132–142. https://doi.org/10.1016/j.biombioe.2017.01.024

    Article  Google Scholar 

  180. Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens LML, Dismukes GC, Posewit MC (2010) Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot Cell 9:1251–1261. https://doi.org/10.1128/EC.00075-10

    CAS  Article  Google Scholar 

  181. Xiao L, Liu F, Xu H, Feng D, Liu J, Han G (2019) Biochar promotes methane production at high acetate concentrations in anaerobic soils. Environ Chem Lett 17:1347–1352. https://doi.org/10.1007/s10311-019-00863-3

    CAS  Article  Google Scholar 

  182. Xu QS, Yan YS, Feng JX (2016) Efficient hydrolysis of raw starch and ethanol fermentation: a novel raw starch-digesting glucoamylase from Penicillium oxalicum. Biotechnol Biofuels 9:216. https://doi.org/10.1186/s13068-016-0636-5

    CAS  Article  Google Scholar 

  183. Yang Z, Guo R, Xu X, Wang L, Dai M (2016) Enhanced methane production via repeated batch bioaugmentation pattern of enriched microbial consortia. Bioresour Technol 216:471–477. https://doi.org/10.1016/j.biortech.2016.05.062

    CAS  Article  Google Scholar 

  184. Yang L, Chen J, Qin S, Zeng M, Jiang Y, Hu L, Xiao P, Hao W, Hu Z, Lei A, Wang J (2018) Growth and lipid accumulation by different nutrients in the microalga Chlamydomonas reinhardtii. Biotechnol Biofuels 11:40. https://doi.org/10.1186/s13068-018-1041-z

    CAS  Article  Google Scholar 

  185. Yang M, Qi H, Liu F, Ren Y, Pan X, Zhang L, Liu X, Wang H, Pang J, Zheng M, Wang A, Zhang T (2019) One-pot production of cellulosic ethanol via tandem catalysis over a multifunctional Mo/Pt/WOx catalyst. Joule 3(8):1937–1948. https://doi.org/10.1016/j.joule.2019.05.020

    CAS  Article  Google Scholar 

  186. Yao R, Shimizu K (2013) Recent progress in metabolic engineering for the production of biofuels and biochemicals from renewable sources with particular emphasis on catabolite regulation and its modulation. Process Biochem 48(9):1409–1417. https://doi.org/10.1016/j.procbio.2013.02.032

    CAS  Article  Google Scholar 

  187. Yao S, Lyu S, An Y, Lu J, Gjermansen C, Schramm A (2019) Microalgae-bacteria symbiosis in microalgal growth and biofuel production: a review. J Appl Microbiol 126(2):359–368. https://doi.org/10.1111/jam.14095

    CAS  Article  Google Scholar 

  188. Yew GY, Lee SY, Show PL, Tao Y, Law CL, Trung T, Nguyen C, Chang JS (2019) Recent advances in algae biodiesel production: from upstream cultivation to downstream processing. Bioresour Technol Rep 7:100227. https://doi.org/10.1016/j.biteb.2019.100227

    Article  Google Scholar 

  189. Yrjol J, Paavilainen J (2004) Modelling and analyses of heat exchangers in a biomass boiler plant. Int J Energy Res 28:473–494. https://doi.org/10.1002/er.976

    CAS  Article  Google Scholar 

  190. Yu Z, Song M, Pei H, Han F, Jiang L, Hou Q (2017) The growth characteristics and biodiesel production of ten algae strains cultivated in anaerobically digested effluent from kitchen waste. Algal Res 24:265–275. https://doi.org/10.1016/j.algal.2017.04.010

    Article  Google Scholar 

  191. Yu M, Robati M, Oldfield P, Wiedmann T, Crawford R, Nezhad AA, Carmichael D (2020) The impact of value engineering on embodied greenhouse gas emissions in the built environment: a hybrid life cycle assessment. Build Environ 168(15):106452. https://doi.org/10.1016/j.buildenv.2019.106452

    Article  Google Scholar 

  192. Yue D, You F, Snyder SW (2014) Biomass-to-bioenergy and biofuel supply chain optimization: overview, key issues and challenges. Comput Chem Eng 66:36–56. https://doi.org/10.1016/j.compchemeng.2013.11.016

    CAS  Article  Google Scholar 

  193. Yun C-J, Hwang K-O, Han S-S, Ri H-G (2019) The effect of salinity stress on the biofuel production potential of freshwater microalgae Chlorella vulgaris YH703. Biomass Bioenergy 127:105277. https://doi.org/10.1016/j.biombioe.2019.105277

    CAS  Article  Google Scholar 

  194. Zeman P, Hönig V, Kotek M, Táborský J, Obergruber M, Mařík J, Hartová V, Pechout M (2019) Hydrotreated vegetable oil as a fuel from waste materials. Catalysts 9(4):337. https://doi.org/10.3390/catal9040337

    CAS  Article  Google Scholar 

  195. Zhan J, Rong J, Wang Q (2017) Mixotrophic cultivation, a preferable microalgae cultivation mode for biomass/bioenergy production, and bioremediation, advances and prospect. Int J Hydrog Energy 42(12):8505–8517. https://doi.org/10.1016/j.ijhydene.2016.12.021

    CAS  Article  Google Scholar 

  196. Zhang H, Chen W (2015) The role of biofuels in China’s transport sector in carbon mitigation scenarios. Energy Procedia 75:2700–2705. https://doi.org/10.1016/j.egypro.2015.07.682

    Article  Google Scholar 

  197. Zhang Y, Liu D, Chen Z (2017) Production of C2–C4 diols from renewable bioresources: new metabolic pathways and metabolic engineering strategies. Biotechnol Biofuels 10:299. https://doi.org/10.1186/s13068-017-0992-9

    CAS  Article  Google Scholar 

  198. Zheng Q, Shumway CR (2008) Washington biofuel feedstock supply under price uncertainty. In: Conference paper/presentation. Western Agricultural Economics Association. 2008 annual meeting, Big Sky, Montana. http://purl.umn.edu/42304.pp.21. https://doi.org/10.22004/ag.econ.42304

  199. Zollmann M, Traugott H, Chemodanov A, Liberzon A, Golberg A (2018) Exergy efficiency of solar energy conversion to biomass of green macroalgae Ulva (Chlorophyta) in the photobioreactor. Energy Convers Manag 167:125–133. https://doi.org/10.1016/j.enconman.2018.04.090

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Nagaraj P. Shetti or Kakarla Raghava Reddy.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Srivastava, R.K., Shetti, N.P., Reddy, K.R. et al. Biofuels, biodiesel and biohydrogen production using bioprocesses. A review. Environ Chem Lett 18, 1049–1072 (2020). https://doi.org/10.1007/s10311-020-00999-7

Download citation

Keywords

  • Green environment
  • Biofuels
  • Organic waste
  • Fossil fuels
  • Environmental pollutants
  • Energy utilization