Formation of environmentally persistent free radicals and reactive oxygen species during the thermal treatment of soils contaminated by polycyclic aromatic hydrocarbons

Abstract

Environmentally persistent free radicals (EPFRs) are emerging contaminants of increasing concern due to their toxicity for life and ecosystems, yet their formation, behavior and fate are poorly known. In particular, there is actually no knowledge on the formation of those radicals during the thermal treatment of soils containing polycyclic aromatic hydrocarbons. Such knowledge is important because thermal treatment is a remediation method used to decontaminate soils by removing and degrading PAHs. Here, we studied the formation of radicals in three types of cultivated soils, bauxite soil, fluvo-aquic soil and chernozem soil, artificially contaminated by benzo[a]pyrene, during thermal treatment from 100 to 200 °C for 1 h, using electron paramagnetic resonance. Results show spins densities of radicals up to of 2.079 × 1017 spins/g for bauxite soil, 1.481 × 1017 spins/g for fluvo-aquic soil and 8.592 × 1016 spins/g for chernozem soil at 175 °C. The formed radicals exhibited multiple decays during their observable time and the shortest 1/e lifetimes of radicals up to 757.58 h. These findings are strengthened by EPFR-induction of reactive oxygen species (ROS), O2·− and ·OH, which increased in concentrations from 100 to 200 °C. Overall, our results demonstrates for the first time that thermal treatment of PAHs-contaminated soils induces the formation of EPFRs and suggests that thermal treatment might not be a fully clean remediation method for soils as thermal treatment creates new contaminants.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ayres JG, Borm P, Cassee FR, Castranova V, Donaldson K, Ghio A, Harrison RM, Hider R, Kelly F, Kooter IM (2008) Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential—a workshop report and consensus statement. Inhal Toxicol 20:75–99. https://doi.org/10.1080/08958370701665517

    CAS  Article  Google Scholar 

  2. Amaniampong PN, Trinh QT, De Oliveira VK, Dao DQ, Tran NH, Wang Y, Sherburne MP, Fo J (2019) Synergistic effect of high-frequency ultrasound with cupric oxide catalyst resulting in a selectivity switch in glucose oxidation under argon. J Am Chem Soc 141:14772–14779. https://doi.org/10.1021/jacs.9b06824

    CAS  Article  Google Scholar 

  3. Amaniampong PN, Trinh QT, Varghese JJ, Behling R, Valange S, Mushrif SH, Jérôme F (2018) Unraveling the mechanism of the oxidation of glycerol to dicarboxylic acids over a sonochemically synthesized copper oxide catalyst. Green Chem 20:2730–2741. https://doi.org/10.1039/c8gc00961a

    CAS  Article  Google Scholar 

  4. Chiou C, McGroddy S, Kile D (1998) Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environ Sci Technol 32:264–269. https://doi.org/10.1021/es970614c

    CAS  Article  Google Scholar 

  5. Coates JD, Cole KA, Chakraborty R, O'Connor SM, Achenbach LA (2002) Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration. Appl Environ Microbiol 68:2445–2452. https://doi.org/10.1128/AEM.68.5.2445-2452.2002

    CAS  Article  Google Scholar 

  6. Cruz ALNd, Cook RL, Lomnicki SM, Dellinger B (2012) Effect of low temperature thermal treatment on soils contaminated with pentachlorophenol and environmentally persistent free radicals. Environ Sci Technol 46:5971–5978. https://doi.org/10.1021/es300362k

    CAS  Article  Google Scholar 

  7. Do S, Jo J, Jo Y, Hh KS (2009) Application of a peroxymonosulfate/cobalt (PMS/Co(II)) system to treat diesel-contaminated soil. Chemosphere 77:1127–1131. https://doi.org/10.1016/j.chemosphere.2009.08.061

    CAS  Article  Google Scholar 

  8. Eriksson M, Dalhammar G, Borg-Karlson AK (2000) Biological degradation of selected hydrocarbons in an old PAH/creosote contaminated soil from a gas work site. Appl Microbiol Biot 53:619–626. https://doi.org/10.1007/s002530051667

    CAS  Article  Google Scholar 

  9. Falciglia PP, Giustra MG, Vagliasindi FGA (2011) Low-temperature thermal desorption of diesel polluted soil: influence of temperature and soil texture on contaminant removal kinetics. J Hazard Mater 185:392–400. https://doi.org/10.1016/j.jhazmat.2010.09.046

    CAS  Article  Google Scholar 

  10. Fang G, Gao J, Liu C, Dionysiou DD, Wang Y, Zhou D (2014) Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation. Environ Sci Technol 48:1902–1910. https://doi.org/10.1021/es4048126

    CAS  Article  Google Scholar 

  11. Gan S, Lau EV, Ng HK (2009) Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 172:532–549. https://doi.org/10.1016/j.jhazmat.2009.07.118

    CAS  Article  Google Scholar 

  12. Henner PS, Morel JL, Lichtfouse E (1997) Polycyclic aromatic hydrocarbon (PAH) occurrence and remediation methods. Analusis 25:56–59

    Google Scholar 

  13. Gilot P, Howard JB, Peters WA (1997) Evaporation phenomena during thermal decontamination of soils. Environ Sci Technol 31:461–466. https://doi.org/10.1021/es960293p

    CAS  Article  Google Scholar 

  14. Han L, Chen B (2017) Generation mechanism and fate behaviors of environmental persistent free radicals. Prog Chem 29:1008–1020. https://doi.org/10.7536/PC170566

    Article  Google Scholar 

  15. Jia H, Liu J, Zhu K, Gao P, Lichtfouse E (2020) High contribution of hydrocarbon transformation during the removal of polycyclic aromatic hydrocarbons from soils, humin and clay by thermal treatment at 100–200 °C. Environ Chem Lett. https://doi.org/10.1007/s10311-020-00972-4

    Article  Google Scholar 

  16. Jia H, Song Z, Shi Y, Zhu L, Wang C, Sharma VK (2018) Transformation of polycyclic aromatic hydrocarbons and formation of environmentally persistent free radicals on modified montmorillonite: the role of surface metal ions and polycyclic aromatic hydrocarbon molecular properties. Environ Sci Technol 51:5725–5733. https://doi.org/10.1021/acs.est.8b00425

    CAS  Article  Google Scholar 

  17. Jia H, Zhao S, Nulaji G, Tao K, Wang F, Sharma VK, Wang C (2017) Environmentally persistent free radicals in soils of past coking sites: distribution and stabilization. Environ Sci Technol 51:6000–6008. https://doi.org/10.1021/acs.est.7b00599

    CAS  Article  Google Scholar 

  18. Jia H, Nulaji G, Gao H, Wang F, Zhu Y, Wang C (2016) Formation and stabilization of environmentally persistent free radicals induced by the interaction of anthracene with Fe (III)-modified clays. Environ Sci Technol 50:6310–6319. https://doi.org/10.1021/acs.est.6b00527

    CAS  Article  Google Scholar 

  19. Jia H, Li L, Chen H, Zhao Y, Li X, Wang C (2015a) Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light. J Hazard Mater 287:16–23. https://doi.org/10.1016/j.jhazmat.2015.01.040

    CAS  Article  Google Scholar 

  20. Jia H, Wang C (2013) Comparative studies on montmorillonite-supported zero-valent iron nanoparticles produced by different methods: reactivity and stability. Environ Technol 34:25–33. https://doi.org/10.1080/09593330.2012.679698

    CAS  Article  Google Scholar 

  21. Jia H, Chen H, Nulaji G, Li X, Wang C (2015b) Effect of low-molecular-weight organic acids on photo-degradation of phenanthrene catalyzed by Fe (III)–smectite under visible light. Chemosphere 138:266–271. https://doi.org/10.1016/j.chemosphere.2015.05.076

    CAS  Article  Google Scholar 

  22. Karimi-Lotfabad S, Pickard MA, Gray MR (1996) Reactions of polynuclear aromatic hydrocarbons on soil. Environ Sci Technol 30:1145–1151. https://doi.org/10.1021/es950365x

    CAS  Article  Google Scholar 

  23. Kuzina SI, Brezgunov AY, Dubinskii AA, Mikhailov AI (2004) Free radicals in the photolysis and radiolysis of polymers: IV. Radicals in γ- and UV-irradiated wood and lignin. High Energ Chem 38:298–305. https://doi.org/10.1023/B:HIEC.0000041340.45217.bd

    CAS  Article  Google Scholar 

  24. Khachatryan L, Vejerano E, Lomnicki S (2011) Environmentally persistent free radicals (EPFRs). 1. Generation of reactive oxygen species in aqueous solutions. Environ Sci Technol 45:8559–8566

    CAS  Article  Google Scholar 

  25. Li D, Xu W, Mu Y, Yu H, Crittenden JC (2018) Remediation of petroleum-contaminated soil and simultaneous recovery of oil by fast pyrolysis. Environ Sci Technol 52:5330–5338. https://doi.org/10.1021/acs.est.7b03899

    CAS  Article  Google Scholar 

  26. Li X, Li P, Lin X, Zhang C, Li Q, Gong Z (2008) Biodegradation of aged polycyclic aromatic hydrocarbons (PAHs) by microbial consortia in soil and slurry phases. J Hazard Mater 150:21–26. https://doi.org/10.1016/j.jhazmat.2009.07.044

    CAS  Article  Google Scholar 

  27. Lichtfouse E, Budzinski H, Garrigues P, Eglinton T (1997) Ancient polycyclic aromatic hydrocarbons in modern soils: 13C, 14C and biomarker evidence. Org Geochem 26:353–359. https://doi.org/10.1016/S0146-6380(97)00009-0

    CAS  Article  Google Scholar 

  28. Lomnicki S, Dellinger B (2003) A detailed mechanism of the surface-mediated formation of PCDD/F from the Oxidation of 2-chlorophenol on CuO/ silica surface. J Phys Chem A 107:4387–4395. https://doi.org/10.1021/jp026045z

    CAS  Article  Google Scholar 

  29. Lomnicki S, Truong H, Vejerano E, Dellinger B (2008) Copper oxide-based model of persistent free radical formation on combustion-derived particulate matter. Environ Sci Technol 42:4982–4988. https://doi.org/10.1021/es071708h

    CAS  Article  Google Scholar 

  30. Maskos Z, Dellinger B (2008) Radicals from the oxidative pyrolysis of tobacco. Energ Fuel 22:675–1679. https://doi.org/10.1021/ef7006694

    CAS  Article  Google Scholar 

  31. Mohanty J, Rifkind J (1984) The effect of temperature on ESR signal intensities in aqueous solutions. J Magn Reson 57:178–184. https://doi.org/10.1016/0022-2364(84)90117-3

    CAS  Article  Google Scholar 

  32. Pryor WA, Hales BJ, Premovic PI, Church DF (1983) The radicals in cigarette tar: their nature and suggested physiological implications. Science 220:425–427. https://doi.org/10.1126/science.6301009

    CAS  Article  Google Scholar 

  33. Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248. https://doi.org/10.1016/S0167-7799(02)01943-1

    CAS  Article  Google Scholar 

  34. Saravia J, Lee GI, Lomnicki S, Dellinger B, Cormier SA (2013) Particulate matter containing environmentally persistent free radicals and adverse infant respiratory health effects: a review. J Biochem Mol Toxic 27:56–68. https://doi.org/10.1002/jbt.21465

    CAS  Article  Google Scholar 

  35. Sarkar C, Pendem S, Shrotri A, Dao DQ, Pham Thi Mai P, Nguyen Ngoc T, Chandaka DR, Rao TV, Trinh QT, Sherburne MP (2019) Interface engineering of graphene-supported Cu nanoparticles encapsulated by mesoporous silica for size-dependent catalytic oxidative coupling of aromatic amines. ACS Appl Mater Inter 11:11722–11735. https://doi.org/10.1021/acsami.8b18675

    CAS  Article  Google Scholar 

  36. Trinh QT, Bhola K, Amaniampong PN, Fo J, Mushrif SH (2018) Synergistic application of XPS and DFT to investigate metal oxide surface catalysis. J Phys Chem C 122:22397–22406. https://doi.org/10.1021/acs.jpcc.8b05499

    CAS  Article  Google Scholar 

  37. Trinh QT, Nguyen AV, Huynh DC, Pham TH, Mushrif SH (2016) Mechanistic insights into the catalytic elimination of tar and the promotional effect of boron on it: first-principles study using toluene as a model compound. Catal Sci Technol 6:5871–5883. https://doi.org/10.1039/c6cy00358c

    CAS  Article  Google Scholar 

  38. Wang Z, Zang L, Fan X, Jia H, Li L, Deng W, Wang C (2015) Defect-mediated of Cu@TiO2 core-shell nanoparticles with oxygen vacancies for photocatalytic degradation 2,4-DCP under visible light irradiation. Appl Surf Sci 358:479–484. https://doi.org/10.1016/j.apsusc.2015.08.051

    CAS  Article  Google Scholar 

  39. Wang P, Pan B, Li H, Huang Y, Dong X, Ai F, Liu L, Wu M, Xing B (2018) The overlooked occurrence of environmentally persistent free radicals in an area with low-rank coal burning, Xuanwei, China. Environ Sci Technol 52:1054–1061. https://doi.org/10.1021/acs.est.7b05453

    CAS  Article  Google Scholar 

  40. Zhang Y, Guo X, Si X, Yang R, Zhou J, Quan X (2019) Environmentally persistent free radical generation on contaminated soil and their potential biotoxicity to luminous bacteria. Sci Total Environ 687:348–354. https://doi.org/10.1016/j.scitotenv.2019.06.137

    CAS  Article  Google Scholar 

  41. Zhao S, Miao D, Zhu K, Tao K, Wang C, Sharma VK, Jia H (2019) Interaction of benzo[a]pyrene with Cu (II)-montmorillonite: Generation and toxicity of environmentally persistent free radicals and reactive oxygen species. Environ Int 129:54–163. https://doi.org/10.1016/j.envint.2019.05.037

    CAS  Article  Google Scholar 

  42. Zhu K, Jia H, Zhao S, Xia T, Guo X, Wang T, Zhu L (2019) Formation of environmentally persistent free radicals on microplastics under light irradiation. Environ Sci Technol 53:8177–8186. https://doi.org/10.1021/acs.est.9b01474

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Financial supports by the National Natural Science Foundation of China (Grants Nos. 41571446 & 41877126), the “Open Project” of the State Key Laboratory of Pollution Control and Resource Reuse (PCRRF17020) and the “One Hundred Talents” program of Shaanxi Province (SXBR9171) are gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hanzhong Jia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 979 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Jia, H., Zhu, K. et al. Formation of environmentally persistent free radicals and reactive oxygen species during the thermal treatment of soils contaminated by polycyclic aromatic hydrocarbons. Environ Chem Lett 18, 1329–1336 (2020). https://doi.org/10.1007/s10311-020-00991-1

Download citation

Keywords

  • Thermal treatment
  • Polycyclic aromatic hydrocarbons
  • Risk
  • Environmentally persistent free radicals
  • PAHs
  • EPFRs
  • ROS