Advertisement

Environmental Chemistry Letters

, Volume 16, Issue 3, pp 881–901 | Cite as

Granulation of anammox microorganisms for autotrophic nitrogen removal from wastewater

  • U. Manonmani
  • Kurian Joseph
Review

Abstract

Excessive discharge of nutrients in waters induces pollution such as such as eutrophication. Conventional methods to treat waters are expensive. Alternatively, anaerobic ammonium oxidation, termed “anammox”, has been recently developped with benefits such as low sludge production, 50% less aeration demand, no external carbon supply, 60% less power consumption, and 90% reduction of greenhouse gas emissions. However, anammox is limited by long start-up periods due to the low growth rate of anammox bacteria. This issue can be solved by complete retention of biomass by reactor modification or by formation of anammox granules. This article reviews the mechanisms of anammox granulation and biogranulation models. We present factors involved in the granulation processes such as hydrodynamic shear force, extracellular polymeric substances, hydraulic retention time, seed sludge and bioreactors. We also discuss the interaction of proteins and polysaccharides in anammox granules.

Keywords

Anammox granules Bioreactors Biogranulation models Floating granules 

Notes

Acknowledgements

The Authors thank the support given by the University Grants Commission Research Fellowship for meritorious scholars in Sciences (Grant No: F.25-1/2013-14(BSR)/8-8/2006(BSR)).

References

  1. Abma WR, Schultz CE, Mulder JW et al (2007) Full-scale granular sludge anammox process. Water Sci Technol 55:27–33.  https://doi.org/10.2166/wst.2007.238 Google Scholar
  2. Abma WR, Driessen W, Haarhuis R, Van Loosdrecht MCM (2010) Upgrading of sewage treatment plant by sustainable and cost-effective separate treatment of industrial wastewater. Water Sci Technol 61:1715–1722.  https://doi.org/10.2166/wst.2010.977 Google Scholar
  3. Ahmed Z, Cho J, Lim B-R et al (2007) Effects of sludge retention time on membrane fouling and microbial community structure in a membrane bioreactor. J Membr Sci 287:211–218.  https://doi.org/10.1016/j.memsci.2006.10.036 Google Scholar
  4. Ahn YH (2006) Sustainable nitrogen elimination biotechnologies: a review. Process Biochem 41:1709–1721.  https://doi.org/10.1016/j.procbio.2006.03.033 Google Scholar
  5. Ali M, Okabe S (2015) Anammox-based technologies for nitrogen removal: advances in process start-up and remaining issues. Chemosphere 141:144–153.  https://doi.org/10.1016/j.chemosphere.2015.06.094 Google Scholar
  6. Ali M, Chai LY, Tang CJ et al (2013) The increasing interest of ANAMMOX research in China: bacteria, process development, and application. Biomed Res Int 2013:1–21.  https://doi.org/10.1155/2013/134914 Google Scholar
  7. Ali M, Oshiki M, Okabe S (2014) Simple, rapid and effective preservation and reactivation of anaerobic ammonium oxidizing bacterium “Candidatus Brocadia sinica”. Water Res 57:215–222.  https://doi.org/10.1016/j.watres.2014.03.036 Google Scholar
  8. Ali M, Oshiki M, Awata T et al (2015) Physiological characterization of anaerobic ammonium oxidizing bacterium “Candidatus Jettenia caeni”. Environ Microbiol 17:2172–2189.  https://doi.org/10.1111/1462-2920.12674 Google Scholar
  9. Alphenaar P, Visser A, Lettinga G (1993) The effect of liquid upward velocity and hydraulic retention time on granulation in UASB reactors treating wastewater with a high sulphate content. Bioresour Technol 43:249–258.  https://doi.org/10.1016/0960-8524(93)90038-D Google Scholar
  10. An P, Xu X, Yang F, Li Z (2013) Comparison of the characteristics of anammox granules of different sizes. Biotechnol Bioprocess Eng 18:446–454.  https://doi.org/10.1007/s12257-012-0728-4 Google Scholar
  11. Anfruns A, Gabarró J, Gonzalez-Olmos R et al (2013) Coupling anammox and advanced oxidation-based technologies for mature landfill leachate treatment. J Hazard Mater 258–259:27–34.  https://doi.org/10.1016/j.jhazmat.2013.04.027 Google Scholar
  12. Araujo JC, Campos AC, Correa MM et al (2011) Anammox bacteria enrichment and characterization from municipal activated sludge. Water Sci Technol 64:1428–1434.  https://doi.org/10.2166/wst.2011.632 Google Scholar
  13. Arrojo B, Mosquera-Corral A, Campos JL, Méndez R (2006) Effects of mechanical stress on anammox granules in a sequencing batch reactor (SBR). J Biotechnol 123:453–463.  https://doi.org/10.1016/j.jbiotec.2005.12.023 Google Scholar
  14. Asadi A, Zinatizadeh AA, Van Loosdrecht M, Younesi H (2016) Nitrogen removal by ANAMMOX and simultaneous nitrification–denitrification (SND) processes in a novel single airlift bioreactor. RSC Adv 6:74367–74371.  https://doi.org/10.1039/C6RA11174B Google Scholar
  15. Batstone DJ, Keller J (2001) Variation of bulk properties of anaerobic granules with wastewater type. Water Res 35:1723–1729.  https://doi.org/10.1016/S0043-1354(00)00446-2 Google Scholar
  16. Ben-Jacob E, Cohen I, Levine H (2000) Cooperative self-organization of microorganisms. Adv Phys 49:395–554.  https://doi.org/10.1080/000187300405228 Google Scholar
  17. Berge ND, Reinhart DR, Townsend TG (2005) The fate of nitrogen in bioreactor landfills. Crit Rev Environ Sci Technol 35:365–399.  https://doi.org/10.1080/10643380590945003 Google Scholar
  18. Bettazzi E, Caffaz S, Vannini C, Lubello C (2010) Nitrite inhibition and intermediates effects on anammox bacteria: a batch-scale experimental study. Process Biochem 45:573–580.  https://doi.org/10.1016/j.procbio.2009.12.003 Google Scholar
  19. Brandsma J, van de Vossenberg J, Risgaard-Petersen N et al (2011) A multi-proxy study of anaerobic ammonium oxidation in marine sediments of the Gullmar Fjord, Sweden. Environ Microbiol Rep 3:360–366.  https://doi.org/10.1111/j.1758-2229.2010.00233.x Google Scholar
  20. Broström G (1996) Air-sea flux of CO2—can we short cut the annual cycle? A Greenland-Iceland-Norwegian sea case study. Phys Chem Earth 21:517–522.  https://doi.org/10.1016/S0079-1946(97)81151-2 Google Scholar
  21. Chamchoi N, Nitisoravut S (2007) Anammox enrichment from different conventional sludges. Chemosphere 66:2225–2232.  https://doi.org/10.1016/j.chemosphere.2006.09.036 Google Scholar
  22. Chen MJ, Zhang Z, Bott TR (1998) Direct measurement of the adhesive strength of biofilms in pipes by micromanipulation. Biotechnol Tech 12:875–880.  https://doi.org/10.1023/A:1008805326385 Google Scholar
  23. Chen J, Ji Q, Zheng P et al (2010a) Floatation and control of granular sludge in a high-rate anammox reactor. Water Res 44:3321–3328.  https://doi.org/10.1016/j.watres.2010.03.016 Google Scholar
  24. Chen J, Zheng P, Yu Y et al (2010b) Promoting sludge quantity and activity results in high loading rates in anammox UBF. Bioresour Technol 101:2700–2705.  https://doi.org/10.1016/j.biortech.2009.11.085 Google Scholar
  25. Chen H, Ma C, Yang GF et al (2014) Floatation of flocculent and granular sludge in a high-loaded anammox reactor. Bioresour Technol 169:409–415.  https://doi.org/10.1016/j.biortech.2014.06.063 Google Scholar
  26. Clevinger CC, Heath RT, Bade DL (2014) Oxygen use by nitrification in the hypolimnion and sediments of Lake Erie. J Gt Lakes Res 40:202–207.  https://doi.org/10.1016/j.jglr.2013.09.015 Google Scholar
  27. Connan R, Dabert P, Khalil H et al (2016) Batch enrichment of anammox bacteria and study of the underlying microbial community dynamics. Chem Eng J 297:217–228.  https://doi.org/10.1016/j.cej.2016.03.154 Google Scholar
  28. Dalsgaard T, Canfield DE, Petersen J et al (2003) N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422:606–608.  https://doi.org/10.1038/nature01526 Google Scholar
  29. Dalsgaard T, Thamdrup B, Canfield DE (2005) Anaerobic ammonium oxidation (anammox) in the marine environment. Res Microbiol 156:457–464.  https://doi.org/10.1016/j.resmic.2005.01.011 Google Scholar
  30. Daniel LMC, Pozzi E, Foresti E, Chinalia FA (2009) Removal of ammonium via simultaneous nitrification-denitrification nitrite-shortcut in a single packed-bed batch reactor. Bioresour Technol 100:1100–1107.  https://doi.org/10.1016/j.biortech.2008.08.003 Google Scholar
  31. Dapena-Mora A, Campos JL, Mosquera-Corral A et al (2004a) Stability of the ANAMMOX process in a gas-lift reactor and a SBR. J Biotechnol 110:159–170.  https://doi.org/10.1016/j.jbiotec.2004.02.005 Google Scholar
  32. Dapena-Mora A, Van Hulle SWH, Campos JL et al (2004b) Enrichment of anammox biomass from municipal activated sludge: experimental and modelling results. J Chem Technol Biotechnol 79:1421–1428.  https://doi.org/10.1002/jctb.1148 Google Scholar
  33. Dapena-Mora A, Campos JL, Mosquera-Corral A, Méndez R (2006) Anammox process for nitrogen removal from anaerobically digested fish canning effluents. Water Sci Technol 53:265–274.  https://doi.org/10.2166/wst.2006.429 Google Scholar
  34. Dapena-Mora A, Fernández I, Campos JL et al (2007) Evaluation of activity and inhibition effects on anammox process by batch tests based on the nitrogen gas production. Enzyme Microb Technol 40:859–865.  https://doi.org/10.1016/j.enzmictec.2006.06.018 Google Scholar
  35. Dexiang L, Xiaoming L, Qi Y et al (2008) Effect of inorganic carbon on anaerobic ammonium oxidation enriched in sequencing batch reactor. J Environ Sci 20:940–944.  https://doi.org/10.1016/S1001-0742(08)62190-7 Google Scholar
  36. Dong Z, Sun T (2007) A potential new process for improving nitrogen removal in constructed wetlands—promoting coexistence of partial-nitrification and ANAMMOX. Ecol Eng 31:69–78.  https://doi.org/10.1016/j.ecoleng.2007.04.009 Google Scholar
  37. Egli K, Fanger U, Alvarez PJJ et al (2001) Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch Microbiol 175:198–207.  https://doi.org/10.1007/s002030100255 Google Scholar
  38. Etterer T, Wilderer PA (2001) Generation and properties of aerobic granular sludge. Water Sci Technol 43:19–26.  https://doi.org/10.1128/AEM.71.2.1051 Google Scholar
  39. Fenu A, Roels J, Wambecq T et al (2010) Energy audit of a full scale MBR system. Desalination 262:121–128.  https://doi.org/10.1016/j.desal.2010.05.057 Google Scholar
  40. Fernández I, Vázquez-Padín JR, Mosquera-Corral A et al (2008) Biofilm and granular systems to improve anammox biomass retention. Biochem Eng J 42:308–313.  https://doi.org/10.1016/j.bej.2008.07.011 Google Scholar
  41. Ferousi C, Lindhoud S, Baymann F et al (2017) Iron assimilation and utilization in anaerobic ammonium oxidizing bacteria. Curr Opin Chem Biol 37:129–136.  https://doi.org/10.1016/j.cbpa.2017.03.009 Google Scholar
  42. Francis CA, Beman JM, Kuypers MMM (2007) New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J 1:19–27.  https://doi.org/10.1038/ismej.2007.8 Google Scholar
  43. Franco A, Roca E, Lema J (2006) Granultion in high load denitrifying upflow sludge bed (USB) pulsed reactors. Bioresour Technol 40:871–880.  https://doi.org/10.1016/j.biortech.2008.12.036 Google Scholar
  44. Frison N, Di Fabio S, Cavinato C et al (2013a) Best available carbon sources to enhance the via-nitrite biological nutrients removal from supernatants of anaerobic co-digestion. Chem Eng J 215–216:15–22.  https://doi.org/10.1016/j.cej.2012.10.094 Google Scholar
  45. Frison N, Katsou E, Malamis S et al (2013b) Biological nutrients removal via nitrite from the supernatant of anaerobic co-digestion using a pilot-scale sequencing batch reactor operating under transient conditions. Chem Eng J 230:595–604.  https://doi.org/10.1016/j.cej.2013.06.071 Google Scholar
  46. Fuchsman CA, Staley JT, Oakley BB et al (2012) Free-living and aggregate-associated planctomycetes in the Black Sea. FEMS Microbiol Ecol 80:402–416.  https://doi.org/10.1111/j.1574-6941.2012.01306.x Google Scholar
  47. Fuerst JA, Sagulenko E (2011) Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nat Rev Microbiol 9:403–413.  https://doi.org/10.1038/nrmicro2578 Google Scholar
  48. Furukawa K, Inatomi Y, Qiao S et al (2009) Innovative treatment system for digester liquor using anammox process. Bioresour Technol 100:5437–5443.  https://doi.org/10.1016/j.biortech.2008.11.055 Google Scholar
  49. Fux C, Boehler M, Huber P et al (2002) Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant. J Biotechnol 99:295–306.  https://doi.org/10.1016/S0168-1656(02)00220-1 Google Scholar
  50. Ganczarczyk JJ (1994) Microbial aggregates in wastewater treatment. Water Sci Technol 30:87–95.  https://doi.org/10.1007/BFb0000730 Google Scholar
  51. Gao D, Liu L, Liang H, Wu W-M (2011) Aerobic granular sludge: characterization, mechanism of granulation and application to wastewater treatment. Crit Rev Biotechnol 31:137–152.  https://doi.org/10.3109/07388551.2010.497961 Google Scholar
  52. Gao Y, Liu Z, Liu F, Furukawa K (2012) Mechanical shear contributes to granule formation resulting in quick start-up and stability of a hybrid anammox reactor. Biodegradation 23:363–372.  https://doi.org/10.1007/s10532-011-9515-8 Google Scholar
  53. Gao F, Zhang H, Yang F et al (2014) The effects of zero-valent iron (ZVI) and ferroferric oxide (Fe3O4) on anammox activity and granulation in anaerobic continuously stirred tank reactors (CSTR). Process Biochem 49:1970–1978.  https://doi.org/10.1016/j.procbio.2014.07.019 Google Scholar
  54. Ge S, Peng Y, Qiu S et al (2014) Complete nitrogen removal from municipal wastewater via partial nitrification by appropriately alternating anoxic/aerobic conditions in a continuous plug-flow step feed process. Water Res 55:95–105.  https://doi.org/10.1016/j.watres.2014.01.058 Google Scholar
  55. Giustinianovich EA, Campos JL, Roeckel MD (2016) The presence of organic matter during autotrophic nitrogen removal: problem or opportunity? Sep Purif Technol 166:102–108.  https://doi.org/10.1016/j.seppur.2016.04.012 Google Scholar
  56. Gong YK, Peng YZ, Yang Q et al (2012) Formation of nitrous oxide in a gradient of oxygenation and nitrogen loading rate during denitrification of nitrite and nitrate. J Hazard Mater 227–228:453–460.  https://doi.org/10.1016/j.jhazmat.2012.05.002 Google Scholar
  57. Gonzalez-Estrella J, Li G, Neely SE et al (2017) Elemental copper nanoparticle toxicity to anaerobic ammonium oxidation and the influence of ethylene diamine-tetra acetic acid (EDTA) on copper toxicity. Chemosphere 184:730–737.  https://doi.org/10.1016/j.chemosphere.2017.06.054 Google Scholar
  58. Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145.  https://doi.org/10.1039/c0em00547a Google Scholar
  59. Guo J, Peng Y, Wang S et al (2013) Pathways and organisms involved in ammonia oxidation and nitrous oxide emission. Crit Rev Environ Sci Technol 43:2213–2296.  https://doi.org/10.1080/10643389.2012.672072 Google Scholar
  60. Guo Q, Xing BS, Li P et al (2015) Anaerobic ammonium oxidation (anammox) under realistic seasonal temperature variations: characteristics of biogranules and process performance. Bioresour Technol 192:765–773.  https://doi.org/10.1016/j.biortech.2015.06.049 Google Scholar
  61. Habeeb SA, Bin AA, Latiff A et al (2011) A review on granules initiation and development inside UASB Reactor and the main factors affecting granules formation process. Int J Energy Environ 2:311–320Google Scholar
  62. Harhangi HR, Le Roy M, van Alen T et al (2012) Hydrazine synthase, a unique phylomarker with which to study the presence and biodiversity of anammox bacteria. Appl Environ Microbiol 78:752–758.  https://doi.org/10.1128/AEM.07113-11 Google Scholar
  63. He S, Niu Q, Ma H et al (2015) The treatment performance and the bacteria preservation of anammox: a review. Water Air Soil Pollut 226:3333–3338.  https://doi.org/10.1007/s11270-015-2394-6 Google Scholar
  64. Heylen K, Ettwig K, Hu Z et al (2012) Rapid and simple cryopreservation of anaerobic ammonium-oxidizing bacteria. Appl Environ Microbiol 78:3010–3013.  https://doi.org/10.1128/AEM.07501-11 Google Scholar
  65. Hickey RF, Wu WM, Veiga MC, Jones R (1991) Start-up, operation, monitoring and control of high-rate anaerobic treatment systems. Water Sci Technol 24:207–255Google Scholar
  66. Ho CM, Tseng SK, Chang YJ (2002) Simultaneous nitrification and denitrification using an autotrophic membrane-immobilized biofilm reactor. Lett Appl Microbiol 35:481–485.  https://doi.org/10.1046/j.1472-765X.2002.01225.x Google Scholar
  67. Hu BL, Zheng P, Tang CJ et al (2010) Identification and quantification of anammox bacteria in eight nitrogen removal reactors. Water Res 44:5014–5020.  https://doi.org/10.1016/j.watres.2010.07.021 Google Scholar
  68. Hu A, Zheng P, Mahmood Q et al (2011a) Characteristics of nitrogenous substrate conversion by anammox enrichment. Bioresour Technol 102:536–542.  https://doi.org/10.1016/j.biortech.2010.07.015 Google Scholar
  69. Hu BL, Shen LD, Xu XY, Zheng P (2011b) Anaerobic ammonium oxidation (anammox) in different natural ecosystems. Biochem Soc Trans 39:1811–1816.  https://doi.org/10.1042/BST20110711 Google Scholar
  70. Hu Z, Lotti T, de Kreuk M et al (2013) Nitrogen removal by a nitritation-anammox bioreactor at low temperature. Appl Environ Microbiol 79:2807–2812.  https://doi.org/10.1128/AEM.03987-12 Google Scholar
  71. Huang Z, Ong SL, Ng HY (2011) Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: effect of HRT and SRT on treatment performance and membrane fouling. Water Res.  https://doi.org/10.1016/j.watres.2010.08.035 Google Scholar
  72. Hulshoff Pol LW, De Castro Lopes SI, Lettinga G, Lens PNL (2004) Anaerobic sludge granulation. Water Res 38:1376–1389.  https://doi.org/10.1016/j.watres.2003.12.002 Google Scholar
  73. Ibrahim M, Yusof N, Mohd Yusoff MZ, Hassan MA (2016) Enrichment of anaerobic ammonium oxidation (anammox) bacteria for short start-up of the anammox process: a review. Desalin Water Treat 57:13958–13978.  https://doi.org/10.1080/19443994.2015.1063009 Google Scholar
  74. Imajo U, Tokutomi T, Furukawa K (2004) Granulation of anammox microorganisms in up-flow reactors. Water Sci Technol 49:155–163Google Scholar
  75. Isaka K, Sumino T, Tsuneda S (2007) High nitrogen removal performance at moderately low temperature utilizing anaerobic ammonium oxidation reactions. J Biosci Bioeng 103:486–490.  https://doi.org/10.1263/jbb.103.486 Google Scholar
  76. Isanta E, Bezerra T, Fernandez I et al (2015) Microbial community shifts on an anammox reactor after a temperature shock using 454-pyrosequencing analysis. Bioresour Technol 181:207–213.  https://doi.org/10.1016/j.biortech.2015.01.064 Google Scholar
  77. Janga N, Ren X, Kim G et al (2007) Characteristics of soluble microbial products and extracellular polymeric substances in the membrane bioreactor for water reuse. Desalination 202:90–98.  https://doi.org/10.1016/j.desal.2005.12.043 Google Scholar
  78. Jetten MSM, Strous M, Van De Pas-Schoonen KT et al (1998) The anaerobic oxidation of ammonium. FEMS Microbiol Rev 22:421–437.  https://doi.org/10.1016/S0168-6445(98)00023-0 Google Scholar
  79. Jetten MSM, Wagner M, Fuerst J et al (2001) Microbiology and application of the anaerobic ammonium oxidation (’anammox’) process. Curr Opin Biotechnol 12:283–288.  https://doi.org/10.1016/S0958-1669(00)00211-1 Google Scholar
  80. Jetten MSM, Schmid M, Schmidt I et al (2002) Improved nitrogen removal by application of new nitrogen-cycle bacteria. Rev Environ Sci Biotechnol 1:51–63.  https://doi.org/10.1023/A:1015191724542 Google Scholar
  81. Jetten MSM, Slickers O, Kuypers M et al (2003) Anaerobic ammonium oxidation by marine and freshwater planctomycete-like bacteria. Appl Microbiol Biotechnol 63:107–114.  https://doi.org/10.1007/s00253-003-1422-4 Google Scholar
  82. Jetten M, Schmid M, Van De Pas-Schoonen K et al (2005) Anammox organisms: enrichment, cultivation, and environmental analysis. Methods Enzymol 397:34–57.  https://doi.org/10.1016/S0076-6879(05)97003-1 Google Scholar
  83. Jetten MSM, van Niftrik L, Strous M et al (2009) Biochemistry and molecular biology of anammox bacteria. Crit Rev Biochem Mol Biol 44:65–84.  https://doi.org/10.1080/10409230902722783 Google Scholar
  84. Ji YX, Jin RC (2014) Effect of different preservation conditions on the reactivation performance of anammox sludge. Sep Purif Technol 133:32–39.  https://doi.org/10.1016/j.seppur.2014.06.029 Google Scholar
  85. Jia C, Kang R, Zhang Y et al (2007) Synergic treatment for monosodium glutamate wastewater by Saccharomyces cerevisiae and Coriolus versicolor. Bioresour Technol 98:967–970.  https://doi.org/10.1016/j.biortech.2006.02.035 Google Scholar
  86. Jin RC, Zheng P, Hu AH et al (2008) Performance comparison of two anammox reactors: SBR and UBF. Chem Eng J 138:224–230.  https://doi.org/10.1016/j.cej.2007.06.038 Google Scholar
  87. Jin RC, Yang GF, Yu JJ, Zheng P (2012) The inhibition of the anammox process: a review. Chem Eng J 197:67–79.  https://doi.org/10.1016/j.cej.2012.05.014 Google Scholar
  88. Kartal B, Keltjens JT (2016) Anammox biochemistry: a tale of heme c proteins. Trends Biochem Sci 41:998–1011.  https://doi.org/10.1016/j.tibs.2016.08.015 Google Scholar
  89. Kartal B, Van Niftrik L, Sliekers O et al (2004) Application, eco-physiology and biodiversity of anaerobic ammonium-oxidizing bacteria. Rev Environ Sci Biotechnol 3:255–264.  https://doi.org/10.1007/s11157-004-7247-5 Google Scholar
  90. Kartal B, Rattray J, van Niftrik LA et al (2007) CandidatusAnammoxoglobus propionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol 30:39–49.  https://doi.org/10.1016/j.syapm.2006.03.004 Google Scholar
  91. Kartal B, Van Niftrik L, Keltjens JT et al (2012) Anammox—growth physiology, cell biology, and metabolism. Adv Microb Physiol 60:211–262.  https://doi.org/10.1016/B978-0-12-398264-3.00003-6 Google Scholar
  92. Khin T, Annachhatre AP (2004) Novel microbial nitrogen removal processes. Biotechnol Adv 22:519–532.  https://doi.org/10.1016/j.biotechadv.2004.04.003 Google Scholar
  93. Khramenkov SV, Kozlov MN, Kevbrina MV et al (2013) A novel bacterium carrying out anaerobic ammonium oxidation in a reactor for biological treatment of the filtrate of wastewater fermented sludge. Microbiology 82:628–636.  https://doi.org/10.1134/S002626171305007X Google Scholar
  94. Kimura Y, Isaka K, Kazama F (2011) Effects of inorganic carbon limitation on anaerobic ammonium oxidation (anammox) activity. Bioresour Technol 102:4390–4394.  https://doi.org/10.1016/j.biortech.2010.12.101 Google Scholar
  95. Kong Q, Liang S, Zhang J et al (2013) N2O emission in a partial nitrification system: dynamic emission characteristics and the ammonium-oxidizing bacteria community. Bioresour Technol 127:400–406.  https://doi.org/10.1016/j.biortech.2012.10.011 Google Scholar
  96. Kuenen JG (2008) Anammox bacteria: from discovery to application. Nat Rev Microbiol 6:320–326.  https://doi.org/10.1038/nrmicro1857 Google Scholar
  97. Kumar M, Lin JG (2010) Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal—strategies and issues. J Hazard Mater 178:1–9.  https://doi.org/10.1016/j.jhazmat.2010.01.077 Google Scholar
  98. Kuypers MMM, Sliekers AO, Lavik G et al (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608–611.  https://doi.org/10.1038/nature01526.1 Google Scholar
  99. Lackner S, Gilbert EM, Vlaeminck SE et al (2014) Full-scale partial nitritation/anammox experiences—an application survey. Water Res 55:292–303.  https://doi.org/10.1016/j.watres.2014.02.032 Google Scholar
  100. Lan T, Han Y, Roelcke M et al (2014) Sources of nitrous and nitric oxides in paddy soils: nitrification and denitrification. J Environ Sci China 26:581–592.  https://doi.org/10.1016/S1001-0742(13)60453-2 Google Scholar
  101. Laspidou CS, Rittmann BE (2002) Non-steady state modeling of extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res 36:1983–1992.  https://doi.org/10.1016/S0043-1354(01)00414-6 Google Scholar
  102. Laureni M, Weissbrodt DG, Szivák I et al (2015) Activity and growth of anammox biomass on aerobically pre-treated municipal wastewater. Water Res 80:325–336.  https://doi.org/10.1016/j.watres.2015.04.026 Google Scholar
  103. Lee DJ, Chen YY, Show KY et al (2010) Advances in aerobic granule formation and granule stability in the course of storage and reactor operation. Biotechnol Adv 28:919–934.  https://doi.org/10.1016/j.biotechadv.2010.08.007 Google Scholar
  104. Lettinga G, van Velsen AFM, Hobma SW et al (1980) Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol Bioeng 22:699–734.  https://doi.org/10.1002/bit.260220402 Google Scholar
  105. Levy-Booth DJ, Prescott CE, Grayston SJ (2014) Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol Biochem 75:11–25.  https://doi.org/10.1016/j.soilbio.2014.03.021 Google Scholar
  106. Li M, Gu JD (2011) Advances in methods for detection of anaerobic ammonium oxidizing (anammox) bacteria. Appl Microbiol Biotechnol 90:1241–1252.  https://doi.org/10.1007/s00253-011-3230-6 Google Scholar
  107. Li L, Pagilla KR (2017) Biomass density-function relationships in suspended growth biological processes—a critical review. Water Res 111:274–287.  https://doi.org/10.1016/j.watres.2017.01.012 Google Scholar
  108. Li XY, Yuan Y (2002) Settling velocities and permeabilities of microbial aggregates. Water Res 36:3110–3120.  https://doi.org/10.1016/S0043-1354(01)00541-3 Google Scholar
  109. Li A, Sun G, Xu M (2008) Recent patents on anammox process. Recent Pat Eng 2:189–194.  https://doi.org/10.2174/187221208786306324 Google Scholar
  110. Li XM, Liu QQ, Yang Q et al (2009) Enhanced aerobic sludge granulation in sequencing batch reactor by Mg2+ augmentation. Bioresour Technol 100:64–67.  https://doi.org/10.1016/j.biortech.2008.06.015 Google Scholar
  111. Li H, Chen S, Mu BZ, Gu JD (2010) Molecular detection of anaerobic ammonium-oxidizing (anammox) bacteria in high-temperature petroleum reservoirs. Microb Ecol 60:771–783.  https://doi.org/10.1007/s00248-010-9733-3 Google Scholar
  112. Li Z, Ma Y, Hira D et al (2011) Factors affecting the treatment of reject water by the anammox process. Bioresour Technol 102:5702–5708.  https://doi.org/10.1016/j.biortech.2011.03.001 Google Scholar
  113. Li H, Zhou S, Ma W et al (2012) Fast start-up of ANAMMOX reactor: operational strategy and some characteristics as indicators of reactor performance. Desalination 286:436–441.  https://doi.org/10.1016/j.desal.2011.11.038 Google Scholar
  114. Li Z, Xu X, Shao B et al (2014) Anammox granules formation and performance in a submerged anaerobic membrane bioreactor. Chem Eng J 254:9–16.  https://doi.org/10.1016/j.cej.2014.04.068 Google Scholar
  115. Li Y, Huang Z, Ruan W et al (2015) ANAMMOX performance, granulation, and microbial response under COD disturbance. J Chem Technol Biotechnol 90:139–148.  https://doi.org/10.1002/jctb.4298 Google Scholar
  116. Liang Z, Liu J (2008) Landfill leachate treatment with a novel process: anaerobic ammonium oxidation (anammox) combined with soil infiltration system. J Hazard Mater 151:202–212.  https://doi.org/10.1016/j.jhazmat.2007.05.068 Google Scholar
  117. Liao D, Li X, Yang Q et al (2007) Enrichment and granulation of anammox biomass started up with methanogenic granular sludge. World J Microbiol Biotechnol 23:1015–1020.  https://doi.org/10.1007/s11274-006-9328-9 Google Scholar
  118. Liu Y, Tay JH (2002) The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res 36:1653–1665.  https://doi.org/10.1016/S0043-1354(01)00379-7 Google Scholar
  119. Liu Y-QY, Tay J-H (2004) The effects of extracellular polymeric substances on the formation and stability of biogranules. Appl Microbiol Biotechnol 65:143–148.  https://doi.org/10.1007/s00253-004-1657-8 Google Scholar
  120. Liu Y, Yang SF, Tay JH et al (2004) Cell hydrophobicity is a triggering force of biogranulation. Enzyme Microb Technol 34:371–379.  https://doi.org/10.1016/j.enzmictec.2003.12.009 Google Scholar
  121. Liu S, Yang F, Gong Z et al (2008) Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal. Bioresour Technol 99:6817–6825.  https://doi.org/10.1016/j.biortech.2008.01.054 Google Scholar
  122. López H, Puig S, Ganigué R et al (2008) Start-up and enrichment of a granular anammox SBR to treat high nitrogen load wastewaters. J Chem Technol Biotechnol 83:233–241.  https://doi.org/10.1002/jctb.1796 Google Scholar
  123. Lu HF, Zheng P, Ji QX et al (2012) The structure, density and settlability of anammox granular sludge in high-rate reactors. Bioresour Technol 123:312–317.  https://doi.org/10.1016/j.biortech.2012.07.003 Google Scholar
  124. Ma B, Wang S, Zhang S et al (2013) Achieving nitritation and phosphorus removal in a continuous-flow anaerobic/oxic reactor through bio-augmentation. Bioresour Technol 139:375–378.  https://doi.org/10.1016/j.biortech.2013.02.077 Google Scholar
  125. Ma B, Wang S, Cao S et al (2016) Biological nitrogen removal from sewage via anammox: recent advances. Bioresour Technol 200:981–990.  https://doi.org/10.1016/j.biortech.2015.10.074 Google Scholar
  126. Magri A, Beline F, Dabert P (2013) Feasibility and interest of the anammox process as treatment alternative for anaerobic digester supernatants in manure processing—an overview. J Environ Manag 131:170–184.  https://doi.org/10.1016/j.jenvman.2013.09.021 Google Scholar
  127. Magrí AA, Vanotti MB, Szogi A (2009) Anammox treatment of swine wastewater using immobilized technology, Technologies/systems for different manure and organic waste treatment options conference 3:2–5Google Scholar
  128. Magrí A, Vanotti MB, Szögi AA (2012) Anammox sludge immobilized in polyvinyl alcohol (PVA) cryogel carriers. Bioresour Technol 114:231–240.  https://doi.org/10.1016/j.biortech.2012.03.077 Google Scholar
  129. Mahmoud N, Zeeman G, Gijzen H, Lettinga G (2003) Solids removal in upflow anaerobic reactors, a review. Bioresour Technol 90:1–9.  https://doi.org/10.1016/j.biortech.2012.12.066 Google Scholar
  130. Malamis S, Andreadakis A (2009) Fractionation of proteins and carbohydrates of extracellular polymeric substances in a membrane bioreactor system. Bioresour Technol 100:3350–3357.  https://doi.org/10.1016/j.biortech.2009.01.053 Google Scholar
  131. Martinez F, Lema J, Mendez R (2009) Role of exopolymeric protein on the settleability of nitrifying sludges. Bioresour Technol 94:43–48.  https://doi.org/10.1016/j.biortech.2008.08.003 Google Scholar
  132. Martins dos Santos VAP, Tramper J, Wijffels RH (1998) Integrated nitrogen removal in compact systems by immobilized microorganisms: new-generation bioreactors. Biotechnol Annu Rev 4:323–394.  https://doi.org/10.1016/S1387-2656(08)70076-0 Google Scholar
  133. Massara TM, Malamis S, Guisasola A et al (2017) A review on nitrous oxide (N2O) emissions during biological nutrient removal from municipal wastewater and sludge reject water. Sci Total Environ 596–597:106–123.  https://doi.org/10.1016/j.scitotenv.2017.03.191 Google Scholar
  134. Meng J, Li J, Li J et al (2015) Nitrogen removal from low COD/TN ratio manure-free piggery wastewater within an upflow microaerobic sludge reactor. Bioresour Technol 198:884–890.  https://doi.org/10.1016/j.biortech.2015.09.023 Google Scholar
  135. Mishima K, Nakamura M (1991) Self-immobilization of aerobic activated-sludge—a pilot-study of the aerobic upflow sludge blanket process in municipal sewage-treatment. Water Sci Technol 23:981–990Google Scholar
  136. Molinuevo B, García MC, Karakashev D, Angelidaki I (2009) Anammox for ammonia removal from pig manure effluents: effect of organic matter content on process performance. Bioresour Technol 100:2171–2175.  https://doi.org/10.1016/j.biortech.2008.10.038 Google Scholar
  137. Morales N, Val del Río Á, Vázquez-Padín JR et al (2015) Integration of the Anammox process to the rejection water and main stream lines of WWTPs. Chemosphere 140:99–105.  https://doi.org/10.1016/j.chemosphere.2015.03.058 Google Scholar
  138. Mulder A, van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16:177–183.  https://doi.org/10.1016/0168-6496(94)00081-7 Google Scholar
  139. Nakajima J, Sakka M, Kimura T et al (2008) Enrichment of anammox bacteria from marine environment for the construction of a bioremediation reactor. Appl Microbiol Biotechnol 77:1159–1166.  https://doi.org/10.1007/s00253-007-1247-7 Google Scholar
  140. Narita Y, Zhang L, Kimura Z et al (2017) Enrichment and physiological characterization of an anaerobic ammonium-oxidizing bacterium “Candidatus Brocadia sapporoensis”. Syst Appl Microbiol 40:448–457.  https://doi.org/10.1016/j.syapm.2017.07.004 Google Scholar
  141. Ng HY, Tan TW, Ong SL (2006) Membrane fouling of submerged membrane bioreactors: impact of mean cell residence time and the contributing factors. Environ Sci Technol 40:2706–2713.  https://doi.org/10.1021/es0516155 Google Scholar
  142. Ni S-Q, Yang N (2014) Evaluation of granular anaerobic ammonium oxidation process for the disposal of pre-treated swine manure. PeerJ 2:e336.  https://doi.org/10.7717/peerj.336 Google Scholar
  143. Ni SQ, Zhang J (2013) Anaerobic ammonium oxidation: from laboratory to full-scale application. Biomed Res Int 2013:1–11.  https://doi.org/10.1155/2013/469360 Google Scholar
  144. Ni BJ, Chen YP, Liu SY et al (2009) Modeling a granule-based anaerobic ammonium oxidizing (ANAMMOX) process. Biotechnol Bioeng 103:490–499.  https://doi.org/10.1002/bit.22279 Google Scholar
  145. Ni BJ, Hu BL, Fang F et al (2010a) Microbial and physicochemical characteristics of compact anaerobic ammonium-oxidizing granules in an upflow anaerobic sludge blanket reactor. Appl Environ Microbiol 76:2652–2656.  https://doi.org/10.1128/AEM.02271-09 Google Scholar
  146. Ni SQ, Fessehaie A, Lee PH et al (2010b) Interaction of anammox bacteria and inactive methanogenic granules under high nitrogen selective pressure. Bioresour Technol 101:6910–6915.  https://doi.org/10.1016/j.biortech.2010.03.125 Google Scholar
  147. Ni SQ, Gao BY, Wang CC et al (2011) Fast start-up, performance and microbial community in a pilot-scale anammox reactor seeded with exotic mature granules. Bioresour Technol 102:2448–2454.  https://doi.org/10.1016/j.biortech.2010.11.006 Google Scholar
  148. Nicolella C, Van Loosdrecht MCM, Heijnen SJ (2000) Particle-based biofilm reactor technology. Trends Biotechnol 18:312–320.  https://doi.org/10.1016/S0167-7799(00)01461-X Google Scholar
  149. Nielsen PH, Frolund B, Keiding K (1996) Changes in the composition of extracellular polymeric substances in activated sludge during anaerobic storage. Appl Microbiol Biotechnol 44:823–830.  https://doi.org/10.1007/s002530050639 Google Scholar
  150. Nikolaev A, Kozlov MN, Kevbrina MV et al (2015) CandidatusJettenia moscovienalis” sp. nov., a new species of bacteria carrying out anaerobic ammonium oxidation. Mikrobiologiia 84:236–243.  https://doi.org/10.1134/S0026261715020101 Google Scholar
  151. Nozhevnikova AN, Simankova MV, Litti YV (2012) Application of the microbial process of anaerobic ammonium oxidation (ANAMMOX) in biotechnological wastewater treatment. Appl Biochem Microbiol 48:667–684.  https://doi.org/10.1134/S0003683812080042 Google Scholar
  152. Op den Camp HJM, Kartal B, Guven D et al (2006) Global impact and application of the anaerobic ammonium-oxidizing (anammox) bacteria. Biochem Soc Trans 34:174–178.  https://doi.org/10.1042/BST0340174 Google Scholar
  153. Oshiki M, Shimokawa M, Fujii N et al (2011) Physiological characteristics of the anaerobic ammonium-oxidizing bacterium “Candidatus Brocadia sinica”. Microbiology 157:1706–1713.  https://doi.org/10.1099/mic.0.048595-0 Google Scholar
  154. Oshiki M, Satoh H, Okabe S (2016) Ecology and physiology of anaerobic ammonium oxidizing bacteria. Environ Microbiol 18:2784–2796.  https://doi.org/10.1111/1462-2920.13134 Google Scholar
  155. Paredes D, Kuschk P, Mbwette TSA et al (2007) New aspects of microbial nitrogen transformations in the context of wastewater treatment—a review. Eng Life Sci 7:13–25.  https://doi.org/10.1002/elsc.200620170 Google Scholar
  156. Park H, Brotto AC, van Loosdrecht MCM, Chandran K (2017) Discovery and metagenomic analysis of an anammox bacterial enrichment related to CandidatusBrocadia caroliniensis” in a full-scale glycerol-fed nitritation-denitritation separate centrate treatment process. Water Res 111:265–273.  https://doi.org/10.1016/j.watres.2017.01.011 Google Scholar
  157. Penton CR, Devol AH, Tiedje JM (2006) Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments. Appl Environ Microbiol 72:6829–6832.  https://doi.org/10.1128/AEM.01254-06 Google Scholar
  158. Pereira AD, Cabezas A, Etchebehere C et al (2017) Microbial communities in anammox reactors: a review. Environ Technol Rev 6:74–93.  https://doi.org/10.1080/21622515.2017.1304457 Google Scholar
  159. Pretorius WA (1987) A conceptual basis for microbial selection in biological wastewater treatment. Water Res 21:891–894.  https://doi.org/10.1016/S0043-1354(87)80005-2 Google Scholar
  160. Puñal A, Brauchi S, Reyes JG, Chamy R (2003) Dynamics of extracellular polymeric substances in UASB and EGSB reactors treating medium and low concentrated wastewaters. Water Sci Technol 48:41–49Google Scholar
  161. Qin L, Tay JH, Liu Y (2004) Selection pressure is a driving force of aerobic granulation in sequencing batch reactors. Process Biochem 39:579–584.  https://doi.org/10.1016/S0032-9592(03)00125-0 Google Scholar
  162. Quan ZX, Rhee SK, Zuo JE et al (2008) Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor. Environ Microbiol 10:3130–3139.  https://doi.org/10.1111/j.1462-2920.2008.01642.x Google Scholar
  163. Reino C, Carrera J (2017) Low-strength wastewater treatment in an anammox UASB reactor: effect of the liquid upflow velocity. Chem Eng J 313:217–225.  https://doi.org/10.1016/j.cej.2016.12.051 Google Scholar
  164. Rios-Del Toro EE, López-Lozano NE, Cervantes FJ (2017) Up-flow anaerobic sediment trapped (UAST) reactor as a new configuration for the enrichment of anammox bacteria from marine sediments. Bioresour Technol 238:528–533.  https://doi.org/10.1016/j.biortech.2017.04.087 Google Scholar
  165. Rothrock MJ, Vanotti MB, Szögi AA et al (2011) Long-term preservation of anammox bacteria. Appl Microbiol Biotechnol 92:147–157.  https://doi.org/10.1007/s00253-011-3316-1 Google Scholar
  166. Rudd T, Sterritt RM, Lester JN (1984) complexation of heavy metals by extracellular polymers in the activated sludge process. J Water Pollut Control Fed 56:1260–1268Google Scholar
  167. Ruscalleda M, López H, Ganigué R et al (2008) Heterotrophic denitrification on granular anammox SBR treating urban landfill leachate. Water Sci Technol 58:1749–1755.  https://doi.org/10.2166/wst.2008.544 Google Scholar
  168. Saeed T, Sun G (2012) A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: dependency on environmental parameters, operating conditions and supporting media. J Environ Manag 112:429–448.  https://doi.org/10.1016/j.jenvman.2012.08.011 Google Scholar
  169. Sanchez Guillen JA, Cuellar Guardado PR, Lopez Vazquez CM et al (2015) Anammox cultivation in a closed sponge-bed trickling filter. Bioresour Technol 186:252–260.  https://doi.org/10.1016/j.biortech.2015.03.073 Google Scholar
  170. Sanchez Guillen JA, Lopez Vazquez CM, de Oliveira Cruz LM et al (2016) Long-term performance of the anammox process under low nitrogen sludge loading rate and moderate to low temperature. Biochem Eng J 110:95–106.  https://doi.org/10.1016/j.bej.2016.02.004 Google Scholar
  171. Sanz JL, Köchling T (2007) Molecular biology techniques used in wastewater treatment: an overview. Process Biochem 42:119–133.  https://doi.org/10.1016/j.procbio.2006.10.003 Google Scholar
  172. Schaubroeck T, Bagchi S, De Clippeleir H et al (2012) Successful hydraulic strategies to start up OLAND sequencing batch reactors at lab scale. Microb Biotechnol 5:403–414.  https://doi.org/10.1111/j.1751-7915.2011.00326.x Google Scholar
  173. Schmid M, Twachtmann U, Klein M et al (2000) Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol 23:93–106.  https://doi.org/10.1016/S0723-2020(00)80050-8 Google Scholar
  174. Schmid M, Walsh K, Webb R et al (2003) CandidatusScalindua brodae”, sp. nov., CandidatusScalindua wagneri”, sp. nov., two new species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol 26:529–538.  https://doi.org/10.1078/072320203770865837 Google Scholar
  175. Schmid MC, Maas B, Dapena A et al (2005) Biomarkers for in situ detection of anaerobic ammonium-oxidizing (anammox) bacteria. Appl Environ Microbiol 71:1677–1684.  https://doi.org/10.1128/AEM.71.4.1677-1684.2005 Google Scholar
  176. Schmidt I, Sliekers O, Schmid M et al (2002) Aerobic and anaerobic ammonia oxidizing bacteria—competitors or natural partners? FEMS Microbiol Ecol 39:175–181.  https://doi.org/10.1016/S0168-6496(01)00208-2 Google Scholar
  177. Schmidt I, Sliekers O, Schmid M et al (2003) New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiol Rev 27:481–492.  https://doi.org/10.1016/S0168-6445(03)00039-1 Google Scholar
  178. Schwarzenback N, Borges JM, Wilderer PA (2005) Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor. Environ Biotechnol 66:711–718.  https://doi.org/10.1016/S1001-0742(12)60274-5 Google Scholar
  179. Sliekers AO, Third KA, Abma W et al (2003) CANON and anammox in a gas-lift reactor. FEMS Microbiol Lett 218:339–344.  https://doi.org/10.1016/S0378-1097(02)01177-1 Google Scholar
  180. Song YX, Liao Q, Yu C et al (2017) Physicochemical and microbial properties of settled and floating anammox granules in upflow reactor. Biochem Eng J 123:75–85.  https://doi.org/10.1016/j.bej.2017.04.002 Google Scholar
  181. Sonthiphand P, Hall MW, Neufeld JD (2014) Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria. Front Microbiol 5:1–14.  https://doi.org/10.3389/fmicb.2014.00399 Google Scholar
  182. Strous M, Jetten MSM (2004) Anaerobic oxidation of methane and ammonium. Annu Rev Microbiol 58:99–117.  https://doi.org/10.1146/annurev.micro.58.030603.123605 Google Scholar
  183. Strous M, Van Gerven E, Kuenen JG, Jetten M (1997a) Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (annamox) sludge. Appl Environ Microbiol 63:2446–2448Google Scholar
  184. Strous M, Van Gerven E, Zheng P et al (1997b) Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (anammox) process in different reactor configurations. Water Res 31:1955–1962.  https://doi.org/10.1016/S0043-1354(97)00055-9 Google Scholar
  185. Strous M, Heijnen JJ, Kuenen JG, Jetten MSM (1998) The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Microbiol Biotechnol 50:589–596.  https://doi.org/10.1007/s002530051340 Google Scholar
  186. Strous M, Fuerst JA, Kramer EH et al (1999a) Missing lithotroph identified as new planctomycete. Nature 400:446–449Google Scholar
  187. Strous M, Kuenen JG, Jetten MSM (1999b) Key physiology of anaerobic ammonium oxidation. Appl Environ Microbiol 65:3248–3250Google Scholar
  188. Strous M, Pelletier E, Mangenot S et al (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440:790–794.  https://doi.org/10.1038/nature04647 Google Scholar
  189. Suneethi S, Joseph K (2011a) ANAMMOX process start up and stabilization with an anaerobic seed in anaerobic membrane bioreactor (AnMBR). Bioresour Technol 102:8860–8867.  https://doi.org/10.1016/j.biortech.2011.06.082 Google Scholar
  190. Suneethi S, Joseph K (2011b) Batch culture enrichment of ANAMMOX populations from anaerobic and aerobic seed cultures. Bioresour Technol 102:585–591.  https://doi.org/10.1016/j.biortech.2010.07.121 Google Scholar
  191. Suneethi S, Sri Shalini S, Joseph K (2014) State of the art strategies for successful ANAMMOX startup and development: a review. Int J Waste Resour 4:1–14.  https://doi.org/10.4172/2252-5211.1000168 Google Scholar
  192. Takeda M, Nakano F, Nagase T et al (1998) Isolation and chemical composition of the sheath of Sphaerotilus natans. Biosci Biotechnol Biochem 62:1138–1143.  https://doi.org/10.1271/bbb.62.1138 Google Scholar
  193. Tan DT, Shuai D (2015) Research highlights: advances and challenges in developing mainstream anammox treatment. Environ Sci Water Res Technol 1:546–549.  https://doi.org/10.1039/C5EW90020D Google Scholar
  194. Tang C, Zheng P, Mahmood Q, Chen J (2009) Start-up and inhibition analysis of the anammox process seeded with anaerobic granular sludge. J Ind Microbiol Biotechnol 36:1093–1100.  https://doi.org/10.1007/s10295-009-0593-0 Google Scholar
  195. Tang CJ, Zheng P, Hu BL et al (2010a) Influence of substrates on nitrogen removal performance and microbiology of anaerobic ammonium oxidation by operating two UASB reactors fed with different substrate levels. J Hazard Mater 181:19–26.  https://doi.org/10.1016/j.jhazmat.2010.04.015 Google Scholar
  196. Tang CJ, Zheng P, Zhang L et al (2010b) Enrichment features of anammox consortia from methanogenic granules loaded with high organic and methanol contents. Chemosphere 79:613–619.  https://doi.org/10.1016/j.chemosphere.2010.02.045 Google Scholar
  197. Tang CJ, Zheng P, Wang CH et al (2011) Performance of high-loaded ANAMMOX UASB reactors containing granular sludge. Water Res 45:135–144.  https://doi.org/10.1016/j.watres.2010.08.018 Google Scholar
  198. Tao W, Wang J (2009) Effects of vegetation, limestone and aeration on nitritation, anammox and denitrification in wetland treatment systems. Ecol Eng 35:836–842.  https://doi.org/10.1016/j.ecoleng.2008.12.003 Google Scholar
  199. Tay JH, Liu QS, Liu Y (2001a) The effects of shear force on the formation, structure and metabolism of aerobic granules. Appl Microbiol Biotechnol 57:227–233.  https://doi.org/10.1007/s002530100766 Google Scholar
  200. Tay JH, Liu QS, Liu Y (2001b) The role of cellular polysaccharides in the formation and stability of aerobic granules. Lett Appl Microbiol 33:222–226.  https://doi.org/10.1046/j.1472-765X.2001.00986.x Google Scholar
  201. Terada A, Zhou S, Hosomi M (2011) Presence and detection of anaerobic ammonium-oxidizing (anammox) bacteria and appraisal of anammox process for high-strength nitrogenous wastewater treatment: a review. Clean Technol Environ Policy 13:759–781.  https://doi.org/10.1007/s10098-011-0355-3 Google Scholar
  202. Thuan T-H, Jahng D-J, Jung J-Y et al (2004) Anammox bacteria enrichment in upflow anaerobic sludge blanket (UASB) reactor. Biotechnol Bioprocess Eng 9:345–351.  https://doi.org/10.1007/BF02933055 Google Scholar
  203. Tiwari MK, Guha S, Harendranath CS, Tripathi S (2006) Influence of extrinsic factors on granulation in UASB reactor. Appl Microbiol Biotechnol 71:145–154.  https://doi.org/10.1007/s00253-006-0397-3 Google Scholar
  204. Tokutomi T, Yamauchi H, Nishimura S et al (2011) Application of the nitritation and anammox process into inorganic nitrogenous wastewater from semiconductor factory. J Environ Eng 137:146–154.  https://doi.org/10.1061/(ASCE)EE.1943-7870.0000303 Google Scholar
  205. Tomaszewski M, Cema G, Ziembińska-Buczyńska A (2017) Influence of temperature and pH on the anammox process: a review and meta-analysis. Chemosphere 182:203–214.  https://doi.org/10.1016/j.chemosphere.2017.05.003 Google Scholar
  206. Trigo C, Campos JL, Garrido JM, Méndez R (2006) Start-up of the anammox process in a membrane bioreactor. J Biotechnol 126:475–487.  https://doi.org/10.1016/j.jbiotec.2006.05.008 Google Scholar
  207. Trinet F, Heim R, Amar D et al (1991) Study of biofilm and fluidization of bioparticles in a three-phase liquid -fluidized-bed reactor. Water Sci Technol 23:1347–1354.  https://doi.org/10.1016/j.procbio.2004.06.058 Google Scholar
  208. Tsushima I, Ogasawara Y, Kindaichi T et al (2007) Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors. Water Res 41:1623–1634.  https://doi.org/10.1016/j.watres.2007.01.050 Google Scholar
  209. Van De Graaf AA, De Bruijn P, Robertson LA et al (1996) Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology 142:2187–2196.  https://doi.org/10.1099/13500872-142-8-2187 Google Scholar
  210. van de Graaf AA, de Bruijn P, Robertson LA et al (1997) Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor. Microbiology 143:2415–2421.  https://doi.org/10.1099/00221287-143-7-2415 Google Scholar
  211. Van de Vossenberg J, Woebken D, Maalcke WJ et al (2013) The metagenome of the marine anammox bacterium “Candidatus Scalindua profunda” illustrates the versatility of this globally important nitrogen cycle bacterium. Environ Microbiol 15:1275–1289.  https://doi.org/10.1111/j.1462-2920.2012.02774.x Google Scholar
  212. van der Star WRL, Abma WR, Blommers D et al (2007) Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Res 41:4149–4163.  https://doi.org/10.1016/j.watres.2007.03.044 Google Scholar
  213. Van Der Star WRL, Miclea AI, Van Dongen UGJM et al (2008) The membrane bioreactor: a novel tool to grow anammox bacteria as free cells. Biotechnol Bioeng 101:286–294.  https://doi.org/10.1002/bit.21891 Google Scholar
  214. Van Dongen U (2001) The SHARON®-Anammox® process for treatment of ammonium rich wastewater. Water Sci Technol 44:153–160Google Scholar
  215. Van Hulle SWH, Vandeweyer HJP, Meesschaert BD et al (2010) Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams. Chem Eng J 162:1–20.  https://doi.org/10.1016/j.cej.2010.05.037 Google Scholar
  216. Van Niel EWJ, Braber KJ, Robertson LA, Kuenen JG (1992) Heterotrophic nitrification and aerobic denitrification in Alcaligenes faecalis strain TUD. Antonie van Leeuwenhoek 62:231–237Google Scholar
  217. Vandevivere P (1999) New and broader applications of anaerobic digestion. Crit Rev Environ Sci Technol 29:151–173.  https://doi.org/10.1080/10643389991259191 Google Scholar
  218. Vázquez-Padín J, Fernádez I, Figueroa M et al (2009) Applications of anammox based processes to treat anaerobic digester supernatant at room temperature. Bioresour Technol 100:2988–2994.  https://doi.org/10.1016/j.biortech.2009.01.028 Google Scholar
  219. Viancelli A, Kunz A, Esteves PA et al (2011) Bacterial biodiversity from an anaerobic up flow bioreactor with ANAMMOX activity inoculated with swine sludge. Braz Arch Biol Technol 54:1035–1041.  https://doi.org/10.1590/S1516-89132011000500022 Google Scholar
  220. Villaverde S (2004) Recent developments on biological nutrient removal processes for wastewater treatment. Rev Environ Sci Biotechnol 3:171–183.  https://doi.org/10.1007/s11157-004-4565-6 Google Scholar
  221. Vlaeminck SE, Geets J, Vervaeren H et al (2007) Reactivation of aerobic and anaerobic ammonium oxidizers in OLAND biomass after long-term storage. Appl Microbiol Biotechnol 74:1376–1384.  https://doi.org/10.1007/s00253-006-0770-2 Google Scholar
  222. Vlaeminck SE, Terada A, Smets BF et al (2010) Aggregate size and architecture determine microbial activity balance for one-stage partial nitritation and anammox. Appl Environ Microbiol 76:900–909.  https://doi.org/10.1128/AEM.02337-09 Google Scholar
  223. Vogelsang C, Husby A, Ostgaardo K (1997) Functional stability of temperature compensated nitrification in domestic wastewater treatment obtained with PVA-SBQ/alginate gel entrapment. Water Res 31:1659–1664.  https://doi.org/10.1016/S0043-1354(97)00009-2 Google Scholar
  224. Vogelsang C, Gollembiewski K, Østgaard K (1999) Effect of preservation techniques on the regeneration of gel entrapped nitrifying sludge. Water Res 33:164–168.  https://doi.org/10.1016/S0043-1354(98)00200-0 Google Scholar
  225. Wang L, Li T (2011) Anaerobic ammonium oxidation in constructed wetlands with bio-contact oxidation as pretreatment. Ecol Eng 37:1225–1230.  https://doi.org/10.1016/j.ecoleng.2011.03.008 Google Scholar
  226. Wang T, Zhang H, Yang F et al (2009a) Start-up of the anammox process from the conventional activated sludge in a hybrid bioreactor. J Environ Sci China 100:2501–2506.  https://doi.org/10.1016/S1001-0742(11)60871-1 Google Scholar
  227. Wang T, Zhang H, Yang F et al (2009b) Start-up of the anammox process from the conventional activated sludge in a membrane bioreactor. Bioresour Technol 100:2501–2506.  https://doi.org/10.1016/j.biortech.2008.12.011 Google Scholar
  228. Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182:2675–2679.  https://doi.org/10.1128/JB.182.10.2675-2679.2000 Google Scholar
  229. Woebken D, Lam P, Kuypers MMM et al (2008) A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones. Environ Microbiol 10:3106–3119.  https://doi.org/10.1111/j.1462-2920.2008.01640.x Google Scholar
  230. Wu J, Zhou HM, Li HZ et al (2009) Impacts of hydrodynamic shear force on nucleation of flocculent sludge in anaerobic reactor. Water Res 43:3029–3036.  https://doi.org/10.1016/j.watres.2009.04.026 Google Scholar
  231. Xing BS, Guo Q, Yang GF et al (2015) The properties of anaerobic ammonium oxidation (anammox) granules: roles of ambient temperature, salinity and calcium concentration. Sep Purif Technol 147:311–318.  https://doi.org/10.1016/j.seppur.2015.04.035 Google Scholar
  232. Xu H-L, Tay J-H (2002) Anaerobic granulation with methanol-cultured seed sludge. J Environ Sci Health, Part A 37:85–94.  https://doi.org/10.1081/ESE-100108484 Google Scholar
  233. Yamamoto T, Takaki K, Koyama T, Furukawa K (2008) Long-term stability of partial nitritation of swine wastewater digester liquor and its subsequent treatment by Anammox. Bioresour Technol 99:6419–6425.  https://doi.org/10.1016/j.biortech.2007.11.052 Google Scholar
  234. Yang Q, Yang M, Zhang S, Lv W (2005) Treatment of wastewater from a monosodium glutamate manufacturing plant using successive yeast and activated sludge systems. Process Biochem 40:2483–2488.  https://doi.org/10.1016/j.procbio.2004.09.009 Google Scholar
  235. Yoda M, Nishimura S (1997) Controlling granular sludge floatation in UASB reactors. Water Sci Technol 36:165–173.  https://doi.org/10.1016/S0273-1223(97)00520-9 Google Scholar
  236. Yu HQ, Tay JH, Fang HHP (2001) The roles of calcium in sludge granulation during UASB reactor start-up. Water Res 35:1052–1060Google Scholar
  237. Yu YC, Gao DW, Tao Y (2013) Anammox start-up in sequencing batch biofilm reactors using different inoculating sludge. Appl Microbiol Biotechnol 97:6057–6064.  https://doi.org/10.1007/s00253-012-4427-z Google Scholar
  238. Zanetti L, Frison N, Nota E et al (2012) Progress in real-time control applied to biological nitrogen removal from wastewater. a short-review. Desalination 286:1–7.  https://doi.org/10.1016/j.desal.2011.11.056 Google Scholar
  239. Zhang Z, Liu S (2014) Hot topics and application trends of the anammox biotechnology: a review by bibliometric analysis. SpringerPlus 3:220.  https://doi.org/10.1186/2193-1801-3-220 Google Scholar
  240. Zhang L, Zheng P, Tang C, Ren-cun J (2008) Anaerobic ammonium oxidation for treatment of ammonium-rich wastewaters. J Zhejiang Univ Sci B 9:416–426.  https://doi.org/10.1631/jzus.B0710590 Google Scholar
  241. Zhang L, Yang J, Hira D et al (2011) High-rate nitrogen removal from anaerobic digester liquor using an up-flow anammox reactor with polyethylene sponge as a biomass carrier. J Biosci Bioeng 111:306–311.  https://doi.org/10.1016/j.jbiosc.2010.10.010 Google Scholar
  242. Zhang Z, Liu S, Miyoshi T et al (2016) Mitigated membrane fouling of anammox membrane bioreactor by microbiological immobilization. Bioresour Technol 201:312–318.  https://doi.org/10.1016/j.biortech.2015.11.037 Google Scholar
  243. Zhang L, Narita Y, Gao L et al (2017a) Maximum specific growth rate of anammox bacteria revisited. Water Res 116:296–303.  https://doi.org/10.1016/j.watres.2017.03.027 Google Scholar
  244. Zhang Z-Z, Xu J-J, Shi Z-J et al (2017b) Unraveling the impact of nanoscale zero-valent iron on the nitrogen removal performance and microbial community of anammox sludge. Bioresour Technol 243:883–892.  https://doi.org/10.1016/j.biortech.2017.07.049 Google Scholar
  245. Zhang ZZ, Xu JJ, Shi ZJ et al (2017c) Short-term impacts of Cu, CuO, ZnO and Ag nanoparticles (NPs) on anammox sludgeCuNPs make a difference. Bioresour Technol 235:281–291.  https://doi.org/10.1016/j.biortech.2017.03.135 Google Scholar
  246. Zhang Z-Z, Cheng Y-F, Bai Y-H et al (2018) Enhanced effects of maghemite nanoparticles on the flocculent sludge wasted from a high-rate anammox reactor: performance, microbial community and sludge characteristics. Bioresour Technol 250:265–272.  https://doi.org/10.1016/j.biortech.2017.11.053 Google Scholar
  247. Zheng YM, Yu HQ (2007) Determination of the pore size distribution and porosity of aerobic granules using size-exclusion chromatography. Water Res 41:39–46.  https://doi.org/10.1016/j.watres.2006.09.015 Google Scholar
  248. Zheng YM, Yu HQ, Liu SJ, Liu XZ (2006) Formation and instability of aerobic granules under high organic loading conditions. Chemosphere 63:1791–1800.  https://doi.org/10.1016/j.chemosphere.2005.08.055 Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Environmental StudiesAnna UniversityChennaiIndia

Personalised recommendations