High CO2 absorption of O-carboxymethylchitosan synthesised from chitosan

  • Pradeep Kumar
  • Ekta Faujdar
  • Raj K. Singh
  • Subham Paul
  • Aruna Kukrety
  • Vijay K. Chhibber
  • Siddharth S. Ray
Original Paper


CO2 absorption by liquid-containing amines to form carbamate and bicarbonates is an effective method of CO2 mitigation from industrial exhausts, but this process is expensive and requires large quantities of amines. Here we modified chitosan, a naturally occurring biopolymer containing NH2 functions, to use it for CO2 absorption in aqueous media. Chitosan was dispersed in 40% aqueous NaOH solution then treated with monochloroacetic acid dissolved in isopropanol, to yield O-carboxymethylchitosan. Results show that the CO2 absorption capacity of O-carboxymethylchitosan is 0.508 g/g, which is higher than the capacity of conventional amines such as 1-aminoamine, 2-methylpropanolamine and methyldiethanol amine, but lower than the capacity of monoethanolamine. A cyclic study showed that O-carboxymethylchitosan is a stable component for CO2 absorption and regeneration.


Chitosan O-carboxymethylchitosan Amine Carbon dioxide Absorption Loading capacity 



The authors kindly acknowledge the Director, CSIR-IIP for his kind permission to publish these results. The Analytical Division of the Institute is kindly acknowledged for providing analysis of sample. CSIR, New Delhi, is acknowledged for research funding.


  1. Alper E (1990) Reaction mechanism and kinetics of aqueous solutions of 2-amino-2-methyl-1-propanol and carbon dioxide. Ind Eng Chem Res 29:1725–1728. CrossRefGoogle Scholar
  2. ASTM UOP829-82 (2002) Titrimatric determination of CO2 in ethanolamines. ASTM International, West ConshohockenGoogle Scholar
  3. Burchell TD, Judkins RR (1997) A novel carbon fiber based material and separation technology. Energy Convers Manag 38:S99–S104. CrossRefGoogle Scholar
  4. Chang FY, Chao KJ, Cheng HH, Tan CS (2009) Adsorption of CO2 onto amine-grafted mesoporous silicas. Sep Purif Technol 70:87–95. CrossRefGoogle Scholar
  5. Chen Y, Sun X, Yan C, Cao Y, Mu T (2014) The dynamic process of atmospheric water sorption in [EMIM][Ac] and mixtures of [EMIM][Ac] with biopolymers and CO2 capture in these systems. J Phys Chem B 118:11523–11536. CrossRefGoogle Scholar
  6. Damen K, Troost MV, Faaij A, Turkenburg WC (2006) A comparison of electricity and hydrogen production system with CO2 capture and storage. Part A: review and selection of promising conversion and capture technologies. Prog Energy Combust Sci 32:215–246. CrossRefGoogle Scholar
  7. Divya K, Jisha MS (2017) Chitosan nanoparticles preparation and applications. Environ Chem Lett. Google Scholar
  8. Dugas R, Rochelle GT (2009) Absorption and desorption rates of carbon dioxide with monoethanolamine and piperazine. Energy Procedia 1:1163–1169. CrossRefGoogle Scholar
  9. Dutcher B, Fan M, Russell AG (2015) Amine-based CO2 capture technology development from the beginning of 2013—a review. ACS Appl Mater Interfaces 7:2137–2148. CrossRefGoogle Scholar
  10. Filippis PD, Giavarini C, Maggi C, Rinaldi G, Silla R (2000) Modified polyamines for CO2 absorption: product preparation and characterization. Ind Eng Chem Res 39:1364–1368. CrossRefGoogle Scholar
  11. Ge HC, Luo DK (2005) Preparation of carboxymethyl chitosan in aqueous solution under microwave irradiation. Carbohydr Res 340:1351–1356. CrossRefGoogle Scholar
  12. Gibbins J, Chalmers H (2008) Carbon capture and storage. Energy Policy 36:4317–4322. CrossRefGoogle Scholar
  13. Hagewiesche DP, Ashour SS, Al-Ghawas HA, Sandall OC (1995) Absorption of carbon dioxide into aqueous blends of monoethanolamine and N-methyldiethanolamine. Chem Eng Sci 50:1071–1079. CrossRefGoogle Scholar
  14. Kumar S, de Ae Silva J, Wani MY, Dias CMF, Sobral AJFN (2016) Studies of carbon dioxide capture on porous chitosan derivative. J Dispers Sci Technol 37:155–158. CrossRefGoogle Scholar
  15. Kumar P, Varyani M, Khatri PK, Paul S, Jain SL (2017) Post combustion capture and conversion of carbon dioxide using histidine derived ionic liquid at ambient conditions. J Ind Eng Chem 49:152–157. CrossRefGoogle Scholar
  16. Lu B, Wang X, Xia Y, Liu N, Li S, Li W (2013) Kinetics of carbon dioxide absorption into mixed aqueous solutions of MEA + [Bmim]BF4 using a double stirred cell. Energy Fuels 27:6002–6009. CrossRefGoogle Scholar
  17. Mandal BP, Bandyopadhyay SS (2006) Absorption of carbon dioxide into aqueous blends of 2-amino-2-methyl-1-propanol and monoethanolamine. Chem Eng Sci 61:5440–5447. CrossRefGoogle Scholar
  18. McDonald JL, Sykora RE, Hixon P, Mirjafari A, Davis JH Jr (2014) Impact of water on CO2 capture by amino acid ionic liquids. Environ Chem Lett 12:201–208. CrossRefGoogle Scholar
  19. Nguyen T, Hilliard M, Rochelle GT (2010) Amine volatility in CO2 capture. Int J Greenh Gas Control 4:707–715. CrossRefGoogle Scholar
  20. Olajire AA (2010) CO2 capture and separation technologies for end-of-pipe applications—a review. Energy 35:2610–2628. CrossRefGoogle Scholar
  21. Paul S, Thomsen K (2012) Kinetics of absorption of carbon dioxide into aqueous potassium salt of proline. Int J Greenh Gas Control 8:169–179. CrossRefGoogle Scholar
  22. Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678. CrossRefGoogle Scholar
  23. Powell CE, Qiao GG (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 279:1–49. CrossRefGoogle Scholar
  24. Ravikumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27. CrossRefGoogle Scholar
  25. Rochelle GT (2009) Amine scrubbing for CO2 capture. Science 325:1652–1654. CrossRefGoogle Scholar
  26. Rosa LP, Ribeiro SK (2001) The present, past, and future contributions to global warming of CO2 emissions from fuels. Clim Change 48:289–307. CrossRefGoogle Scholar
  27. Saiwan C, Srisuwanvichein S, Yoddee P, Idem R, Supap T, Tontiwachwuthikul P, Wongpanit P (2012) Studies of modification of biopolymer with piperazine derivative for carbon dioxide adsorption. Chem Eng Trans 29:211–216. Google Scholar
  28. Saiwan C, Srisuwanvichien S, Tontiwachwuthikul P (2013) Biopolymer modified with piperazine-2-carboxylic acid for carbon dioxide adsorption. Chem Eng Trans 35:397–402. Google Scholar
  29. Sashiwa H, Aiba SI (2004) Chemically modified chitin and chitosan as biomaterials. Prog Polym Sci 29:887–908. CrossRefGoogle Scholar
  30. Singh RK, Kukrety A, Chatterjee AK, Thakre GD, Bahuguna GM, Saran S et al (2014) Use acylated chitosan Schiff base as an ecofriendly multifunctional biolubricant additive. Ind Eng Chem Res 53:18370–18379. CrossRefGoogle Scholar
  31. Thiruvenkatachari R, Su S, An H, Yu XX (2009) Post combustion CO2 capture by carbon fibre monolithic adsorbents. Prog Energy Combust Sci 35:438–455. CrossRefGoogle Scholar
  32. Wagner M, von Harbou I, Kim J, Ermatchkova I, Maurer G, Hasse H (2013) Solubility of carbon dioxide in aqueous solutions of monoethanolamine in the low and high gas loading regions. J Chem Eng Data 58:883–895. CrossRefGoogle Scholar
  33. Wang J, Zhang X, Zhou Y (2011) Carbon dioxide capture under ambient conditions using 2-chloroethylamine. Environ Chem Lett 9:535–537. CrossRefGoogle Scholar
  34. Yu CH, Huang CH, Tan CS (2012) A review of CO2 capture by absorption and adsorption. Aerosol Air Qual Res 12:745–769. Google Scholar
  35. Zhang X, Zhang X, Dong H, Zhao Z, Zhang S, Huang Y (2012) Carbon capture with ionic liquids: overview and progress. Energy Environ Sci 5:6668–6681. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Advanced Gas Separation LaboratoryCSIR-Indian Institute of PetroleumDehradunIndia
  2. 2.Advanced Crude Oil Research CentreCSIR-Indian Institute of PetroleumDehradunIndia
  3. 3.Specialty Product LabCSIR-Indian Institute of PetroleumDehradunIndia
  4. 4.Chemistry DepartmentBaba Farid Institute of TechnologyDehradunIndia

Personalised recommendations