Advertisement

Environmental Chemistry Letters

, Volume 16, Issue 2, pp 507–522 | Cite as

The catalytic naphtha reforming process: hydrodesulfurization, catalysts and zeoforming

  • Walid Nabgan
  • Mehdi Rashidzadeh
  • Bahador Nabgan
Review

Abstract

High-octane gasoline production by catalytic naphtha reforming is a major process in the petroleum industry. Sulfur components involved in the reforming process are causing pollutions and catalyst poisoning. Hydrodesulfurization has been developed to remove sulfur species from naphtha. Bimetallic and trimetallic catalysts are used to improve the naphtha reforming. Another solution to produce gasoline is the zeoforming process, which involves zeolites. This article reviews the naphta reforming reaction.

Keywords

Naphtha reforming Hydrodesulfurization Zeoforming Gasoline 

Notes

Acknowledgements

The authors acknowledge the financial support given for this work by Presidency of Islamic Republic of Iran, National Elites Foundation and Research Institute of Petroleum Industry (RIPI) (Grant No. 92650009).

References

  1. Absi-Halabi M, Stanislaus A, Al-Dolama K (1998) Performance comparison of alumina-supported Ni–Mo, Ni–W and Ni–Mo–W catalysis in hydrotreating vacuum residue. Fuel 77:787–790.  https://doi.org/10.1016/S0016-2361(97)00228-7 CrossRefGoogle Scholar
  2. Akiyama S, Mochizuki H, Yamazaki H, Yokoi T, Tatsumi T, Kondo JN (2017) The effective silylation of external surface on H-ZSM5 with cyclic siloxane for the catalytic cracking of naphtha. Mol Catal 433:48–54.  https://doi.org/10.1016/j.mcat.2016.12.005 CrossRefGoogle Scholar
  3. Ali MA, Tatsumi T, Masuda T (2002) Development of heavy oil hydrocracking catalysts using amorphous silica-alumina and zeolites as catalyst supports. Appl Catal A 233:77–90.  https://doi.org/10.1016/S0926-860X(02)00121-7 CrossRefGoogle Scholar
  4. Amin NAS, Ammasi S (2006) Dual-bed catalytic system for direct conversion of methane to liquid hydrocarbons. J Nat Gas Chem 15:191–202.  https://doi.org/10.1016/S1003-9953(06)60026-1 CrossRefGoogle Scholar
  5. Andrigo P, Bagatin R, Pagani G (1999) Fixed bed reactors. Catal Today 52:197–221.  https://doi.org/10.1016/S0920-5861(99)00076-0 CrossRefGoogle Scholar
  6. Antos GJ (1977) Dehydrocyclization with an acidic multimetallic catalytic composite. US Patent 4032587Google Scholar
  7. Antos GJ (1982) Attenuated superactive multimetallic catalytic composite. US Patent 4229319Google Scholar
  8. Antos GJ, Aitani AM (2004) Catalytic naphtha reforming, revised and expanded. Taylor & Francis, OxfordshireCrossRefGoogle Scholar
  9. Azizi N, Ali SA, Alhooshani K, Kim T, Lee Y, Park J-I et al (2013) Hydrotreating of light cycle oil over NiMo and CoMo catalysts with different supports. Fuel Process Technol 109:172–178.  https://doi.org/10.1016/j.fuproc.2012.11.001 CrossRefGoogle Scholar
  10. Babitz SM, Williams BA, Miller JT, Snurr RQ, Haag WO, Kung HH (1999) Monomolecular cracking of n-hexane on Y, MOR, and ZSM-5 zeolites. Appl Catal A 179:71–86.  https://doi.org/10.1016/S0926-860X(98)00301-9 CrossRefGoogle Scholar
  11. Baghalha M, Mohammadi M, Ghorbanpour A (2010) Coke deposition mechanism on the pores of a commercial Pt–Re/γ-Al2O3 naphtha reforming catalyst. Fuel Process Technol 91:714–722.  https://doi.org/10.1016/j.fuproc.2010.02.002 CrossRefGoogle Scholar
  12. Bariås OA, Holmen A, Blekkan EA (1996) Propane dehydrogenation over supported Pt and Pt–Sn catalysts: catalyst preparation, characterization, and activity measurements. J Catal 158:1–12.  https://doi.org/10.1006/jcat.1996.0001 CrossRefGoogle Scholar
  13. Basu B, Kunzru D (1992) Catalytic pyrolysis of naphtha. Ind Eng Chem Res 31:146–155.  https://doi.org/10.1021/ie00001a021 CrossRefGoogle Scholar
  14. Bellussi G, Pollesel P (2005) Industrial applications of zeolite catalysis: production and uses of light olefins. Stud Surf Sci Catal 158:1201–1212.  https://doi.org/10.1016/S0167-2991(05)80466-5 CrossRefGoogle Scholar
  15. Benitez VM, Pieck CL (2010) Influence of indium content on the properties of Pt–Re/Al2O3 naphtha reforming catalysts. Catal Lett 136:45–51.  https://doi.org/10.1007/s10562-009-0202-x CrossRefGoogle Scholar
  16. Benitez V, Boutzeloit M, Mazzieri VA, Especel C, Epron F, Vera CR et al (2007) Preparation of trimetallic Pt–Re–Ge/Al2O3 and Pt–Ir–Ge/Al2O3 naphtha reforming catalysts by surface redox reaction. Appl Catal A 319:210–217.  https://doi.org/10.1016/j.apcata.2006.12.006 CrossRefGoogle Scholar
  17. Benitez VM, Vera CR, Rangel MAC, Yori JC, Grau JM, Pieck CL (2008) Modification of multimetallic naphtha-reforming catalysts by indium addition. Ind Eng Chem Res 48:671–676.  https://doi.org/10.1021/ie800933s CrossRefGoogle Scholar
  18. Borgna A, Garetto TF, Apesteguı́a CR, Moraweck B (1999) Formation of bimetallic alloys in naphtha reforming Pt–Ge/Al2O3 catalysts: an EXAFS study. Appl Catal A 182:189–197.  https://doi.org/10.1016/S0926-860X(99)00010-1 CrossRefGoogle Scholar
  19. Borgna A, Garetto TF, Apesteguı́a CR (2000) Simultaneous deactivation by coke and sulfur of bimetallic Pt–Re(Ge, Sn)/Al2O3 catalysts for n-hexane reforming. Appl Catal A 197:11–21.  https://doi.org/10.1016/S0926-860X(99)00528-1 CrossRefGoogle Scholar
  20. Boutzeloit M, Benitez VM, Mazzieri VA, Especel C, Epron F, Vera CR et al (2006) Effect of the method of addition of Ge on the catalytic properties of Pt–Re/Al2O3 and Pt–Ir/Al2O3 naphtha reforming catalysts. Catal Commun 7:627–632.  https://doi.org/10.1016/j.catcom.2006.01.029 CrossRefGoogle Scholar
  21. Brunet S, Mey D, Pérot G, Bouchy C, Diehl F (2005) On the hydrodesulfurization of FCC gasoline: a review. Appl Catal A 278:143–172.  https://doi.org/10.1016/j.apcata.2004.10.012 CrossRefGoogle Scholar
  22. Carvalho LS, Pieck CL, Rangel MC, Fı́goli NS, Grau JM, Reyes P et al (2004a) Trimetallic naphtha reforming catalysts. I. Properties of the metal function and influence of the order of addition of the metal precursors on Pt–Re–Sn/γ-Al2O3–Cl. Appl Catal A 269:91–103.  https://doi.org/10.1016/j.apcata.2004.04.004 CrossRefGoogle Scholar
  23. Carvalho LS, Pieck C, Rangel M, Fıgoli N, Vera C, Parera JM (2004b) Trimetallic naphtha reforming catalysts: II. Properties of the acid function and influence of the order of addition of the metallic precursors on Pt–Re–Sn/γ-Al2O3–Cl. Appl Catal A 269:105–116.  https://doi.org/10.1016/j.apcata.2004.04.006 CrossRefGoogle Scholar
  24. Corma A, Orchillés AV (2000) Current views on the mechanism of catalytic cracking. Microporous Mesoporous Mater 35:21–30.  https://doi.org/10.1016/S1387-1811(99)00205-X CrossRefGoogle Scholar
  25. Corma A, Martı́nez C, Ketley G, Blair G (2001) On the mechanism of sulfur removal during catalytic cracking. Appl Catal A 208:135–152.  https://doi.org/10.1016/S0926-860X(00)00693-1 CrossRefGoogle Scholar
  26. Corma A, Mengual J, Miguel PJ (2013) IM-5 zeolite for steam catalytic cracking of naphtha to produce propene and ethene. An alternative to ZSM-5 zeolite. Appl Catal A 460–461:106–115.  https://doi.org/10.1016/j.apcata.2013.02.030 CrossRefGoogle Scholar
  27. D’Ippolito SA, Vera CR, Epron F, Samoila P, Especel C, Marécot P et al (2009) Influence of tin addition by redox reaction in different media on the catalytic properties of Pt-Re/Al2O3 naphtha reforming catalysts. Appl Catal A 370:34–41.  https://doi.org/10.1016/j.apcata.2009.09.012 CrossRefGoogle Scholar
  28. de Miguel S, Castro A, Scelza O, Fierro JLG, Soria J (1996) FTIR and XPS study of supported PtSn catalysts used for light paraffins dehydrogenation. Catal Lett 36:201–206.  https://doi.org/10.1007/bf00807620 CrossRefGoogle Scholar
  29. Ding L, Zheng Y, Zhang Z, Ring Z, Chen J (2006) Hydrotreating of light cycled oil using WNi/Al2O3 catalysts containing zeolite beta and/or chemically treated zeolite Y. J Catal 241:435–445.  https://doi.org/10.1016/j.jcat.2006.05.004 CrossRefGoogle Scholar
  30. Ding L, Zheng Y, Yang H, Parviz R (2009) LCO hydrotreating with Mo–Ni and W–Ni supported on nano-and micro-sized zeolite beta. Appl Catal A 353:17–23.  https://doi.org/10.1016/j.apcata.2008.10.023 CrossRefGoogle Scholar
  31. Duan A, Gao Z, Huo Q, Wang C, Zhang D, Jin M et al (2009) Preparation and evaluation of the composite containing USL zeolite-supported NiW catalysts for hydrotreating of FCC diesel. Energy Fuels 24:796–803.  https://doi.org/10.1021/ef901098m CrossRefGoogle Scholar
  32. Duan A, Wan G, Zhang Y, Zhao Z, Jiang G, Liu J (2011) Optimal synthesis of micro/mesoporous beta zeolite from kaolin clay and catalytic performance for hydrodesulfurization of diesel. Catal Today 175:485–493.  https://doi.org/10.1016/j.cattod.2011.03.044 CrossRefGoogle Scholar
  33. Duarte FA, Mello P, Bizzi CA, Nunes MAG, Moreira EM, Alencar MS et al (2011) Sulfur removal from hydrotreated petroleum fractions using ultrasound-assisted oxidative desulfurization process. Fuel 90:2158–2164.  https://doi.org/10.1016/j.fuel.2011.01.030 CrossRefGoogle Scholar
  34. Eigenberger G, Ruppel W (2000) Catalytic fixed-bed reactors. Ullmann’s encyclopedia of industrial chemistry. Wiley, London.  https://doi.org/10.1002/14356007.b04_199.pub2 CrossRefGoogle Scholar
  35. Epron F, Carnevillier C, Marécot P (2005) Catalytic properties in n-heptane reforming of Pt–Sn and Pt–Ir–Sn/Al2O3 catalysts prepared by surface redox reaction. Appl Catal A 295:157–169.  https://doi.org/10.1016/j.apcata.2005.08.006 CrossRefGoogle Scholar
  36. Forzatti P, Lietti L (1999) Catalyst deactivation. Catal Today 52:165–181.  https://doi.org/10.1016/S0920-5861(99)00074-7 CrossRefGoogle Scholar
  37. Galdámez JR, García L, Bilbao R (2005) Hydrogen production by steam reforming of bio-oil using coprecipitated Ni–Al catalysts. Acetic acid as a model compound. Energy Fuels 19:1133–1142.  https://doi.org/10.1021/ef049718g CrossRefGoogle Scholar
  38. Gomez R, Bertin V, Bosch P, Lopez T, Del Angel P, Schifter I (1993) Pt–Sn/Al2O3 sol–gel catalysts: metallic phase characterization. Catal Lett 21:309–320.  https://doi.org/10.1007/bf00769483 CrossRefGoogle Scholar
  39. González-Marcos MP, Iñarra B, Guil JM, Gutiérrez-Ortiz MA (2005) Development of an industrial characterisation method for naphtha reforming bimetallic Pt-Sn/Al2O3 catalysts through n-heptane reforming test reactions. Catal Today 107–108:685–692.  https://doi.org/10.1016/j.cattod.2005.07.052 CrossRefGoogle Scholar
  40. Haensel V (1949) US Patents 2479109, 2479110. UOPGoogle Scholar
  41. Haensel V, Hills C, Gerald CF (1949) Reforming process. US Patent 2478918Google Scholar
  42. Hagen J (2006a) Industrial catalysis: A Practical Approach. Wiley, London, p 2006Google Scholar
  43. Hagen J (2006b) Shape-selective catalysis: zeolites. Industrial catalysis: a practical approach, vol 2. Wiley, London, pp 239–259.  https://doi.org/10.1002/3527607684.ch7 CrossRefGoogle Scholar
  44. Hamoule T, Peyrovi MH, Rashidzadeh M, Toosi MR (2011) Catalytic reforming of n-heptane over Pt/Al-HMS catalysts. Catal Commun 16:234–239.  https://doi.org/10.1016/j.catcom.2011.09.020 CrossRefGoogle Scholar
  45. Hansel V (1949) U.S. Patents 2479101 and 2479110. UOPGoogle Scholar
  46. Harandi MN, Greeley JP, Chuba MR, Lu BC (2017) Production of low sulfur gasoline. US Patent 20170015915Google Scholar
  47. Hodala JL, Halgeri AB, Shanbhag GV, Reddy RS, Choudary NV, Rao PVC et al (2016) Aromatization of C5-rich light naphtha feedstock over tailored zeolite catalysts: comparison with model compounds (n-C5–n-C7). Chem Sel 1:2515–2521.  https://doi.org/10.1002/slct.201600412 Google Scholar
  48. Isoda T, Nagao S, Ma X, Korai Y, Mochida I (1996) Hydrodesulfurization pathway of 4, 6-dimethyldibenzothiophene through isomerization over Y-zeolite containing CoMo/Al2O3 catalyst. Energy Fuels 10:1078–1082.  https://doi.org/10.1021/ef960048r CrossRefGoogle Scholar
  49. Krumpelt M, Kopasz JP, Ahmed S, Kao RL, Randhava SS (2005) Autothermal hydrodesulfurizing reforming method and catalyst. US Patent 6967063Google Scholar
  50. Kulprathipanja S, Nemeth LT, Holmgren JS (1998) Process for removing sulfur compounds from hydrocarbon streams. US Patent 5807475Google Scholar
  51. Kumaran GM, Garg S, Soni K, Prasad V, Sharma L, Dhar GM (2006a) Catalytic functionalities of H-β-zeolite-supported molybdenum hydrotreating catalysts. Energy Fuels 20:1784–1790.  https://doi.org/10.1021/ef060134j CrossRefGoogle Scholar
  52. Kumaran GM, Garg S, Kumar M, Viswanatham N, Gupta J, Sharma L et al (2006b) Origin of hydrocracking functionality in β-zeolite-supported tungsten catalysts. Energy Fuels 20:2308–2313.  https://doi.org/10.1021/ef0602527 CrossRefGoogle Scholar
  53. Kunisada N, Choi K-H, Korai Y, Mochida I, Nakano K (2004a) Optimization of silica content in alumina–silica support for NiMo sulfide to achieve deep desulfurization of gas oil. Appl Catal A 273:287–294.  https://doi.org/10.1016/j.apcata.2004.06.045 CrossRefGoogle Scholar
  54. Kunisada N, Choi K-H, Korai Y, Mochida I, Nakano K (2004b) Novel zeolite based support for NiMo sulfide in deep HDS of gas oil. Appl Catal A 269:43–51.  https://doi.org/10.1016/j.apcata.2004.03.051 CrossRefGoogle Scholar
  55. Lee KX, Valla JA (2017) Investigation of metal-exchanged mesoporous Y zeolites for the adsorptive desulfurization of liquid fuels. Appl Catal B 201:359–369.  https://doi.org/10.1016/j.apcatb.2016.08.018 CrossRefGoogle Scholar
  56. Lee W-H, Jeong SM, Chae JH, Kang J-H, Lee W-J (2004) Coke formation on KVO3–B2O3/SA5203 catalysts in the catalytic pyrolysis of naphtha. Ind Eng Chem Res 43:1820–1826.  https://doi.org/10.1021/ie030522y CrossRefGoogle Scholar
  57. Leflaive P, Lemberton JL, Pérot G, Mirgain C, Carriat JY, Colin JM (2002) On the origin of sulfur impurities in fluid catalytic cracking gasoline—reactivity of thiophene derivatives and of their possible precursors under FCC conditions. Appl Catal A 227:201–215.  https://doi.org/10.1016/S0926-860X(01)00936-X CrossRefGoogle Scholar
  58. Lü H, Ren W, Wang H, Wang Y, Chen W, Suo Z (2013) Deep desulfurization of diesel by ionic liquid extraction coupled with catalytic oxidation using an Anderson-type catalyst [(C4H9)4N]4NiMo6O24H6. Appl Catal A 453:376–382.  https://doi.org/10.1016/j.apcata.2012.12.047 CrossRefGoogle Scholar
  59. Lü H, Deng C, Ren W, Yang X (2014) Oxidative desulfurization of model diesel using [(C4H9)4N]6Mo7O24 as a catalyst in ionic liquids. Fuel Process Technol 119:87–91.  https://doi.org/10.1016/j.fuproc.2013.10.023 CrossRefGoogle Scholar
  60. Marcilly C (2006) Acido-basic catalysis: application to refining and petrochemistry. Technip Ophrys Editions, ParisGoogle Scholar
  61. Margitfalvi JL, Borbáth I, Hegedűs M, Gőbölös S, Lónyi F (1999) New approaches to prepare supported Sn–Pt bimetallic catalysts. React Kinet Catal Lett 68:133–143.  https://doi.org/10.1007/bf02475495 CrossRefGoogle Scholar
  62. Marín C, Escobar J, Galván E, Murrieta F, Zárate R, Vaca H (2005) Light straight-run gas oil hydrotreatment over sulfided CoMoP/Al2O3-USY zeolite catalysts. Fuel Process Technol 86:391–405.  https://doi.org/10.1016/j.fuproc.2004.05.007 CrossRefGoogle Scholar
  63. Maxwell IE, Stork WHJ (2001) Chapter 17 Hydrocarbon processing with zeolites. Stud Surf Sci Catal 137:747–819.  https://doi.org/10.1016/S0167-2991(01)80259-7 CrossRefGoogle Scholar
  64. Mazzieri VA, Grau JM, Vera CR, Yori JC, Parera JM, Pieck CL (2005a) Role of Sn in Pt–Re–Sn/Al2O3–Cl catalysts for naphtha reforming. Catal Today 107–108:643–650.  https://doi.org/10.1016/j.cattod.2005.07.042 CrossRefGoogle Scholar
  65. Mazzieri VA, Grau JM, Vera CR, Yori JC, Parera JM, Pieck CL (2005b) Pt-Re-Sn/Al2O3 trimetallic catalysts for naphtha reforming processes without presulfiding step. Appl Catal A 296:216–221.  https://doi.org/10.1016/j.apcata.2005.08.028 CrossRefGoogle Scholar
  66. McCallister K, O’Neal T (1971) French Patent 2078056. UOPGoogle Scholar
  67. Mendoza-Nieto JA, Vera-Vallejo O, Escobar-Alarcón L, Solís-Casados D, Klimova T (2013) Development of new trimetallic NiMoW catalysts supported on SBA-15 for deep hydrodesulfurization. Fuel 110:268–277.  https://doi.org/10.1016/j.fuel.2012.07.057 CrossRefGoogle Scholar
  68. Mukhopadhyay R, Kunzru D (1993) Catalytic pyrolysis of naphtha on calcium aluminate catalysts. Effect of potassium carbonate impregnation. Ind Eng Chem Res 32:1914–1920.  https://doi.org/10.1021/ie00021a015 CrossRefGoogle Scholar
  69. Myrstad T, Seljestokken B, Engan H, Rytter E (2000) Effect of nickel and vanadium on sulphur reduction of FCC naphtha. Appl Catal A 192:299–305.  https://doi.org/10.1016/S0926-860X(99)00405-6 CrossRefGoogle Scholar
  70. Nakano K, Ali SA, Kim H-J, Kim T, Alhooshani K, Park J-I et al (2013) Deep desulfurization of gas oil over NiMoS catalysts supported on alumina coated USY-zeolite. Fuel Process Technol 116:44–51.  https://doi.org/10.1016/j.fuproc.2013.04.012 CrossRefGoogle Scholar
  71. Navarro R, Pawelec B, Fierro J, Vasudevan P, Cambra J, Guemez M et al (1999) Dibenzothiophene hydrodesulfurization on HY-zeolite-supported transition metal sulfide catalysts. Fuel Process Technol 61:73–88.  https://doi.org/10.1016/S0378-3820(99)00031-4 CrossRefGoogle Scholar
  72. Otsuki S, Nonaka T, Takashima N, Qian W, Ishihara A, Imai T et al (2000) Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction. Energy Fuels 14:1232–1239.  https://doi.org/10.1021/ef000096i CrossRefGoogle Scholar
  73. Pieterse JAZ, van Eijk S, van Dijk HAJ, van den Brink RW (2011) On the potential of absorption and reactive adsorption for desulfurization of ultra low-sulfur commercial diesel in the liquid phase in the presence of fuel additive and bio-diesel. Fuel Process Technol 92:616–623.  https://doi.org/10.1016/j.fuproc.2010.11.019 CrossRefGoogle Scholar
  74. Raffinage French Patent 2031984. CFD1969Google Scholar
  75. Rahimi N, Karimzadeh R (2011) Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: a review. Appl Catal A 398:1–17.  https://doi.org/10.1016/j.apcata.2011.03.009 CrossRefGoogle Scholar
  76. Rahimpour MR, Jafari M, Iranshahi D (2013) Progress in catalytic naphtha reforming process: a review. Appl Energy 109:79–93.  https://doi.org/10.1016/j.apenergy.2013.03.080 CrossRefGoogle Scholar
  77. Rashidzadeh M, Mondegarian R, Peyravi MH (1999) Catalytic reforming of N-Heptane on Pt-Nd/Alumina. Int J Chem 9:37–46Google Scholar
  78. Rausch R (1973) Platinum-tin uniformly dispersed hydro-carbon conversion catalyst and process. US Patent 3745112Google Scholar
  79. Salem ABSH, Hamid HS (1997) Removal of sulfur compounds from naphtha solutions using solid adsorbents. Chem Eng Technol 20:342–347.  https://doi.org/10.1002/ceat.270200511 CrossRefGoogle Scholar
  80. Sankaranarayanan TM, Banu M, Pandurangan A, Sivasanker S (2011) Hydroprocessing of sunflower oil–gas oil blends over sulfided Ni–Mo–Al–zeolite beta composites. Bioresour Technol 102:10717–10723.  https://doi.org/10.1016/j.biortech.2011.08.127 CrossRefGoogle Scholar
  81. Saxena SK, Viswanadham N, Garg MO (2014) Porosity and acidity patterns of steam treated BEA zeolite material for enhanced catalytic isomerization of naphtha. J Ind Eng Chem 20:3875–3883.  https://doi.org/10.1016/j.jiec.2013.12.093 CrossRefGoogle Scholar
  82. Shiraishi Y, Tachibana K, Hirai T, Komasawa I (2002) Desulfurization and denitrogenation process for light oils based on chemical oxidation followed by liquid–liquid extraction. Ind Eng Chem Res 41:4362–4375.  https://doi.org/10.1021/ie010618x CrossRefGoogle Scholar
  83. Sinfelt JH (1976) Polymetallic cluster compositions useful as hydrocarbon conversion catalysts. US Patent 3953368Google Scholar
  84. Song C, Ma X (2003) New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization. Appl Catal B 41:207–238.  https://doi.org/10.1016/S0926-3373(02)00212-6 CrossRefGoogle Scholar
  85. Soto HO, Marín LJH (2000) Hydrocracking of heavy straight run naphtha with Pt supported on zeolites Y, USY, ZSM5 and β. In: Corma A, Melo FV, Mendioroz S, Fierro JLG (eds) Studies in surface science and catalysis. Elsevier, New York, pp 2489–2494.  https://doi.org/10.1016/S0167-2991(00)80843-5 CrossRefGoogle Scholar
  86. Srinivasan R, Davis BH (1992) The structure of platinum-tin reforming catalysts. Platin Metals Rev 36:151–163Google Scholar
  87. Stanislaus A, Marafi A, Rana MS (2010) Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catal Today 153:1–68.  https://doi.org/10.1016/j.cattod.2010.05.011 CrossRefGoogle Scholar
  88. Stepanov V (2005) Low scale production of motor fuels on remote oil fields. Khim Tekhnol Topl Masel 1:3–11Google Scholar
  89. Stepanov V, Ione K (2003) Low-and intermediate-scale production of motor fuels using a novel catalytic process zeoforming, Katal. PromstiGoogle Scholar
  90. Vasudevan PT, Fierro JLG (1996) A review of deep hydrodesulfurization catalysis. Catal Rev 38:161–188.  https://doi.org/10.1080/01614949608006457 CrossRefGoogle Scholar
  91. Velichkina LM (2009) Hydrogen-free domestic technologies for conversion of low-octane gasoline distillates on zeolite catalysts. Theor Found Chem Eng 43:486–493.  https://doi.org/10.1134/s004057950904023x CrossRefGoogle Scholar
  92. Verbeek H, Sachtler WMH (1976) The study of the alloys of platinum and tin by chemisorption. J Catal 42:257–267.  https://doi.org/10.1016/0021-9517(76)90260-8 CrossRefGoogle Scholar
  93. Vicerich MA, Oportus M, Benitez VM, Reyes P, Pieck CL (2014) Influence of time and temperature on the regeneration of PtReIn/Al2O3 naphtha reforming catalysts. Catal Lett 144:1178–1187.  https://doi.org/10.1007/s10562-014-1282-9 CrossRefGoogle Scholar
  94. Viswanadham N, Kamble R, Sharma A, Kumar M, Saxena AK (2008) Effect of Re on product yields and deactivation patterns of naphtha reforming catalyst. J Mol Catal A Chem 282:74–79.  https://doi.org/10.1016/j.molcata.2007.11.025 CrossRefGoogle Scholar
  95. Viswanadham N, Saxena SK, Garg MO (2013) Octane number enhancement studies of naphtha over noble metal loaded zeolite catalysts. J Ind Eng Chem 19:950–955.  https://doi.org/10.1016/j.jiec.2012.11.014 CrossRefGoogle Scholar
  96. Vrinat ML (1983) The kinetics of the hydrodesulfurization process: a review. Appl Catal 6:137–158.  https://doi.org/10.1016/0166-9834(83)80260-7 CrossRefGoogle Scholar
  97. Wan G, Duan A, Zhang Y, Zhao Z, Jiang G, Zhang D et al (2009) Hydrodesulfurization of fluidized catalytic cracking diesel oil over NiW/AMB catalysts containing H-type β-zeolite in situ synthesized from kaolin material. Energy Fuels 23:3846–3852.  https://doi.org/10.1021/ef900178n CrossRefGoogle Scholar
  98. Wan G, Duan A, Zhang Y, Zhao Z, Jiang G, Zhang D et al (2010a) NiW/AMBT catalysts for the production of ultra-low sulfur diesel. Catal Today 158:521–529.  https://doi.org/10.1016/j.cattod.2010.08.021 CrossRefGoogle Scholar
  99. Wan G, Duan A, Zhang Y, Zhao Z, Jiang G, Zhang D et al (2010b) Zeolite beta synthesized with acid-treated metakaolin and its application in diesel hydrodesulfurization. Catal Today 149:69–75.  https://doi.org/10.1016/j.cattod.2009.07.098 CrossRefGoogle Scholar
  100. Wang Y, Wang B, Rives A, Sun Y (2014) Hydrodesulfurization of transportation fuels over zeolite-based supported catalysts. Energy Environ Focus 3:45–52.  https://doi.org/10.1166/eef.2014.1088 CrossRefGoogle Scholar
  101. Wei Y, Liu Z, Wang G, Qi Y, Xu L, Xie P et al (2005) Production of light olefins and aromatic hydrocarbons through catalytic cracking of naphtha at lowered temperature. Stud Surf Sci Catal 158:1223–1230.  https://doi.org/10.1016/S0167-2991(05)80468-9 CrossRefGoogle Scholar
  102. Yao S, Zheng Y, Ng S, Ding L, Yang H (2012) The role of nanobeta zeolite in NiMo hydrotreating catalysts. Appl Catal A 435:61–67.  https://doi.org/10.1016/j.apcata.2012.05.038 CrossRefGoogle Scholar
  103. Yin C, Zhu G, Xia D (2002a) Determination of organic sulfur compounds in naphtha. Part I. Identification and quantitative analysis of sulfides in FCC and RFCC naphthas. Prepr Am Chem Soc Div Petrol Chem 47:391–395Google Scholar
  104. Yin C, Zhu G, Xia D (2002b) Determination of organic sulfur compounds in naphtha. Part II. Identification and quantitative analysis of thiophenes in FCC and RFCC naphthas. Prepr Am Chem Soc Div Petrol Chem 47:398–401Google Scholar
  105. Zeelani GG, Ashrafi A, Dhakad A, Gupta G, Pal SL (2016) Catalytic oxidative desulfurization of liquid fuels: a reviewGoogle Scholar
  106. Zhagfarov FG, Grigor’eva NA, Lapidus AL (2005) New catalysts of hydrocarbon pyrolysis. Chem Technol Fuels Oils 41:141–145.  https://doi.org/10.1007/s10553-005-0036-1 CrossRefGoogle Scholar
  107. Zhang J, Qiu G, Fan L, Meng X, Cai Q, Wang Y (2015) Enhanced sulfur capacity of durable and regenerable mesoporous sorbents for the deep desulfurization of diesel. Fuel 153:578–584.  https://doi.org/10.1016/j.fuel.2015.03.056 CrossRefGoogle Scholar
  108. Zinnen HA (1999) Removal of organic sulfur compounds from FCC gasoline using regenerable adsorbents. US Patent 5935422Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Catalysis Research DivisionResearch Institute of Petroleum Industry (RIPI)TehranIran
  2. 2.Department of Chemical Engineering, Faculty of Chemical and Energy EngineeringUniversiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations