Advertisement

Environmental Chemistry Letters

, Volume 16, Issue 2, pp 343–365 | Cite as

Membrane technology for water purification

  • Lavanya Madhura
  • Suvardhan Kanchi
  • Myalowenkosi I. Sabela
  • Shalini Singh
  • Krishna Bisetty
  • Inamuddin
Review

Abstract

Managing higher water demands is a grand challenge of the twenty-first century due to pollution and climate change that are decreasing the amount of drinkable water. There is therefore a need for improved techniques to purify contaminated waters. Nanotechnology provides materials of unprecedented properties, which can be used to clean water. This article reviews recent developments in nanotechnology for wastewater treatment using novel polymeric membrane materials. The use of polymeric membrane materials and polymer brushes are discussed.

Keywords

Nanomaterials Membranes Polymer brushes Water purification 

Notes

Acknowledgements

Authors are highly grateful to Durban University of Technology and National Research Foundation of South Africa for their financial support in the form of NRF-DST Innovation Doctoral Scholarship (UID: 107643) to carry out this work.

References

  1. Advincula RC (2005) The analysis and characterization of polymer brushes: from flat surfaces to nanoparticles. In: Advincula RC, Brittain WJ, Caster KC, Rühe J (eds) Polymer brushes: synthesis, characterization, applications. Wiley-VCH Verlag GmbH & Co. KGaA, pp 187–212.  https://doi.org/10.1002/3527603824.ch10
  2. Ahn J, Chung W-J, Pinnau I, Guiver MD (2008) Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. J Membr Sci 314:123–133.  https://doi.org/10.1016/j.memsci.2008.01.031 CrossRefGoogle Scholar
  3. Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53:51–59.  https://doi.org/10.1016/S0920-5861(99)00102-9 CrossRefGoogle Scholar
  4. Augugliaro V, Bellardita M, Loddo V, Palmisano G, Palmisano L, Yurdakal S (2012) Overview on oxidation mechanisms of organic compounds by TiO2 in heterogeneous photocatalysis. J Photochem Photobiol C Photochem Rev 13:224–245.  https://doi.org/10.1016/j.jphotochemrev.2012.04.003 CrossRefGoogle Scholar
  5. Azzaroni O (2012) Polymer brushes here, there, and everywhere: recent advances in their practical applications and emerging opportunities in multiple research fields. J Polym Sci A Polym Chem 50:3225–3258.  https://doi.org/10.1002/pola.26119 CrossRefGoogle Scholar
  6. Bahnemann D (2004) Photocatalytic water treatment: solar energy applications. Sol Energy 77:445–459.  https://doi.org/10.1016/j.solener.2004.03.031 CrossRefGoogle Scholar
  7. Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23:690–718.  https://doi.org/10.1002/adma.201001215 CrossRefGoogle Scholar
  8. Barbey R, Lavanant L, Paripovic D, Schüwer N, Sugnaux C, Tugulu S, Klok H-A (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109:5437–5527.  https://doi.org/10.1021/cr900045a CrossRefGoogle Scholar
  9. Böhme P, Vedantham G, Przybycien T, Belfort G (1999) Self-assembled monolayers on polymer surfaces: kinetics, functionalization, and photopatterning. Langmuir 15:5323–5328.  https://doi.org/10.1021/la981548a CrossRefGoogle Scholar
  10. Braslavsky SE (2007) Glossary of terms used in photochemistry, (IUPAC recommendations 2006). Pure Appl Chem 79:293–465.  https://doi.org/10.1351/pac200779030293 CrossRefGoogle Scholar
  11. Bruinsma J (2009) The resource outlook to 2050: By how much do land, water and crop yields need to increase by 2050? Food and Agriculture Organization of the United Nations Expert Meeting Rome, Italy, June 24–26, 2009Google Scholar
  12. Bui N-N, Lind ML, Hoek EM, McCutcheon JR (2011) Electrospun nanofiber supported thin film composite membranes for engineered osmosis. J Membr Sci 385:10–19.  https://doi.org/10.1016/j.memsci.2011.08.002 CrossRefGoogle Scholar
  13. Choi J-H, Dockko S, Fukushi K, Yamamoto K (2002) A novel application of a submerged nanofiltration membrane bioreactor (NF MBR) for wastewater treatment. Desalination 146:413–420.  https://doi.org/10.1016/S0011-9164(02)00524-6 CrossRefGoogle Scholar
  14. Chong MN, Jin B, Chow CW, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027.  https://doi.org/10.1016/j.watres.2010.02.039 CrossRefGoogle Scholar
  15. Cloete TE, de Kwaadsteniet M, Botes M, López-Romero JM (2010) Nanotechnology in water treatment applications. Caister Academic Press, PooleGoogle Scholar
  16. Dalrymple OK, Yeh DH, Trotz MA (2007) Removing pharmaceuticals and endocrine-disrupting compounds from wastewater by photocatalysis. J Chem Technol Biotechnol 82:121–134.  https://doi.org/10.1002/jctb.1657 CrossRefGoogle Scholar
  17. Daraei P, Madaeni SS, Ghaemi N, Salehi E, Khadivi MA, Moradian R, Astinchap B (2012) Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe3O4 nanoparticles with enhanced performance for Cu (II) removal from water. J Membr Sci 415:250–259.  https://doi.org/10.1016/j.memsci.2012.05.007 CrossRefGoogle Scholar
  18. Dekker C (2007) Solid-state nanopores. Nat Nanotechnol 2:209–215.  https://doi.org/10.1038/nnano.2007.27 CrossRefGoogle Scholar
  19. Deng M, Li X, Liang H, Caswell B, Karniadakis GE (2012) Simulation and modelling of slip flow over surfaces grafted with polymer brushes and glycocalyx fibres. J Fluid Mech 711:192–211.  https://doi.org/10.1017/jfm.2012.387 CrossRefGoogle Scholar
  20. Dutta AK, Belfort G (2007) Adsorbed gels versus brushes: viscoelastic differences. Langmuir 23:3088–3094.  https://doi.org/10.1021/la0624743 CrossRefGoogle Scholar
  21. Dutta AK, Nayak A, Belfort G (2008a) Reversibly controlling the rigidity of adsorbed polycations. Macromolecules 41:301–304.  https://doi.org/10.1021/ma071608w CrossRefGoogle Scholar
  22. Dutta AK, Nayak A, Belfort G (2008b) Viscoelastic properties of adsorbed and cross-linked polypeptide and protein layers at a solid–liquid interface. J Colloids Interface Sci 324:55–60.  https://doi.org/10.1016/j.jcis.2008.04.065 CrossRefGoogle Scholar
  23. Dyer DJ, Feng J, Fivelson C, Paul R, Schmidt R, Zhao T (2005) Photoinitiated polymerization from self-assembled monolayers. In: Advincula RC, Brittain WJ, Caster KC, Rühe J (eds) Polymer brushes: synthesis, characterization, applications. Wiley-VCH Verlag GmbH & Co. KGaA, pp 129–150.  https://doi.org/10.1002/3527603824.ch7
  24. Edmondson S, Osborne VL, Huck WT (2004) Polymer brushes via surface-initiated polymerizations. Chem Soc Rev 33:14–22.  https://doi.org/10.1039/B210143M CrossRefGoogle Scholar
  25. Fane AG, Beatson P, Li H (2000) Membrane fouling and its control in environmental applications. Water Sci Technol 41:303–308CrossRefGoogle Scholar
  26. Farhan T, Azzaroni O, Huck WT (2005) AFM study of cationically charged polymer brushes: switching between soft and hard matter. Soft Matter 1:66–68.  https://doi.org/10.1039/B502421H CrossRefGoogle Scholar
  27. Feng C, Khulbe K, Matsuura T, Tabe S, Ismail A (2013) Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment. Sep Purif Technol 102:118–135.  https://doi.org/10.1016/j.seppur.2012.09.037 CrossRefGoogle Scholar
  28. Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 78:207.  https://doi.org/10.1016/j.aquatox.2006.02.006 CrossRefGoogle Scholar
  29. Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357.  https://doi.org/10.1021/cr00017a016 CrossRefGoogle Scholar
  30. Freger V, Gilron J, Belfer S (2002) TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study. J Membr Sci 209:283–292.  https://doi.org/10.1016/S0376-7388(02)00356-3 CrossRefGoogle Scholar
  31. Friedmann D, Mendive C, Bahnemann D (2010) TiO2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis. Appl Catal B Environ 99:398–406.  https://doi.org/10.1016/j.apcatb.2010.05.014 CrossRefGoogle Scholar
  32. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582.  https://doi.org/10.1016/j.surfrep.2008.10.001 CrossRefGoogle Scholar
  33. Gehrke I, Geiser A, Somborn-Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 8:1.  https://doi.org/10.2147/NSA.S43773 CrossRefGoogle Scholar
  34. Gilbert B, Ono RK, Ching KA, Kim CS (2009) The effects of nanoparticle aggregation processes on aggregate structure and metal uptake. J Colloid Interface Sci 339:285–295.  https://doi.org/10.1016/j.jcis.2009.07.058 CrossRefGoogle Scholar
  35. Gilman JW (1999) Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl Clay Sci 15:31–49.  https://doi.org/10.1016/S0169-1317(99)00019-8 CrossRefGoogle Scholar
  36. Godovski DY (1995) Advanced polymer science thermal and electrical conductivity of polymer materials. Springer, Berlin, pp 79–122CrossRefGoogle Scholar
  37. Goodman D, Kizhakkedathu JN, Brooks DE (2004) Evaluation of an atomic force microscopy pull-off method for measuring molecular weight and polydispersity of polymer brushes: effect of grafting density. Langmuir 20:6238–6245.  https://doi.org/10.1021/la036092y CrossRefGoogle Scholar
  38. Granville AM, Brittain WJ (2005) Recent advances in polymer brush synthesis. In: Advincula RC, Brittain WJ, Caster KC, Rühe J (eds) Polymer brushes: synthesis, characterization, applications. Wiley-VCH Verlag GmbH & Co. KGaA, pp 35–50.  https://doi.org/10.1002/3527603824.ch1
  39. Grünwald D, Singer RH, Rout M (2011) Nuclear export dynamics of RNA-protein complexes. Nature 475:333.  https://doi.org/10.1038/nature10318 CrossRefGoogle Scholar
  40. Heberer T (2002) Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J Hydrol 266:175–189.  https://doi.org/10.1016/S0022-1694(02)00165-8 CrossRefGoogle Scholar
  41. Henn G, Bucknall D, Stamm M, Vanhoorne P, Jérôme R (1996) Chain end effects and dewetting in thin polymer films. Macromolecules 29:4305–4313.  https://doi.org/10.1021/ma9500392 CrossRefGoogle Scholar
  42. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96.  https://doi.org/10.1021/cr00033a004 CrossRefGoogle Scholar
  43. Hong SU, Miller MD, Bruening ML (2006) Removal of dyes, sugars, and amino acids from NaCl solutions using multilayer polyelectrolyte nanofiltration membranes. Ind Eng Chem Res 45:6284–6288.  https://doi.org/10.1021/ie060239+ CrossRefGoogle Scholar
  44. Hong SU, Malaisamy R, Bruening ML (2007) Separation of fluoride from other monovalent anions using multilayer polyelectrolyte nanofiltration membranes. Langmuir 23:1716–1722.  https://doi.org/10.1021/la061701y CrossRefGoogle Scholar
  45. Howarter JA, Youngblood JP (2009) Amphiphile grafted membranes for the separation of oil-in-water dispersions. J Colloid Interface Sci 329:127–132.  https://doi.org/10.1016/j.jcis.2008.09.068 CrossRefGoogle Scholar
  46. Hu Q, Marand E, Dhingra S, Fritsch D, Wen J, Wilkes G (1997) Poly (amide–imide)/TiO2 nano-composite gas separation membranes: fabrication and characterization. J Membr Sci 135:65–79.  https://doi.org/10.1016/S0376-7388(97)00120-8 CrossRefGoogle Scholar
  47. Inn Y, Wang S-Q (1996) Hydrodynamic slip: polymer adsorption and desorption at melt/solid interfaces. Phys Rev Lett 76:467.  https://doi.org/10.1103/PhysRevLett.76.467 CrossRefGoogle Scholar
  48. Ionov L, Sidorenko A, Stamm M, Minko S, Zdyrko B, Klep V, Luzinov I (2004) Gradient mixed brushes:“Grafting to” approach. Macromolecules 37:7421–7423.  https://doi.org/10.1021/ma049147r CrossRefGoogle Scholar
  49. Iyer KS, Zdyrko B, Malz H, Pionteck J, Luzinov I (2003) Polystyrene layers grafted to macromolecular anchoring layer. Macromolecules 36:6519–6526.  https://doi.org/10.1021/ma034460z CrossRefGoogle Scholar
  50. Jagadevan S, Jayamurthy M, Dobson P, Thompson IP (2012) A novel hybrid nano zerovalent iron initiated oxidation—biological degradation approach for remediation of recalcitrant waste metalworking fluids. Water Res 46:2395–2404.  https://doi.org/10.1016/j.watres.2012.02.006 CrossRefGoogle Scholar
  51. Kanakaraju D, Glass BD, Oelgemöller M (2013) Heterogeneous photocatalysis for pharmaceutical wastewater treatment. In: Lichtfouse E (ed) Green materials for energy, products and depollution, environmental chemistry for a sustainable world, vol 3. Springer, Dordrecht, pp 69–133CrossRefGoogle Scholar
  52. Karim MR, Rhodes ER, Brinkman N, Wymer L, Fout GS (2009) New electropositive filter for concentrating enteroviruses and noroviruses from large volumes of water. Appl Environ Microbiol 75:2393–2399.  https://doi.org/10.1128/AEM.00922-08 CrossRefGoogle Scholar
  53. Kidoaki S, Ohya S, Nakayama Y, Matsuda T (2001) Thermoresponsive structural change of a poly (N-isopropylacrylamide) graft layer measured with an atomic force microscope. Langmuir 17:2402–2407.  https://doi.org/10.1021/la001522v CrossRefGoogle Scholar
  54. Kim SY, Kanamori T, Shinbo T (2002) Preparation of thermal-responsive poly (propylene) membranes grafted with n-isopropylacrylamide by plasma-induced polymerization and their water permeation. J Appl Polym Sci 84:1168–1177.  https://doi.org/10.1002/app.10410 CrossRefGoogle Scholar
  55. Kim M-M, Lin NH, Lewis GT, Cohen Y (2010) Surface nano-structuring of reverse osmosis membranes via atmospheric pressure plasma-induced graft polymerization for reduction of mineral scaling propensity. J Membr Sci 354:142–149.  https://doi.org/10.1016/j.memsci.2010.02.053 CrossRefGoogle Scholar
  56. Klein J, Kumacheva E, Mahalu D, Perahia D, Fetters LJ (1994) Reduction of frictional forces between solid surfaces bearing polymer brushes. Nature 370:634–636.  https://doi.org/10.1038/370634a0 CrossRefGoogle Scholar
  57. Kümmerer K (2009) The presence of pharmaceuticals in the environment due to human use–present knowledge and future challenges. J Environ Manage 90:2354–2366.  https://doi.org/10.1016/j.jenvman.2009.01.023 CrossRefGoogle Scholar
  58. Kurosawa S, Aizawa H, Talib ZA, Atthoff B, Hilborn J (2004) Synthesis of tethered-polymer brush by atom transfer radical polymerization from a plasma-polymerized-film-coated quartz crystal microbalance and its application for immunosensors. Biosens Bioelectron 20:1165–1176.  https://doi.org/10.1016/j.bios.2004.06.034 CrossRefGoogle Scholar
  59. Lee BS, Chi YS, Lee K-B, Kim Y-G, Choi IS (2007) Functionalization of poly (oligo (ethylene glycol) methacrylate) films on gold and Si/SiO2 for immobilization of proteins and cells: SPR and QCM studies. Biomacromolecules 8:3922–3929.  https://doi.org/10.1021/bm7009043 CrossRefGoogle Scholar
  60. Legrini O, Oliveros E, Braun A (1993) Photochemical processes for water treatment. Chem Rev 93:671–698.  https://doi.org/10.1021/cr00018a003 CrossRefGoogle Scholar
  61. Li D, He Q, Cui Y, Li J (2007) Fabrication of pH-responsive nanocomposites of gold nanoparticles/poly (4-vinylpyridine). Chem Mater 19:412–417.  https://doi.org/10.1021/cm062290+ CrossRefGoogle Scholar
  62. Li L-H, Deng J-C, Deng H-R, Liu Z-L, Xin L (2010) Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes. Carbohydr Res 345:994–998.  https://doi.org/10.1016/j.carres.2010.03.019 CrossRefGoogle Scholar
  63. Li Y, Su Y, Dong Y, Zhao X, Jiang Z, Zhang R, Zhao J (2014) Separation performance of thin-film composite nanofiltration membrane through interfacial polymerization using different amine monomers. Desalination 333:59–65.  https://doi.org/10.1016/j.desal.2013.11.035 CrossRefGoogle Scholar
  64. Lin NH, M-m Kim, Lewis GT, Cohen Y (2010) Polymer surface nano-structuring of reverse osmosis membranes for fouling resistance and improved flux performance. J Mater Chem 20:4642–4652.  https://doi.org/10.1039/B926918E CrossRefGoogle Scholar
  65. Liu F, Du C-H, Zhu B-K, Xu Y-Y (2007) Surface immobilization of polymer brushes onto porous poly (vinylidene fluoride) membrane by electron beam to improve the hydrophilicity and fouling resistance. Polymer 48:2910–2918.  https://doi.org/10.1016/j.polymer.2007.03.033 CrossRefGoogle Scholar
  66. Martin CR, Kohli P (2003) The emerging field of nanotube biotechnology. Nat Rev Drug Discov 2:29.  https://doi.org/10.1038/nrd988 CrossRefGoogle Scholar
  67. Maximous N, Nakhla G, Wan W, Wong K (2009) Preparation, characterization and performance of Al2O3/PES membrane for wastewater filtration. J Membr Sci 341:67–75.  https://doi.org/10.1016/j.memsci.2009.05.040 CrossRefGoogle Scholar
  68. Membrane-solutions. www.membrane-solutions.com/News_1224.htm. Accessed 25 Aug 2016
  69. Menendez-Flores VM, Friedmann D, Bahnemann DW (2008) Durability of Ag–TiO2 photocatalysts assessed for the degradation of dichloroacetic acid. Int J Photoenergy.  https://doi.org/10.1155/2008/280513 CrossRefGoogle Scholar
  70. Miege C, Choubert J, Ribeiro L, Eusèbe M, Coquery M (2009) Fate of pharmaceuticals and personal care products in wastewater treatment plants—conception of a database and first results. Environ Pollut 157:1721–1726.  https://doi.org/10.1016/j.envpol.2008.11.045 CrossRefGoogle Scholar
  71. Minko S, Patil S, Datsyuk V, Simon F, Eichhorn K-J, Motornov M, Usov D, Tokarev I, Stamm M (2002) Synthesis of adaptive polymer brushes via “grafting to” approach from melt. Langmuir 18:289–296.  https://doi.org/10.1021/la015637q CrossRefGoogle Scholar
  72. Mompelat S, Le Bot B, Thomas O (2009) Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int 35:803–814.  https://doi.org/10.1016/j.envint.2008.10.008 CrossRefGoogle Scholar
  73. Moses KJ, Cohen Y (2014) Wettability of terminally anchored polymer brush layers on a polyamide surface. J Colloid Interface Sci 436:286–295.  https://doi.org/10.1016/j.jcis.2014.08.042 CrossRefGoogle Scholar
  74. Motornov M, Minko S, Eichhorn K-J, Nitschke M, Simon F, Stamm M (2003) Reversible tuning of wetting behavior of polymer surface with responsive polymer brushes. Langmuir 19:8077–8085.  https://doi.org/10.1021/la0343573 CrossRefGoogle Scholar
  75. Moya SE, Azzaroni O, Kelby T, Donath E, Huck WT (2007) Explanation for the apparent absence of collapse of polyelectrolyte brushes in the presence of bulky ions. J Phys Chem B 111:7034–7040.  https://doi.org/10.1021/jp071026g CrossRefGoogle Scholar
  76. Namvar-Mahboub M, Pakizeh M (2013) Development of a novel thin film composite membrane by interfacial polymerization on polyetherimide/modified SiO2 support for organic solvent nanofiltration. Sep Purif Technol 119:35–45.  https://doi.org/10.1016/j.seppur.2013.09.003 CrossRefGoogle Scholar
  77. Ohno K, Morinaga T, Koh K, Tsujii Y, Fukuda T (2005) Synthesis of monodisperse silica particles coated with well-defined, high-density polymer brushes by surface-initiated atom transfer radical polymerization. Macromolecules 38:2137–2142.  https://doi.org/10.1021/ma048011q CrossRefGoogle Scholar
  78. Ohno K, Akashi T, Huang Y, Tsujii Y (2010) Surface-initiated living radical polymerization from narrowly size-distributed silica nanoparticles of diameters less than 100 nm. Macromolecules 43:8805–8812.  https://doi.org/10.1021/ma1018389 CrossRefGoogle Scholar
  79. Okada A, Usuki A (1995) The chemistry of polymer-clay hybrids. Mater Sci Eng C 3:109–115.  https://doi.org/10.1016/0928-4931(95)00110-7 CrossRefGoogle Scholar
  80. Pendergast MM, Dorin RM, Phillip WA, Wiesner U, Hoek EM (2013) Understanding the structure and performance of self-assembled triblock terpolymer membranes. J Membr Sci 444:461–468.  https://doi.org/10.1016/j.memsci.2013.04.074 CrossRefGoogle Scholar
  81. Pichat P, Courbon H, Enriquez R, Tan TTY, Amal R (2007) Light-induced isotopic exchange between O2 and semiconductor oxides, a characterization method that deserves not to be overlooked. Res Chem Intermed 33:239–250.  https://doi.org/10.1163/156856707779238667 CrossRefGoogle Scholar
  82. Pincus P (1991) Colloid stabilization with grafted polyelectrolytes. Macromolecules 24:2912–2919.  https://doi.org/10.1021/ma00010a043 CrossRefGoogle Scholar
  83. Pries A, Secomb T, Gaehtgens P (2000) The endothelial surface layer. Pflugers Arch 440:653–666.  https://doi.org/10.1007/s004240000307 CrossRefGoogle Scholar
  84. Pyun J, Kowalewski T, Matyjaszewski K (2003) Synthesis of polymer brushes using atom transfer radical polymerization. Macromol Rapid Commun 24:1043–1059.  https://doi.org/10.1002/marc.200300078 CrossRefGoogle Scholar
  85. Qiu X, Yu H, Karunakaran M, Pradeep N, Nunes SP, Peinemann K-V (2013) Selective separation of similarly sized proteins with tunable nanoporous block copolymer membranes. ACS Nano 7:768–776.  https://doi.org/10.1021/nn305073e CrossRefGoogle Scholar
  86. Qu X, Alvarez PJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946.  https://doi.org/10.1016/j.watres.2012.09.058 CrossRefGoogle Scholar
  87. Ramakrishna S, Fujihara K, Teo W-E, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mater Today 9:40–50.  https://doi.org/10.1016/S1369-7021(06)71389-X CrossRefGoogle Scholar
  88. Report U-W (2014) Managing water under uncertainty and risk: the United Nations World Water Development Report 4. http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/wwdr4-2012. Accessed 24 July 2014
  89. Sadeghi M, Semsarzadeh MA, Moadel H (2009) Enhancement of the gas separation properties of polybenzimidazole (PBI) membrane by incorporation of silica nano particles. J Membr Sci 331:21–30.  https://doi.org/10.1016/j.memsci.2008.12.073 CrossRefGoogle Scholar
  90. Sanjuan S, Tran Y (2008) Stimuli-responsive interfaces using random polyampholyte brushes. Macromolecules 41:8721–8728.  https://doi.org/10.1021/ma8018798 CrossRefGoogle Scholar
  91. Schewe J, Heinke J, Gerten D, Haddeland I, Arnell NW, Clark DB, Dankers R, Eisner S, Fekete BM, Colón-González FJ (2014) Multimodel assessment of water scarcity under climate change. Proc Natl Acad Sci 111:3245–3250.  https://doi.org/10.1073/pnas.1222460110 CrossRefGoogle Scholar
  92. Sejoubsari RM, Martinez AP, Kutes Y, Wang Z, Dobrynin AV, Adamson DH (2016) “Grafting-through”: growing polymer brushes by supplying monomers through the surface. Macromolecules 49:2477–2483.  https://doi.org/10.1021/acs.macromol.6b00183 CrossRefGoogle Scholar
  93. Seman MA, Khayet M, Hilal N (2010) Nanofiltration thin-film composite polyester polyethersulfone-based membranes prepared by interfacial polymerization. J Membr Sci 348:109–116.  https://doi.org/10.1016/j.memsci.2009.10.047 CrossRefGoogle Scholar
  94. Seman MA, Khayet M, Hilal N (2011) Development of antifouling properties and performance of nanofiltration membranes modified by interfacial polymerisation. Desalination 273:36–47.  https://doi.org/10.1016/j.desal.2010.09.038 CrossRefGoogle Scholar
  95. Sharma V, Sharma A (2012) Nanotechnology: an emerging future trend in wastewater treatment with its innovative products and processes. IJERSTE 1:1–8Google Scholar
  96. Sidorenko A, Minko S, Schenk-Meuser K, Duschner H, Stamm M (1999) Switching of polymer brushes. Langmuir 15:8349–8355.  https://doi.org/10.1021/la990869z CrossRefGoogle Scholar
  97. Simpson A, Kerr C, Buckley C (1987) The effect of pH on the nanofiltration of the carbonate system in solution. Desalination 64:305–319.  https://doi.org/10.1016/0011-9164(87)90104-4 CrossRefGoogle Scholar
  98. Stawikowska J, Jimenez-Solomon MF, Bhole Y, Livingston AG (2013) Nanoparticle contrast agents to elucidate the structure of thin film composite nanofiltration membranes. J Membr Sci 442:107–118.  https://doi.org/10.1016/j.memsci.2013.04.029 CrossRefGoogle Scholar
  99. Stuart MAC, Huck WT, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101.  https://doi.org/10.1038/nmat2614 CrossRefGoogle Scholar
  100. Suárez S, Carballa M, Omil F, Lema JM (2008) How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters? Rev Environ Sci Bio Tech 7:125–138.  https://doi.org/10.1007/s11157-008-9130-2 CrossRefGoogle Scholar
  101. Sun F-Q, Li X-S, Xu J-K, Cao P-T (2010) Improving hydrophilicity and protein antifouling of electrospun poly (vinylidenefluoride-hexafluoropropylene) nanofiber membranes. Chin J Polym Sci 28:705–713.  https://doi.org/10.1007/s10118-010-9110-1 CrossRefGoogle Scholar
  102. Tan TTY, Beydoun D, Amal R (2003) Photocatalytic reduction of Se(VI) in aqueous solutions in UV/TiO2 system: importance of optimum ratio of reactants on TiO2 surface. J Mol Catal A Chem 202:73–85.  https://doi.org/10.1016/S1381-1169(03)00205-X CrossRefGoogle Scholar
  103. Tang C, Zhao Y, Wang R, Hélix-Nielsen C, Fane A (2013) Desalination by biomimetic aquaporin membranes: review of status and prospects. Desalination 308:34–40.  https://doi.org/10.1016/j.desal.2012.07.007 CrossRefGoogle Scholar
  104. Taniguchi M, Belfort G (2002) Correcting for surface roughness: advancing and receding contact angles. Langmuir 18:6465–6467.  https://doi.org/10.1021/la020145e CrossRefGoogle Scholar
  105. Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245–3260.  https://doi.org/10.1016/S0043-1354(98)00099-2 CrossRefGoogle Scholar
  106. Tixier C, Singer HP, Oellers S, Müller SR (2003) Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environ Sci Technol 37:1061–1068.  https://doi.org/10.1021/es025834r CrossRefGoogle Scholar
  107. Tsuru T, Sasaki S, Kamada T, Shintani T, Ohara T, Nagasawa H, Nishida K, Kanezashi M, Yoshioka T (2013) Multilayered polyamide membranes by spray-assisted 2-step interfacial polymerization for increased performance of trimesoyl chloride (TMC)/m-phenylenediamine (MPD)-derived polyamide membranes. J Membr Sci 446:504–512.  https://doi.org/10.1016/j.memsci.2013.07.031 CrossRefGoogle Scholar
  108. Tu H, Heitzman CE, Braun PV (2004) Patterned poly (N-isopropylacrylamide) brushes on silica surfaces by microcontact printing followed by surface-initiated polymerization. Langmuir 20:8313–8320.  https://doi.org/10.1021/la049663a CrossRefGoogle Scholar
  109. Van der Bruggen B, Mänttäri M, Nyström M (2008) Drawbacks of applying nanofiltration and how to avoid them: a review. Sep Purif Technol 63:251–263.  https://doi.org/10.1016/j.seppur.2008.05.010 CrossRefGoogle Scholar
  110. Vatanpour V, Esmaeili M, Farahani MHDA (2014) Fouling reduction and retention increment of polyethersulfone nanofiltration membranes embedded by amine-functionalized multi-walled carbon nanotubes. J Membr Sci 466:70–81.  https://doi.org/10.1016/j.memsci.2014.04.031 CrossRefGoogle Scholar
  111. Wang J, Liu X, Choi H-S (2008) Graft copolymerization kinetics of acrylic acid onto the poly(ethylene terephthalate) surface by atmospheric pressure plasma inducement. J Polym Sci Part B Polym Phys 46:1594–1601.  https://doi.org/10.1002/polb.21496 CrossRefGoogle Scholar
  112. Wegmann M, Michen B, Graule T (2008) Nanostructured surface modification of microporous ceramics for efficient virus filtration. J Eur Ceram Soc 28:1603–1612.  https://doi.org/10.1016/j.jeurceramsoc.2007.11.002 CrossRefGoogle Scholar
  113. Weinbaum S, Tarbell JM, Damiano ER (2007) The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 9:121–167.  https://doi.org/10.1146/annurev.bioeng.9.060906.151959 CrossRefGoogle Scholar
  114. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421.  https://doi.org/10.1126/science.1070821 CrossRefGoogle Scholar
  115. Xie W, He F, Wang B, Chung T-S, Jeyaseelan K, Armugam A, Tong YW (2013) An aquaporin-based vesicle-embedded polymeric membrane for low energy water filtration. J Mater Chem A 1:7592–7600.  https://doi.org/10.1039/C3TA10731K CrossRefGoogle Scholar
  116. Yamamoto S, Ejaz M, Tsujii Y, Fukuda T (2000) Surface interaction forces of well-defined, high-density polymer brushes studied by atomic force microscopy. 2. Effect of graft density. Macromolecules 33:5608–5612.  https://doi.org/10.1021/ma991988o CrossRefGoogle Scholar
  117. Yin J, Kim E-S, Yang J, Deng B (2012) Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification. J Membr Sci 423:238–246.  https://doi.org/10.1016/j.memsci.2012.08.020 CrossRefGoogle Scholar
  118. Yu K, Wang H, Han Y (2007) Motion of integrated CdS nanoparticles by phase separation of block copolymer brushes. Langmuir 23:8957–8964.  https://doi.org/10.1021/la701053d CrossRefGoogle Scholar
  119. Yu LY, Shen HM, Xu ZL (2009a) PVDF–TiO2 composite hollow fiber ultrafiltration membranes prepared by TiO2 sol–gel method and blending method. J Appl Polym Sci 113:1763–1772.  https://doi.org/10.1002/app.29886 CrossRefGoogle Scholar
  120. Yu S, Zuo X, Bao R, Xu X, Wang J, Xu J (2009b) Effect of SiO2 nanoparticle addition on the characteristics of a new organic–inorganic hybrid membrane. Polymer 50:553–559.  https://doi.org/10.1016/j.polymer.2008.11.012 CrossRefGoogle Scholar
  121. Zdyrko B, Luzinov I (2011) Polymer brushes by the “grafting to” method. Macromol Rapid Commun 32:859–869.  https://doi.org/10.1002/marc.201100162 CrossRefGoogle Scholar
  122. Zhang W, Wahlgren M, Sivik B (1989) Membrane characterization by the contact angle technique: II. Characterization of UF-membranes and comparison between the captive bubble and sessile drop as methods to obtain water contact angles. Desalination 72:263–273.  https://doi.org/10.1016/0011-9164(89)80011-6 CrossRefGoogle Scholar
  123. Zhang Y, Geißen S-U, Gal C (2008) Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 73:1151–1161.  https://doi.org/10.1016/j.chemosphere.2008.07.086 CrossRefGoogle Scholar
  124. Zhang H, Mao H, Wang J, Ding R, Du Z, Liu J, Cao S (2014) Mineralization-inspired preparation of composite membranes with polyethyleneimine–nanoparticle hybrid active layer for solvent resistant nanofiltration. J Membr Sci 470:70–79.  https://doi.org/10.1016/j.memsci.2014.07.019 CrossRefGoogle Scholar
  125. Zhao B, Brittain WJ (2000) Polymer brushes: surface-immobilized macromolecules. Prog Polym Sci 25:677–710.  https://doi.org/10.1016/S0079-6700(00)00012-5 CrossRefGoogle Scholar
  126. Zhu J, Guo N, Zhang Y, Yu L, Liu J (2014) Preparation and characterization of negatively charged PES nanofiltration membrane by blending with halloysite nanotubes grafted with poly (sodium 4-styrenesulfonate) via surface-initiated ATRP. J Membr Sci 465:91–99.  https://doi.org/10.1016/j.memsci.2014.04.016 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Operations and Quality ManagementDurban University of TechnologyDurbanSouth Africa
  2. 2.Department of ChemistryDurban University of TechnologyDurbanSouth Africa
  3. 3.Chemistry Department, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  4. 4.Centre of Excellence for Advanced Materials ResearchKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations