Environmental Chemistry Letters

, Volume 16, Issue 2, pp 367–388 | Cite as

Membrane filtration of wastewater from gas and oil production

  • Mashallah Rezakazemi
  • Afsaneh Khajeh
  • Mohammad Mesbah
Review

Abstract

More than 88 billion barrels of wastewater are produced yearly in the world from gas and oil production. Given the rising demand for drinkable water, there is a need for advanced purification processes. Here we review membrane filtration processes used in the gas and oil production for wastewater treatment, with focus on microfiltration, nanofiltration, ultrafiltration, reverse osmosis, forward osmosis, membrane distillation, and electrodialysis.

Keywords

Coal seam gas Water Membrane Natural gas Separation Treatment 

References

  1. Abadi SRH, Sebzari MR, Hemati M, Rekabdar F, Mohammadi T (2011) Ceramic membrane performance in microfiltration of oily wastewater. Desalination 265:222–228.  https://doi.org/10.1016/j.desal.2010.07.055 CrossRefGoogle Scholar
  2. Abbasi M, Mirfendereski M, Nikbakht M, Golshenas M, Mohammadi T (2010) Performance study of mullite and mullite–alumina ceramic MF membranes for oily wastewaters treatment. Desalination 259:169–178.  https://doi.org/10.1016/j.desal.2010.04.013 CrossRefGoogle Scholar
  3. Abousnina RM, Nghiem LD, Bundschuh J (2015) Comparison between oily and coal seam gas produced water with respect to quantity, characteristics and treatment technologies: a review. Desalin Water Treat 54:1793–1808.  https://doi.org/10.1080/19443994.2014.893541 CrossRefGoogle Scholar
  4. Adriano D, Page A, Elseewi A, Chang A, Straughan I (1980) Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems: a review. J Environ Qual 9:333–344.  https://doi.org/10.2134/jeq1980.00472425000900030001x CrossRefGoogle Scholar
  5. Alkhudhiri A, Darwish N, Hilal N (2012) Membrane distillation: a comprehensive review. Desalination 287:2–18.  https://doi.org/10.1016/j.desal.2011.08.027 CrossRefGoogle Scholar
  6. Altaee A, Zaragoza G, van Tonningen HR (2014) Comparison between forward osmosis-reverse osmosis and reverse osmosis processes for seawater desalination. Desalination 336:50–57.  https://doi.org/10.1016/j.desal.2014.01.002 CrossRefGoogle Scholar
  7. An Q, Li F, Ji Y, Chen H (2011) Influence of polyvinyl alcohol on the surface morphology, separation and anti-fouling performance of the composite polyamide nanofiltration membranes. J Membr Sci 367:158–165.  https://doi.org/10.1016/j.memsci.2010.10.060 CrossRefGoogle Scholar
  8. Arthur JD, Langhus BG, Patel C (2005) Technical summary of oil and gas produced water treatment technologies. All Consulting, LLC, TulsaGoogle Scholar
  9. ATSDR (2012) Toxic substances portal. Agency for Toxic Substances and Disease Registry, AtlantaGoogle Scholar
  10. ATSDR, U. (2007) Toxicological profile for lead (Atlanta, GA: US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry (ATSDR), Public Health Service). US EPA (2006) Air quality criteria for leadGoogle Scholar
  11. Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Rev 4:37–59.  https://doi.org/10.1002/cben.201600010 CrossRefGoogle Scholar
  12. Azizi N, Rezakazemi M, Zarei MM (2017) An intelligent approach to predict gas compressibility factor using neural network model. Neural Comput Appl.  https://doi.org/10.1007/s00521-017-2979-7 Google Scholar
  13. Baheri B, Shahverdi M, Rezakazemi M, Motaee E, Mohammadi T (2014) Performance of PVA/NaA mixed matrix membrane for removal of water from ethylene glycol solutions by pervaporation. Chem Eng Commun 202:316–321.  https://doi.org/10.1080/00986445.2013.841149 CrossRefGoogle Scholar
  14. Baruah S, Najam Khan M, Dutta J (2016) Perspectives and applications of nanotechnology in water treatment. Environ Chem Lett 14:1–14.  https://doi.org/10.1007/s10311-015-0542-2 CrossRefGoogle Scholar
  15. Batley GE, Kookana RS (2012) Environmental issues associated with coal seam gas recovery: managing the fracking boom. Environ Chem 9:425–428.  https://doi.org/10.1071/EN12136 CrossRefGoogle Scholar
  16. Belfer S, Purinson Y, Kedem O (1998) Surface modification of commercial polyamide reverse osmosis membranes by radical grafting: an ATR-FTIR study. Acta Polym 49:574–582.  https://doi.org/10.1002/(SICI)1521-4044(199810)49:10/11<574:AID-APOL574>3.0.CO;2-0 CrossRefGoogle Scholar
  17. Beltrán JMN (1999) Irrigation with saline water: benefits and environmental impact. Agric Water Manag 40:183–194.  https://doi.org/10.1016/S0378-3774(98)00120-6 CrossRefGoogle Scholar
  18. Bern CR, Breit GN, Healy RW, Zupancic JW (2013) Deep subsurface drip irrigation using coal-bed sodic water: part II. Geochemistry. Agric Water Manag 118:135–149.  https://doi.org/10.2175/193864702784246658 CrossRefGoogle Scholar
  19. Bernal R, von Gottberg A, Mack B (2002) Using membrane bioreactors for wastewater treatment for small communities. Proc Water Environ Fed 2002:515–524.  https://doi.org/10.2175/193864702784246658 CrossRefGoogle Scholar
  20. Bibi S, Kamran MA, Sultana J, Farooqi A (2016) Occurrence and methods to remove arsenic and fluoride contamination in water. Environ Chem Lett 15:125–149.  https://doi.org/10.1007/s10311-016-0590-2 CrossRefGoogle Scholar
  21. Biesinger M, Vining I, Shell G (1974) Industrial experience with dissolved-air flotation. In: Proceedings of the industrial waste conference (United States)Google Scholar
  22. Biggs AJ (2011) Groundwater salt accessions to land in the Queensland Murray-Darling Basin, Australia. Hydrogeol J 19:719–726.  https://doi.org/10.1007/s10040-011-0714-5 CrossRefGoogle Scholar
  23. Birol F (2011) World energy outlook 2011: are we entering a golden age of gas? (special report). International Energy AgencyGoogle Scholar
  24. Blair D, Alexander DT, Couperthwaite SJ, Darestani M, Millar GJ (2017) Enhanced water recovery in the coal seam gas industry using a dual reverse osmosis system. Environ Sci Water Res Technol 3:278–292.  https://doi.org/10.1039/C6EW00266H CrossRefGoogle Scholar
  25. Boulton AJ, Jenkins KM (1998) Flood regimes and invertebrate communities in floodplain wetlands. In: Williams WD (ed) Wetlands in a dry land: understanding for management, Australian Capital Territory: Environment Australia, Canberra, pp 137–148Google Scholar
  26. Bunn SE, Arthington AH (2002) Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ Manage 30:492–507.  https://doi.org/10.1007/s00267-002-2737-0 CrossRefGoogle Scholar
  27. Campos JC, Borges RMH, Oliveira Filho AM, Nobrega R, Sant’Anna GL Jr (2002) Oilfield wastewater treatment by combined microfiltration and biological processes. Water Res 36:95–104CrossRefGoogle Scholar
  28. Chatterjee P, Ghangrekar MM, Rao S (2016) Low efficiency of sewage treatment plants due to unskilled operations in India. Environ Chem Lett 14:407–416.  https://doi.org/10.1007/s10311-016-0551-9 CrossRefGoogle Scholar
  29. Chen G, Lu Y, Krantz WB, Wang R, Fane AG (2014) Optimization of operating conditions for a continuous membrane distillation crystallization process with zero salty water discharge. J Membr Sci 450:1–11.  https://doi.org/10.1016/j.memsci.2013.08.034 CrossRefGoogle Scholar
  30. Cheryan M, Rajagopalan N (1998) Membrane processing of oily streams. Wastewater treatment and waste reduction. J Membr Sci 151:13–28.  https://doi.org/10.1016/S0376-7388(98)00190-2 CrossRefGoogle Scholar
  31. Chew CM, Aroua M, Hussain M, Ismail WW (2015) Practical performance analysis of an industrial-scale ultrafiltration membrane water treatment plant. J Taiwan Inst Chem Eng 46:132–139.  https://doi.org/10.1016/j.jtice.2014.09.013 CrossRefGoogle Scholar
  32. Chian ESK, Chen JP, Sheng P-X, Ting Y-P, Wang LK (2007) Reverse osmosis technology for desalination. In: Wang LK, Hung Y-T, Shammas NK (eds) Advanced physicochemical treatment technologies. Humana Press, Totowa, pp 329–366.  https://doi.org/10.1007/978-1-59745-173-4_6 CrossRefGoogle Scholar
  33. Cho D-W, Song H, Yoon K, Kim S, Han J, Cho J (2016) Treatment of simulated coalbed methane produced water using direct contact membrane distillation. Water 8:194CrossRefGoogle Scholar
  34. Clunie P, Ryan T, James K, Cant B (2002) Implications for rivers from salinity hazards: scoping study: report to the Murray-Darling Basin Commission. Victoria. Department of Natural Resources and EnvironmentGoogle Scholar
  35. Connell LD (2009) Coupled flow and geomechanical processes during gas production from coal seams. Int J Coal Geol 79:18–28.  https://doi.org/10.1016/j.coal.2009.03.008 CrossRefGoogle Scholar
  36. Cook P (2013) Life cycle of coal seam gas projects: technologies and potential impacts. Report commissioned for the independent review of coal seam gas activities in NSW by the NSW Chief Scientist: PJC International Pty LtdGoogle Scholar
  37. Dahm KG, Guerra KL, Xu P, Drewes JRE (2011) Composite geochemical database for coalbed methane produced water quality in the Rocky Mountain region. Environ Sci Technol 45:7655–7663.  https://doi.org/10.1021/es201021n CrossRefGoogle Scholar
  38. Dasgupta N, Ranjan S, Ramalingam C (2017) Applications of nanotechnology in agriculture and water quality management. Environ Chem Lett 15:591–605.  https://doi.org/10.1007/s10311-017-0648-9 CrossRefGoogle Scholar
  39. Davies P, Gore D (2013) Background paper on produced water and solids in relation to coal seam gas production. Prepared for the NSW office of the Chief Scientist and Engineer, Department of Environment and Geography. Macquarie University, SydneyGoogle Scholar
  40. Davies PJ, Gore DB, Khan SJ (2015) Managing produced water from coal seam gas projects: implications for an emerging industry in Australia. Environ Sci Pollut Res 22:10981–11000.  https://doi.org/10.1007/s11356-015-4254-8 CrossRefGoogle Scholar
  41. Davis WN, Bramblett RG, Zale AV (2010) Effects of coalbed natural gas development on fish assemblages in tributary streams of the Powder and Tongue rivers. Freshw Biol 55:2612–2625.  https://doi.org/10.1111/j.1365-2427.2010.02480.x CrossRefGoogle Scholar
  42. DNRME (2004) Coal seam gas water management study. Department of Natural Resources, Mines and Energy, BrisbaneGoogle Scholar
  43. Drioli E, Ali A, Macedonio F (2015) Membrane distillation: recent developments and perspectives. Desalination 356:56–84.  https://doi.org/10.1016/j.desal.2014.10.028 CrossRefGoogle Scholar
  44. Drioli E, Ali A, Lee YM, Al-Sharif SF, Al-Beirutty M, Macedonio F (2016) Membrane operations for produced water treatment. Desalin Water Treat 57:14317–14335.  https://doi.org/10.1080/19443994.2015.1072585 CrossRefGoogle Scholar
  45. Duong HC, Chivas AR, Nelemans B, Duke M, Gray S, Cath TY, Nghiem LD (2015a) Treatment of RO brine from CSG produced water by spiral-wound air gap membrane distillation—a pilot study. Desalination 366:121–129.  https://doi.org/10.1016/j.desal.2014.10.026 CrossRefGoogle Scholar
  46. Duong HC, Gray S, Duke M, Cath TY, Nghiem LD (2015b) Scaling control during membrane distillation of coal seam gas reverse osmosis brine. J Membr Sci 493:673–682.  https://doi.org/10.1016/j.memsci.2015.07.038 CrossRefGoogle Scholar
  47. Duong HC, Duke M, Gray S, Nelemans B, Nghiem LD (2016) Membrane distillation and membrane electrolysis of coal seam gas reverse osmosis brine for clean water extraction and NaOH production. Desalination 397:108–115.  https://doi.org/10.1016/j.desal.2016.06.024 CrossRefGoogle Scholar
  48. Ezechi EH, Isa MH, Kutty SRM, Yaqub A (2014) Boron removal from produced water using electrocoagulation. Process Saf Environ Prot 92:509–514.  https://doi.org/10.1016/j.psep.2014.08.003 CrossRefGoogle Scholar
  49. Fakhru’l-Razi A, Pendashteh A, Abdullah LC, Biak DRA, Madaeni SS, Abidin ZZ (2009) Review of technologies for oil and gas produced water treatment. J Hazard Mater 170:530–551.  https://doi.org/10.1016/j.jhazmat.2009.05.044 CrossRefGoogle Scholar
  50. Farno E, Rezakazemi M, Mohammadi T, Kasiri N (2014) Ternary gas permeation through synthesized pdms membranes: experimental and CFD simulation basedon sorption-dependent system using neural network model. Polym Eng Sci 54:215–226.  https://doi.org/10.1002/pen.23555 CrossRefGoogle Scholar
  51. Fasihi M, Shirazian S, Marjani A, Rezakazemi M (2012) Computational fluid dynamics simulation of transport phenomena in ceramic membranes for SO2 separation. Math Comput Model 56:278–286.  https://doi.org/10.1016/j.mcm.2012.01.010 CrossRefGoogle Scholar
  52. Fawell JK, Bailey K (2006) Fluoride in drinking-water. World Health Organization, GenevaGoogle Scholar
  53. Foroutan R, Esmaeili H, Abbasi M, Rezakazemi M, Mesbah M (2017) Adsorption behavior of Cu(II) and Co(II) using chemically modified marine algae. Environ Technol.  https://doi.org/10.1080/09593330.2017.1365946 Google Scholar
  54. Freger V, Gilron J, Belfer S (2002) TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study. J Membr Sci 209:283–292.  https://doi.org/10.1016/S0376-7388(02)00356-3 CrossRefGoogle Scholar
  55. Gardner N (1972) Flotation techniques applied to the treatment of effluents. Effl Water Treat J 12:82–85Google Scholar
  56. Geng Z, Yang X, Boo C, Zhu S, Lu Y, Fan W, Huo M, Elimelech M, Yang X (2017) Self-cleaning anti-fouling hybrid ultrafiltration membranes via side chain grafting of poly (aryl ether sulfone) and titanium dioxide. J Membr Sci 529:1–10.  https://doi.org/10.1016/j.memsci.2017.01.043 CrossRefGoogle Scholar
  57. Ghaffour N, Bundschuh J, Mahmoudi H, Goosen MFA (2015) Renewable energy-driven desalination technologies: a comprehensive review on challenges and potential applications of integrated systems. Desalination 356:94–114.  https://doi.org/10.1016/j.desal.2014.10.024 CrossRefGoogle Scholar
  58. Giagnorio M, Søtoft LF, Tiraferri A, Grüttner H (2017) Ultrafiltration to reuse laundering wash water: evaluation of membranes and permeate flux. Desalin Water Treat 62:22–30.  https://doi.org/10.5004/dwt.2017.20133 CrossRefGoogle Scholar
  59. Hai FI, Yamamoto K, Lee C-H (2013) Membrane biological reactors. Iwa Publishing, LondonGoogle Scholar
  60. Hamawand I, Yusaf T, Hamawand SG (2013) Coal seam gas and associated water: a review paper. Renew Sustain Energy Rev 22:550–560.  https://doi.org/10.1016/j.rser.2013.02.030 CrossRefGoogle Scholar
  61. Hart BT, Bailey P, Edwards R, Hortle K, James K, McMahon A, Meredith C, Swadling K (1991) A review of the salt sensitivity of the Australian freshwater biota. Hydrobiologia 210:105–144.  https://doi.org/10.1007/BF00014327 CrossRefGoogle Scholar
  62. Hashemi F, Rowshanzamir S, Rezakazemi M (2012) CFD simulation of PEM fuel cell performance: effect of straight and serpentine flow fields. Math Comput Model 55:1540–1557.  https://doi.org/10.1016/j.mcm.2011.10.047 CrossRefGoogle Scholar
  63. Hatakeyama ES, Ju H, Gabriel CJ, Lohr JL, Bara JE, Noble RD, Freeman BD, Gin DL (2009) New protein-resistant coatings for water filtration membranes based on quaternary ammonium and phosphonium polymers. J Membr Sci 330:104–116.  https://doi.org/10.1016/j.memsci.2008.12.049 CrossRefGoogle Scholar
  64. He Y, Jiang Z-W (2008) Technology review: treating oilfield wastewater. Filtr Sep 45:14–16.  https://doi.org/10.1016/S0015-1882(08)70174-5 CrossRefGoogle Scholar
  65. Hebbar RS, Isloor AM, Inamuddin, Asiri AMI (2017) Carbon nanotube- and graphene-based advanced membrane materials for desalination. Environ Chem Lett 15:643–671.  https://doi.org/10.1007/s10311-017-0653-z CrossRefGoogle Scholar
  66. Hickenbottom KL, Cath TY (2014) Sustainable operation of membrane distillation for enhancement of mineral recovery from hypersaline solutions. J Membr Sci 454:426–435.  https://doi.org/10.1016/j.memsci.2013.12.043 CrossRefGoogle Scholar
  67. Hu J, Ma Y, Zhang L, Gan F, Ho Y-S (2010) A historical review and bibliometric analysis of research on lead in drinking water field from 1991 to 2007. Sci Total Environ 408:1738–1744.  https://doi.org/10.1016/j.scitotenv.2009.12.038 CrossRefGoogle Scholar
  68. Hu J, Chen Y, Zhu L, Qian Z, Chen X (2016) Production of high purity water using membrane-free electrodeionization with improved resin layer structure. Sep Purif Technol 164:89–96.  https://doi.org/10.1016/j.seppur.2016.03.027 CrossRefGoogle Scholar
  69. Igunnu ET, Chen GZ (2012) Produced water treatment technologies. Int J Low Carbon Technol.  https://doi.org/10.1093/ijlct/cts049 (cts049) Google Scholar
  70. Igunnu ET, Chen GZ (2014) Produced water treatment technologies. Int J Low Carbon Technol 9:157–177CrossRefGoogle Scholar
  71. Industries, N.D.o.P. (2004) Interpreting water quality test results. NSW Department of Primary Industries, OrangeGoogle Scholar
  72. Jackson RE, Reddy K (2007) Geochemistry of coalbed natural gas (CBNG) produced water in Powder River Basin, Wyoming: salinity and sodicity. Water Air Soil Pollut 184:49–61.  https://doi.org/10.1007/s11270-007-9398-9 CrossRefGoogle Scholar
  73. Johnston CR, Vance GF, Ganjegunte GK (2008) Irrigation with coalbed natural gas co-produced water. Agric Water Manag 95:1243–1252.  https://doi.org/10.1016/j.agwat.2008.04.015 CrossRefGoogle Scholar
  74. Kang G-D, Cao Y-M (2012) Development of antifouling reverse osmosis membranes for water treatment: a review. Water Res 46:584–600.  https://doi.org/10.1016/j.watres.2011.11.041 CrossRefGoogle Scholar
  75. Kang S, Asatekin A, Mayes AM, Elimelech M (2007) Protein antifouling mechanisms of PAN UF membranes incorporating PAN-g-PEO additive. J Membr Sci 296:42–50.  https://doi.org/10.1016/j.memsci.2007.03.012 CrossRefGoogle Scholar
  76. Karakurt I, Aydin G, Aydiner K (2011) Mine ventilation air methane as a sustainable energy source. Renew Sustain Energy Rev 15:1042–1049.  https://doi.org/10.1016/j.rser.2010.11.030 CrossRefGoogle Scholar
  77. Kawamura S (2000) Integrated design and operation of water treatment facilities. Wiley, New YorkGoogle Scholar
  78. Kim I-C, Lee K-H (2006) Dyeing process wastewater treatment using fouling resistant nanofiltration and reverse osmosis membranes. Desalination 192:246–251.  https://doi.org/10.1016/j.desal.2005.05.030 CrossRefGoogle Scholar
  79. King L, Vance G, Ganjegunte G (2005) Saline-sodic water impacts to soils and vegetation, nd national American society of mining and reclamation symposium annual meetings, Breckenridge, CO. In: Barnhisel R (ed) Raising reclamation to new heights. Citeseer, Lexington, pp 623–625Google Scholar
  80. Kinnon E, Golding S, Boreham C, Baublys K, Esterle J (2010) Stable isotope and water quality analysis of coal bed methane production waters and gases from the Bowen Basin, Australia. Int J Coal Geol 82:219–231.  https://doi.org/10.1016/j.coal.2009.10.014 CrossRefGoogle Scholar
  81. Kose B, Ozgun H, Ersahin ME, Dizge N, Koseoglu-Imer DY, Atay B, Kaya R, Altınbas M, Sayılı S, Hoshan P (2012) Performance evaluation of a submerged membrane bioreactor for the treatment of brackish oil and natural gas field produced water. Desalination 285:295–300.  https://doi.org/10.1016/j.desal.2011.10.016 CrossRefGoogle Scholar
  82. La Y-H, McCloskey BD, Sooriyakumaran R, Vora A, Freeman B, Nassar M, Hedrick J, Nelson A, Allen R (2011) Bifunctional hydrogel coatings for water purification membranes: improved fouling resistance and antimicrobial activity. J Membr Sci 372:285–291.  https://doi.org/10.1016/j.memsci.2011.02.005 CrossRefGoogle Scholar
  83. Le NL, Nunes SP (2016) Materials and membrane technologies for water and energy sustainability. Sustain Mater Technol 7:1–28.  https://doi.org/10.1016/j.susmat.2016.02.001 Google Scholar
  84. Lee S-A, Choo K-H, Lee C-H, Lee H-I, Hyeon T, Choi W, Kwon H-H (2001) Use of ultrafiltration membranes for the separation of TiO2 photocatalysts in drinking water treatment. Ind Eng Chem Res 40:1712–1719.  https://doi.org/10.1021/ie000738p CrossRefGoogle Scholar
  85. Li X-M, Zhao B, Wang Z, Xie M, Song J, Nghiem LD, He T, Yang C, Li C, Chen G (2014) Water reclamation from shale gas drilling flow-back fluid using a novel forward osmosis–vacuum membrane distillation hybrid system. Water Sci Technol 69:1036–1044.  https://doi.org/10.2166/wst.2014.003 CrossRefGoogle Scholar
  86. Liu F, Du C-H, Zhu B-K, Xu Y-Y (2007) Surface immobilization of polymer brushes onto porous poly (vinylidene fluoride) membrane by electron beam to improve the hydrophilicity and fouling resistance. Polymer 48:2910–2918.  https://doi.org/10.1016/j.polymer.2007.03.033 CrossRefGoogle Scholar
  87. Liu N, Li L, McPherson B, Lee R (2008) Removal of organics from produced water by reverse osmosis using MFI-type zeolite membranes. J Membr Sci 325:357–361.  https://doi.org/10.1016/j.memsci.2008.07.056 CrossRefGoogle Scholar
  88. Louie JS, Pinnau I, Ciobanu I, Ishida KP, Ng A, Reinhard M (2006) Effects of polyether–polyamide block copolymer coating on performance and fouling of reverse osmosis membranes. J Membr Sci 280:762–770.  https://doi.org/10.1016/j.memsci.2006.02.041 CrossRefGoogle Scholar
  89. Louie JS, Pinnau I, Reinhard M (2011) Effects of surface coating process conditions on the water permeation and salt rejection properties of composite polyamide reverse osmosis membranes. J Membr Sci 367:249–255.  https://doi.org/10.1016/j.memsci.2010.10.067 CrossRefGoogle Scholar
  90. Malaeb L, Ayoub GM (2011) Reverse osmosis technology for water treatment: state of the art review. Desalination 267:1–8.  https://doi.org/10.1016/j.desal.2010.09.001 CrossRefGoogle Scholar
  91. Marjani A, Rezakazemi M, Shirazian S (2011) Vapor pressure prediction using group contribution method. Orient J Chem 27:1331–1335Google Scholar
  92. Melián-Martel N, Sadhwani JJ, Báez SOP (2011) Saline waste disposal reuse for desalination plants for the chlor-alkali industry: the particular case of pozo izquierdo SWRO desalination plant. Desalination 281:35–41.  https://doi.org/10.1016/j.desal.2011.07.040 CrossRefGoogle Scholar
  93. Melián-Martel N, Alonso JJS, Báez SOP (2013) Reuse and management of brine in sustainable SWRO desalination plants. Desalin Water Treat 51:560–566.  https://doi.org/10.1080/19443994.2012.713567 CrossRefGoogle Scholar
  94. Melin T, Jefferson B, Bixio D, Thoeye C, De Wilde W, De Koning J, van der Graaf J, Wintgens T (2006) Membrane bioreactor technology for wastewater treatment and reuse. Desalination 187:271–282.  https://doi.org/10.1016/j.desal.2005.04.086 CrossRefGoogle Scholar
  95. Meng Y, Tang D, Xu H, Li Y, Gao L (2014) Coalbed methane produced water in China: status and environmental issues. Environ Sci Pollut Res 21:6964–6974.  https://doi.org/10.1007/s11356-014-2675-4 CrossRefGoogle Scholar
  96. Mericq J-P, Laborie S, Cabassud C (2010) Vacuum membrane distillation of seawater reverse osmosis brines. Water Res 44:5260–5273.  https://doi.org/10.1016/j.watres.2010.06.052 CrossRefGoogle Scholar
  97. Mesbah M, Soroush E, Rezakazemi M (2017) Development of a least squares support vector machine model for prediction of natural gas hydrate formation temperature. Chin J Chem Eng 25:1238–1248.  https://doi.org/10.1016/j.cjche.2016.09.007 CrossRefGoogle Scholar
  98. Millar GJ, Couperthwaite SJ, Moodliar CD (2016) Strategies for the management and treatment of coal seam gas associated water. Renew Sustain Energy Rev 57:669–691.  https://doi.org/10.1016/j.rser.2015.12.087 CrossRefGoogle Scholar
  99. Mohammadi T, Maghami M, Rezakazemi M (2017) High loaded synthetic hazardous wastewater treatment using lab-scale submerged ceramic membrane bioreactor. Period Polytech Chem Eng.  https://doi.org/10.3311/PPch.11459.10.3311/PPch.11459 Google Scholar
  100. Monckton DC (2016) Beneficial use of coal seam water and enterprise transition for case study farms, Chinchilla District. University of Queensland, Brisbane.  https://doi.org/10.14264/uql.2017.358 Google Scholar
  101. Mondal S, Wickramasinghe SR (2008) Produced water treatment by nanofiltration and reverse osmosis membranes. J Membr Sci 322:162–170. ​ https://doi.org/10.1016/j.memsci.2008.05.039 CrossRefGoogle Scholar
  102. Mondal S, Hsiao CL, Ranil Wickramasinghe S (2008) Nanofiltration/reverse osmosis for treatment of coproduced waters. Environ Prog 27:173–179.  https://doi.org/10.1002/ep.10271 CrossRefGoogle Scholar
  103. Mueller J, Cen Y, Davis RH (1997) Crossflow microfiltration of oily water. J Membr Sci 129:221–235.  https://doi.org/10.1016/S0376-7388(96)00344-4 CrossRefGoogle Scholar
  104. Muhammad A, Younas M, Rezakazemi M (2017) Quasi-dynamic modeling of dispersion-free extraction of aroma compounds using hollow fiber membrane contactor. Chem Eng Res Des 127:52–61.  https://doi.org/10.1016/j.cherd.2017.09.007 CrossRefGoogle Scholar
  105. Navi M, Skelly C, Taulis M, Nasiri S (2015) Coal seam gas water: potential hazards and exposure pathways in Queensland. Int J Environ Health Res 25:162–183.  https://doi.org/10.1080/09603123.2014.915018 CrossRefGoogle Scholar
  106. Nghiem LD, Ren T, Aziz N, Porter I, Regmi G (2011) Treatment of coal seam gas produced water for beneficial use in Australia: a review of best practices. Desalin Water Treat 32:316–323.  https://doi.org/10.5004/dwt.2011.2716 CrossRefGoogle Scholar
  107. Nghiem LD, Elters C, Simon A, Tatsuya T, Price W (2015) Coal seam gas produced water treatment by ultrafiltration, reverse osmosis and multi-effect distillation: a pilot study. Sep Purif Technol 146:94–100.  https://doi.org/10.1016/j.seppur.2015.03.022 CrossRefGoogle Scholar
  108. Oh SJ, Kim N, Lee YT (2009) Preparation and characterization of PVDF/TiO 2 organic–inorganic composite membranes for fouling resistance improvement. J Membr Sci 345:13–20.  https://doi.org/10.1016/j.memsci.2009.08.003 CrossRefGoogle Scholar
  109. Orem WH, Tatu CA, Lerch HE, Rice CA, Bartos TT, Bates AL, Tewalt S, Corum MD (2007) Organic compounds in produced waters from coalbed natural gas wells in the Powder River Basin, Wyoming, USA. Appl Geochem 22:2240–2256.  https://doi.org/10.1016/j.apgeochem.2007.04.010 CrossRefGoogle Scholar
  110. Pabby AK, Rizvi SS, Requena AMS (2015) Handbook of membrane separations: chemical, pharmaceutical, food, and biotechnological applications. CRC Press, Boca RatonCrossRefGoogle Scholar
  111. Pankaj S, Sajikumar N, Kaimal R (2016) Simulation of forward osmosis using CFD. Procedia Technol 24:70–76.  https://doi.org/10.1016/j.protcy.2016.05.011 CrossRefGoogle Scholar
  112. Plumlee MH, Debroux J-F, Taffler D, Graydon JW, Mayer X, Dahm KG, Hancock NT, Guerra KL, Xu P, Drewes JE (2014) Coalbed methane produced water screening tool for treatment technology and beneficial use. J Unconv Oil Gas Resour 5:22–34.  https://doi.org/10.1016/j.juogr.2013.12.002 CrossRefGoogle Scholar
  113. Quansah R, Armah FA, Essumang DK, Luginaah I, Clarke E, Marfoh K, Cobbina SJ, Nketiah-Amponsah E, Namujju PB, Obiri S, Dzodzomenyo M (2015) Association of arsenic with adverse pregnancy outcomes/infant mortality: a systematic review and meta-analysis. Environ Health Perspect 123:412–421.  https://doi.org/10.1289/ehp.1307894 Google Scholar
  114. Rana D, Matsuura T (2010) Surface modifications for antifouling membranes. Chem Rev 110:2448–2471.  https://doi.org/10.1021/cr800208y CrossRefGoogle Scholar
  115. Rana D, Kim Y, Matsuura T, Arafat HA (2011) Development of antifouling thin-film-composite membranes for seawater desalination. J Membr Sci 367:110–118.  https://doi.org/10.1016/j.memsci.2010.10.050 CrossRefGoogle Scholar
  116. Raoufi N, Asadollahzadeh M, Rezakazemi M, Shirazian S (2017) Investigations on ethanol purification using polymeric membranes by pervaporation process. Chem Eng Technol.  https://doi.org/10.1002/ceat.201700303 Google Scholar
  117. Razavi SMR, Rezakazemi M, Albadarin AB, Shirazian S (2016) Simulation of CO 2 absorption by solution of ammonium ionic liquid in hollow-fiber contactors. Chem Eng Process 108:27–34.  https://doi.org/10.1016/j.cep.2016.07.001 CrossRefGoogle Scholar
  118. Reyhani A, Rekabdar F, Hemmati M, SafeKordi AA, Ahmadi M (2013) Optimization of conditions in ultrafiltration treatment of produced water by polymeric membrane using Taguchi approach. Desalin Water Treat 51:7499–7508.  https://doi.org/10.1080/19443994.2013.776505 CrossRefGoogle Scholar
  119. Rezakazemi M, Mohammadi T (2013) Gas sorption in H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrog Energy 38:14035–14041.  https://doi.org/10.1016/j.ijhydene.2013.08.062 CrossRefGoogle Scholar
  120. Rezakazemi M, Niazi Z, Mirfendereski M, Shirazian S, Mohammadi T, Pak A (2011a) CFD simulation of natural gas sweetening in a gas–liquid hollow-fiber membrane contactor. Chem Eng J 168:1217–1226.  https://doi.org/10.1016/j.cej.2011.02.019 CrossRefGoogle Scholar
  121. Rezakazemi M, Razavi S, Mohammadi T, Nazari AG (2011b) Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA–APTEOS/TEOS nanocomposite membranes by means of expert systems. J Membr Sci 379:224–232.  https://doi.org/10.1016/j.memsci.2011.05.070 CrossRefGoogle Scholar
  122. Rezakazemi M, Shahverdi M, Shirazian S, Mohammadi T, Pak A (2011c) CFD simulation of water removal from water/ethylene glycol mixtures by pervaporation. Chem Eng J 168:60–67.  https://doi.org/10.1016/j.cej.2010.12.034 CrossRefGoogle Scholar
  123. Rezakazemi M, Shahidi K, Mohammadi T (2012a) Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes. Int J Hydrog Energy 37:14576–14589.  https://doi.org/10.1016/j.ijhydene.2012.06.104 CrossRefGoogle Scholar
  124. Rezakazemi M, Shahidi K, Mohammadi T (2012b) Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane. Int J Hydrog Energy 37:17275–17284.  https://doi.org/10.1016/j.ijhydene.2012.08.109 CrossRefGoogle Scholar
  125. Rezakazemi M, Shirazian S, Ashrafizadeh SN (2012c) Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor. Desalination 285:383–392.  https://doi.org/10.1016/j.desal.2011.10.030 CrossRefGoogle Scholar
  126. Rezakazemi M, Ghafarinazari A, Shirazian S, Khoshsima A (2013a) Numerical modeling and optimization of wastewater treatment using porous polymeric membranes. Polym Eng Sci 53:1272–1278.  https://doi.org/10.1002/pen.23375 CrossRefGoogle Scholar
  127. Rezakazemi M, Iravaninia M, Shirazian S, Mohammadi T (2013b) Transient computational fluid dynamics modeling of pervaporation separation of aromatic/aliphatic hydrocarbon mixtures using polymer composite membrane. Polym Eng Sci 53:1494–1501.  https://doi.org/10.1002/pen.23410 CrossRefGoogle Scholar
  128. Rezakazemi M, Marjani A, Shirazian S (2013c) Development of a group contribution method based on UNIFAC groups for the estimation of vapor pressures of pure hydrocarbon compounds. Chem Eng Technol 36:483–491.  https://doi.org/10.1002/ceat.201200422 CrossRefGoogle Scholar
  129. Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014a) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39:817–861.  https://doi.org/10.1016/j.progpolymsci.2014.01.003 CrossRefGoogle Scholar
  130. Rezakazemi M, Shahidi K, Mohammadi T (2014b) Synthetic PDMS composite membranes for pervaporation dehydration of ethanol. Desalin Water Treat 54:1–8.  https://doi.org/10.1080/19443994.2014.887036 CrossRefGoogle Scholar
  131. Rezakazemi M, Vatani A, Mohammadi T (2015) Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Adv 5:82460–82470.  https://doi.org/10.1039/c5ra13609a CrossRefGoogle Scholar
  132. Rezakazemi M, Vatani A, Mohammadi T (2016) Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles. J Nat Gas Sci Eng 30:10–18.  https://doi.org/10.1016/j.jngse.2016.01.033 CrossRefGoogle Scholar
  133. Rezakazemi M, Dashti A, Asghari M, Shirazian S (2017a) H 2 -selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS. Int J Hydrog Energy 42:15211–15225.  https://doi.org/10.1016/j.ijhydene.2017.04.044 CrossRefGoogle Scholar
  134. Rezakazemi M, Heydari I, Zhang Z (2017b) Hybrid systems: combining membrane and absorption technologies leads to more efficient acid gases (CO 2 and H 2 S) removal from natural gas. J CO2 Util 18:362–369.  https://doi.org/10.1016/j.jcou.2017.02.006 CrossRefGoogle Scholar
  135. Rezakazemi M, Mirzaei S, Asghari M, Ivakpour J (2017c) Aluminum oxide nanoparticles for highly efficient asphaltene separation from crude oil using ceramic membrane technology. Oil Gas Sci Technol Rev IFP Energies Nouv 72:34.  https://doi.org/10.2516/ogst/2017031 CrossRefGoogle Scholar
  136. Rezakazemi M, Sadrzadeh M, Mohammadi T, Matsuura T (2017d) Methods for the preparation of organic–inorganic nanocomposite polymer electrolyte membranes for fuel cells. In: Inamuddin D, Mohammad A, Asiri AM (eds) Organic–inorganic composite polymer electrolyte membranes. Springer, Cham, pp 311–325.  https://doi.org/10.1007/978-3-319-52739-0_11 CrossRefGoogle Scholar
  137. Rezakazemi M, Sadrzadeh M, Matsuura T (2018a) Thermally stable polymers for advanced high-performance gas separation membranes. Prog Energy Combust Sci 66:1–41.  https://doi.org/10.1016/j.pecs.2017.11.002 CrossRefGoogle Scholar
  138. Rezakazemi M, Sadrzadeh M, Mohammadi T (2018b) Separation via pervaporation techniques through polymeric membranes. In: Wilson R, Thomas S, Kumar A, George SC (eds) Transport properties of polymeric membranes. Elsevier, Amsterdam, pp 243–263.  https://doi.org/10.1016/b978-0-12-809884-4.00013-6 CrossRefGoogle Scholar
  139. Rocha-Amador D, Navarro ME, Carrizales L, Morales R, Calderon J (2007) Decreased intelligence in children and exposure to fluoride and arsenic in drinking water. Cadernos de saude publica 23(Suppl 4):S579–S587CrossRefGoogle Scholar
  140. Rostamizadeh M, Rezakazemi M, Shahidi K, Mohammadi T (2013) Gas permeation through H2-selective mixed matrix membranes: experimental and neural network modeling. Int J Hydrog Energy 38:1128–1135.  https://doi.org/10.1016/j.ijhydene.2012.10.069 CrossRefGoogle Scholar
  141. Sadrzadeh M, Rezakazemi M, Mohammadi T (2018) Fundamentals and measurement techniques for gas transport in polymers. In: Wilson R, Thomas S, Kumar A, George SC (eds) Transport properties of polymeric membranes. Elsevier, Amsterdam, pp 391–423.  https://doi.org/10.1016/b978-0-12-809884-4.00019-7 CrossRefGoogle Scholar
  142. Sajjad M, Rasul MG, Amir MSII (2015) A case study on management of coal seam gas by-product water. Int J Chem Mol Nucl Mater Metall Eng Turk World Acad Sci Eng Technol 9:274–278Google Scholar
  143. Salih HH, Wang L, Patel V, Namboodiri V, Rajagopalan K (2015) The utilization of forward osmosis for coal tailings dewatering. Miner Eng 81:142–148.  https://doi.org/10.1016/j.mineng.2015.07.024 CrossRefGoogle Scholar
  144. Sarkar A, Carver PI, Zhang T, Merrington A, Bruza KJ, Rousseau JL, Keinath SE, Dvornic PR (2010) Dendrimer-based coatings for surface modification of polyamide reverse osmosis membranes. J Membr Sci 349:421–428.  https://doi.org/10.1016/j.memsci.2009.12.005 CrossRefGoogle Scholar
  145. Savari S, Sachdeva S, Kumar A (2008) Electrolysis of sodium chloride using composite poly(styrene-co-divinylbenzene) cation exchange membranes. J Membr Sci 310:246–261.  https://doi.org/10.1016/j.memsci.2007.10.049 CrossRefGoogle Scholar
  146. Schinteie R, Pinetown K, Douglas G, Sestak S (2015) Literature review of dissolved hydrocarbons in groundwater with emphasis on the Australian Surat and Bowen basins,  A report to: GISERA – Gas Industry Social & Environmental Research Alliance. https://gisera.csiro.au/wp-content/uploads/2016/04/GISERA-Hydrocarbons-Lit-Review-2015.pdf
  147. Scurtu CT (2009) Treatment of produced water: targeting dissolved compounds to meet a zero harmful discharge in oil and gas production. Doctoral thesis in hydraulic and environmental engineering at NTNU, ​Permanent Link: http://hdl.handle.net/11250/242090
  148. Shaffer DL, Arias Chavez LH, Ben-Sasson M, Romero-Vargas Castrillón S, Yip NY, Elimelech M (2013) Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions. Environ Sci Technol 47:9569–9583.  https://doi.org/10.1021/es401966e CrossRefGoogle Scholar
  149. Shahverdi M, Baheri B, Rezakazemi M, Motaee E, Mohammadi T (2013) Pervaporation study of ethylene glycol dehydration through synthesized (PVA-4A)/polypropylene mixed matrix composite membranes. Polym Eng Sci 53:1487–1493.  https://doi.org/10.1002/pen.23406 CrossRefGoogle Scholar
  150. Shirazian S, Marjani A, Rezakazemi M (2011) Separation of CO2 by single and mixed aqueous amine solvents in membrane contactors: fluid flow and mass transfer modeling. Eng Comput 28:189–198.  https://doi.org/10.1007/s00366-011-0237-7 CrossRefGoogle Scholar
  151. Shirazian S, Pishnamazi M, Rezakazemi M, Nouri A, Jafari M, Noroozi S, Marjani A (2012a) Implementation of the finite element method for simulation of mass transfer in membrane contactors. Chem Eng Technol.  https://doi.org/10.1002/ceat.201100397 Google Scholar
  152. Shirazian S, Rezakazemi M, Marjani A, Moradi S (2012b) Hydrodynamics and mass transfer simulation of wastewater treatment in membrane reactors. Desalination 286:290–295.  https://doi.org/10.1016/j.desal.2011.11.039 CrossRefGoogle Scholar
  153. Shirazian S, Rezakazemi M, Marjani A, Rafivahid MS (2012c) Development of a mass transfer model for simulation of sulfur dioxide removal in ceramic membrane contactors. Asia Pac J Chem Eng 7:828–834.  https://doi.org/10.1002/apj.641 CrossRefGoogle Scholar
  154. Shon H, Phuntsho S, Chaudhary D, Vigneswaran S, Cho J (2013) Nanofiltration for water and wastewater treatment-a mini review. Drink Water Eng Sci 6:47–53.  https://doi.org/10.5194/dwes-6-47-2013
  155. Simon A, Fujioka T, Price WE, Nghiem LD (2014) Sodium hydroxide production from sodium carbonate and bicarbonate solutions using membrane electrolysis: a feasibility study. Sep Purif Technol 127:70–76.  https://doi.org/10.1016/j.seppur.2014.02.020 CrossRefGoogle Scholar
  156. Simpson A, Kerr C, Buckley C (1987) The effect of pH on the nanofiltration of the carbonate system in solution. Desalination 64:305–319.  https://doi.org/10.1016/0011-9164(87)90104-4 CrossRefGoogle Scholar
  157. Soroush E, Shahsavari S, Mesbah M, Rezakazemi M, Zhang Z (2017) A robust predictive tool for estimating CO 2 solubility in potassium based amino acid salt solutions. Chin J Chem Eng.  https://doi.org/10.1016/j.cjche.2017.10.002 Google Scholar
  158. Swayne N (2012) Regulating coal seam gas in Queensland: lessons in an adaptive environmental management approach? Environ Plan Law J 29:163–185Google Scholar
  159. Tarboush BJA, Rana D, Matsuura T, Arafat H, Narbaitz R (2008) Preparation of thin-film-composite polyamide membranes for desalination using novel hydrophilic surface modifying macromolecules. J Membr Sci 325:166–175.  https://doi.org/10.1016/j.memsci.2008.07.037 CrossRefGoogle Scholar
  160. Téllez D, Lom H, Chargoy P, Rosas L, Mendoza M, Coatl M, Macías N, Reyes R (2009) Evaluation of technologies for a desalination operation and disposal in the Tularosa Basin, New Mexico. Desalination 249:983–990.  https://doi.org/10.1016/j.desal.2009.06.057 CrossRefGoogle Scholar
  161. Thiruvenkatachari R, Francis M, Cunnington M, Su S (2016) Application of integrated forward and reverse osmosis for coal mine wastewater desalination. Sep Purif Technol 163:181–188.  https://doi.org/10.1016/j.seppur.2016.02.034 CrossRefGoogle Scholar
  162. Tuwati AMA, Fan M, Bentley MA (2011) Reaction kinetic model for a recent co-produced water treatment technology. J Environ Sci 23:360–365.  https://doi.org/10.1016/S1001-0742(10)60463-9 CrossRefGoogle Scholar
  163. Van Der Bruggen B, Vandecasteele C, Van Gestel T, Doyen W, Leysen R (2003) A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environ Prog 22:46–56.  https://doi.org/10.1002/ep.670220116 CrossRefGoogle Scholar
  164. Van der Zee S, Shah S, Van Uffelen C, Raats PA, Dal Ferro N (2010) Soil sodicity as a result of periodical drought. Agric Water Manag 97:41–49.  https://doi.org/10.1016/j.agwat.2009.08.009 CrossRefGoogle Scholar
  165. Vance GF, King LA, Ganjegunte GK (2008) Soil and plant responses from land application of saline–sodic waters: implications of management. J Environ Qual 37:S-139–S-148.  https://doi.org/10.2134/jeq2007.0442 CrossRefGoogle Scholar
  166. Veil JA, Puder MG, Elcock D, Redweik RJ Jr (2004) A white paper describing produced water from production of crude oil, natural gas, and coal bed methane. Argonne National Lab., LemontCrossRefGoogle Scholar
  167. Wei X, Wang Z, Zhang Z, Wang J, Wang S (2010) Surface modification of commercial aromatic polyamide reverse osmosis membranes by graft polymerization of 3-allyl-5, 5-dimethylhydantoin. J Membr Sci 351:222–233.  https://doi.org/10.1016/j.memsci.2010.01.054 CrossRefGoogle Scholar
  168. WHO (2003) Benzene in drinking-water. World Health Organisation, GenevaGoogle Scholar
  169. WHO (2011) Lead in drinking-water. World Health Organization, GenevaGoogle Scholar
  170. Wilbur S, Keith S, Obaid F, Wohlers D, Stickney J, Diamond G, Quiñones-Rivera A (2007) Toxicological profile for benzene. Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA: U.S. Department of Health and Human Services, Public Health ServiceGoogle Scholar
  171. Williams J, Milligan A, Stubbs T (2013) Coal seam gas production: challenges and opportunities. http://wentworthgroup.org/wp-content/uploads/2013/12/BREE_Coal-seam-gas-production_WILLIAMS-etal-.pdf
  172. Xia S, Nan J, Liu R, Li G (2004) Study of drinking water treatment by ultrafiltration of surface water and its application to China. Desalination 170:41–47.  https://doi.org/10.1016/j.desal.2004.03.014 CrossRefGoogle Scholar
  173. Xie M, Nghiem LD, Price WE, Elimelech M (2013) A forward osmosis-membrane distillation hybrid process for direct sewer mining: system performance and limitations. Environ Sci Technol 47:13486–13493.  https://doi.org/10.1021/es404056e CrossRefGoogle Scholar
  174. Xu P, Drewes JE, Heil D (2008) Beneficial use of co-produced water through membrane treatment: technical-economic assessment. Desalination 225:139–155.  https://doi.org/10.1016/j.desal.2007.04.093 CrossRefGoogle Scholar
  175. Xue X-Y, Cheng R, Shi L, Ma Z, Zheng X (2016) Nanomaterials for water pollution monitoring and remediation. Environ Chem Lett 15:23–27.  https://doi.org/10.1007/s10311-016-0595-x CrossRefGoogle Scholar
  176. Yu S, Lü Z, Chen Z, Liu X, Liu M, Gao C (2011) Surface modification of thin-film composite polyamide reverse osmosis membranes by coating N-isopropylacrylamide-co-acrylic acid copolymers for improved membrane properties. J Membr Sci 371:293–306.  https://doi.org/10.1016/j.memsci.2011.01.059 CrossRefGoogle Scholar
  177. Zhang ZE, Yan YF, Zhang L, Ju SX (2014) Hollow fiber membrane contactor absorption of CO2 from the flue gas: review and perspective. Glob NEST J 16:354–373Google Scholar
  178. Zhang Y, Wan Y, Pan G, Shi H, Yan H, Xu J, Guo M, Wang Z, Liu Y (2017a) Surface modification of polyamide reverse osmosis membrane with sulfonated polyvinyl alcohol for antifouling. Appl Surf Sci 419:177–187.  https://doi.org/10.1016/j.apsusc.2017.05.047 CrossRefGoogle Scholar
  179. Zhang Y, Wan Y, Pan G, Yan H, Yao X, Shi H, Tang Y, Wei X, Liu Y (2017b) Surface modification of polyamide reverse osmosis membrane with organic-inorganic hybrid material for antifouling. Appl Surf Sci.  https://doi.org/10.1016/j.apsusc.2017.10.043 Google Scholar
  180. Zhang Z, Chen F, Rezakazemi M, Zhang W, Lu C, Chang H, Quan X (2017c) Modeling of a CO2-piperazine-membrane absorption system. Chem Eng Res Des.  https://doi.org/10.1016/j.cherd.2017.11.024 Google Scholar
  181. Zhao Y-H, Zhu B-K, Kong L, Xu Y-Y (2007) Improving hydrophilicity and protein resistance of poly (vinylidene fluoride) membranes by blending with amphiphilic hyperbranched-star polymer. Langmuir 23:5779–5786.  https://doi.org/10.1021/la070139o CrossRefGoogle Scholar
  182. Zhou Y, Yu S, Gao C, Feng X (2009) Surface modification of thin film composite polyamide membranes by electrostatic self deposition of polycations for improved fouling resistance. Sep Purif Technol 66:287–294.  https://doi.org/10.1016/j.seppur.2008.12.021 CrossRefGoogle Scholar
  183. Zhu L-J, Zhu L-P, Jiang J-H, Yi Z, Zhao Y-F, Zhu B-K, Xu Y-Y (2014) Hydrophilic and anti-fouling polyethersulfone ultrafiltration membranes with poly (2-hydroxyethyl methacrylate) grafted silica nanoparticles as additive. J Membr Sci 451:157–168.  https://doi.org/10.1016/j.memsci.2013.09.053 CrossRefGoogle Scholar
  184. Zou H, Jin Y, Yang J, Dai H, Yu X, Xu J (2010) Synthesis and characterization of thin film composite reverse osmosis membranes via novel interfacial polymerization approach. Sep Purif Technol 72:256–262.  https://doi.org/10.1016/j.seppur.2010.01.019 CrossRefGoogle Scholar
  185. Zou L, Vidalis I, Steele D, Michelmore A, Low S, Verberk J (2011) Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling. J Membr Sci 369:420–428.  https://doi.org/10.1016/j.memsci.2010.12.023 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Faculty of Chemical and Materials EngineeringShahrood University of TechnologyShahroodIran
  2. 2.School of Chemical EngineeringIran University of Science and TechnologyTehranIran
  3. 3.Young Researchers and Elites Club, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations