Environmental Chemistry Letters

, Volume 16, Issue 2, pp 401–426 | Cite as

Glyphosate toxicity for animals

  • Jatinder Pal Kaur Gill
  • Nidhi Sethi
  • Anand Mohan
  • Shivika Datta
  • Madhuri Girdhar
Review

Abstract

Pesticides and herbicides gained popularity due to a strong need to curb the starvation of billions of humans. Glyphosate is the most commonly used herbicide and was considered to be non-toxic. But its use in excess in agricultural lands has polluted soils and waters. Nowadays, glyphosate residues are found in soil, water and food. As a result glyphosate causes severe acute and chronic toxicological effects. We review toxicological effects of glyphosate and metabolites on organisms of the kingdom animalia, both unicellular and multicellular organisms. Adverse effects on unicellular organisms have been established in many experiments. For instance, glyphosate has reduced the rate of photosynthesis in Euglena, has decreased the radial growth of mycorrhizal fungal species and is also reducing the profusion of certain bacteria present in rhizospheric microbial communities. Glyphosate poses serious threat to multicellular organisms as well. Its toxicological effects have been traced from lower invertebrates to higher vertebrates. Effects have been observed in annelids (earthworms), arthropods (crustaceans and insects), mollusks, echinoderms, fish, reptiles, amphibians and birds. Toxicological effects like genotoxicity, cytotoxicity, nuclear aberration, hormonal disruption, chromosomal aberrations and DNA damage have also been observed in higher vertebrates like humans.

Keywords

Glyphosate Toxicity Excessive use Herbicide Environmental contamination 

References

  1. Achiorno CL, de Villalobos C, Ferrari L (2008) Toxicity of the herbicide glyphosate to Chordodes nobilii (Gordiida, Nematomorpha). Chemosphere 71(10):1816–1822.  https://doi.org/10.1016/j.chemosphere.2008.02.001 CrossRefGoogle Scholar
  2. Alberdi JL, Saenz ME, Di Marzio WD, Tortorelli MC (1996) Comparative acute toxicity of two herbicides, paraquat and glyphosate, to Daphnia magna and D. spinulata. Bull Environ Contam Toxicol 57(2):229–235.  https://doi.org/10.1007/s00128990018 CrossRefGoogle Scholar
  3. Alliance GT (1996) Glyphosphate Fact Sheet. (Pesticides News No.33, Sept 1996, pp 28–29). http://www.ernslaw.co.nz/assets/resources-contractors/HealthSafety/Chemical-Fact-Sheets/Glyphosate-fact-sheet-PAN-UK-1996.pdf
  4. Al-Rajab AJ, Amellal S, Schiavon M (2008) Sorption and leaching of 14C-glyphosate in agricultural soils. Agron Sustain Dev 28(3):419–428.  https://doi.org/10.1051/agro:2008014 CrossRefGoogle Scholar
  5. Austin AP, Harris GE, Lucey WP (1991) Impact of an organophosphate herbicide (glyphosate) on periphyton communities developed in experimental streams. Bull Environ Contam Toxicol 47(1):29–35.  https://doi.org/10.1007/BF01689449 CrossRefGoogle Scholar
  6. Avigliano L, Fassiano AV, Medesani DA, De Molina MR, Rodríguez EM (2014) Effects of glyphosate on growth rate, metabolic rate and energy reserves of early juvenile crayfish, Cherax quadricarinatus M. Bull Environ Contam Toxicol 92(6):631–635.  https://doi.org/10.1007/s00128-014-1240-7 CrossRefGoogle Scholar
  7. Bach NC, Natale GS, Somoza GM, Ronco AE (2016) Effect on the growth and development and induction of abnormalities by a glyphosate commercial formulation and its active ingredient during two developmental stages of the South-American Creole frog, Leptodactylus latrans. Environ Sci Pollut Res 23(23):23959–23971CrossRefGoogle Scholar
  8. Balbuena MS, Tison L, Hahn ML, Greggers U, Menzel R, Farina WM (2015) Effects of sublethal doses of glyphosate on honeybee navigation. J Exp Biol 218(17):2799–2805.  https://doi.org/10.1242/jeb.117291 CrossRefGoogle Scholar
  9. Benbrook CM (2016) Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur 28(1):3.  https://doi.org/10.1186/s12302-016-0070-0 CrossRefGoogle Scholar
  10. Boily M, Sarrasin B, DeBlois C, Aras P, Chagnon M (2013) Acetylcholinesterase in honey bees (Apis mellifera) exposed to neonicotinoids, atrazine and glyphosate: laboratory and field experiments. Environ Sci Pollut Res 20(8):5603–5614CrossRefGoogle Scholar
  11. Bradberry SM, Proudfoot AT, Vale JA (2004) Glyphosate poisoning. Toxicol Rev 23(3):159–167CrossRefGoogle Scholar
  12. Bueno ADF, Bueno RCODF, Parra JRP, Vieira SS (2008) Effects of pesticides used in soybean crops to the egg parasitoid Trichogramma pretiosum. Cienc Rural 38(6):1495–1503.  https://doi.org/10.1590/S0103-84782008000600001 CrossRefGoogle Scholar
  13. Burlew DA (2010) The effects of pesticide-contaminated pollen on larval development of the honey bee, Apis mellifera (Doctoral dissertation, Evergreen State College)Google Scholar
  14. Carpenter JK, Monks JM, Nelson N (2016) The effect of two glyphosate formulations on a small, diurnal lizard (Oligosoma polychroma). Ecotoxicology 25(3):548–554.  https://doi.org/10.1007/s10646-016-1613-2 CrossRefGoogle Scholar
  15. Casabe N, Piola L, Fuchs J, Oneto ML, Pamparato L, Basack S, Kesten E (2007) Ecotoxicological assessment of the effects of glyphosate and chlorpyrifos in an Argentine soya field. J Soils Sediments 7(4):232–239.  https://doi.org/10.1065/jss2007.04.224 CrossRefGoogle Scholar
  16. Cattaneo R, Clasen B, Loro VL, de Menezes CC, Pretto A, Baldisserotto B, Santi A, de Avila LA (2011) Toxicological responses of Cyprinus carpio exposed to a commercial formulation containing glyphosate. Bull Environ Contam Toxicol 87(6):597–602.  https://doi.org/10.1007/s00128-011-0396-7 CrossRefGoogle Scholar
  17. CCM International (2011) Outlook for China Glyphosate Industry 2012–2016. http://www.researchandmarkets.com/reports/2101356/outlook for china glyphosate industry 201122016
  18. Cerdeira AL, Gazziero DL, Duke SO, Matallo MB (2011) Agricultural impacts of glyphosate-resistant soybean cultivation in South America. J Agric Food Chem 59(11):5799–5807.  https://doi.org/10.1021/jf102652y CrossRefGoogle Scholar
  19. Chakravarty P, Sidhu SS (1987) Effect of glyphosate, hexazinone and triclopyr on in vitro growth of five species of ectomycorrhizal fungi. Eur J For Pathol 17(4–5):204–210CrossRefGoogle Scholar
  20. Christian FA, Jackson RN, Tate TM (1993) Effect of sublethal concentrations of glyphosate and dalapon on protein and aminotransferase activity in Pseudosuccinea columella. Bull Environ Contam Toxicol 51:703–709CrossRefGoogle Scholar
  21. Correia FV, Moreira JC (2010) Effects of glyphosate and 2, 4-D on earthworms (Eisenia foetida) in laboratory tests. Bull Environ Contam Toxicol 85(3):264–268CrossRefGoogle Scholar
  22. Cuhra M, Traavik T, Bohn T (2013) Clone-and age-dependent toxicity of a glyphosate commercial formulation and its active ingredient in Daphnia magna. Ecotoxicology 22(2):251–262CrossRefGoogle Scholar
  23. Dallegrave E, Mantese FD, Oliveira RT, Andrade AJ, Dalsenter PR, Langeloh A (2007) Pre-and postnatal toxicity of the commercial glyphosate formulation in Wistar rats. Arch Toxicol 81(9):665–673CrossRefGoogle Scholar
  24. Datta S, Singh J, Singh S, Singh J (2016) Earthworms, pesticides and sustainable agriculture: a review. Environ Sci Pollut Res 23(9):8227–8243CrossRefGoogle Scholar
  25. De Souza Filho J, Sousa CCN, Da Silva CC, De Saboia-Morais SMT, Grisolia CK (2013) Mutagenicity and genotoxicity in gill erythrocyte cells of Poecilia reticulata exposed to a glyphosate formulation. Bull Environ Contam Toxicol 91(5):583–587CrossRefGoogle Scholar
  26. Dick RE, Quinn JP (1995) Glyphosate-degrading isolates from environmental samples: occurrence and pathways of degradation. Appl Microbiol Biotechnol 43(3):545–550.  https://doi.org/10.1007/BF00218464 CrossRefGoogle Scholar
  27. Domínguez A, Brown GG, Sautter KD, de Oliveira CMR, de Vasconcelos EC, Niva CC, Bedano JC (2016) Toxicity of AMPA to the earthworm Eisenia andrei Bouché, 1972 in tropical artificial soil. Sci Rep.  https://doi.org/10.1038/srep19731 CrossRefGoogle Scholar
  28. Dominguez-Cortinas G, Saavedra JM, Santos-Medrano GE, Rico-Martínez R (2008) Analysis of the toxicity of glyphosate and Faena® using the freshwater invertebrates Daphnia magna and Lecane quadridentata. Toxicol Environ Chem 90(2):377–384CrossRefGoogle Scholar
  29. Dornelles MF, Oliveira GT (2016) Toxicity of atrazine, glyphosate, and quinclorac in bullfrog tadpoles exposed to concentrations below legal limits. Environ Sci Pollut Res 23(2):1610–1620CrossRefGoogle Scholar
  30. Druart C, Millet M, Scheifler R, Delhomme O, De Vaufleury A (2011) Glyphosate and glufosinate-based herbicides: fate in soil, transfer to, and effects on land snails. J Soils Sediments 11(8):1373–1384CrossRefGoogle Scholar
  31. Duke SO, Powles SB (2008) Glyphosate: a once-in-a-century herbicide. Pest Manag Sci 64(4):319–325.  https://doi.org/10.1002/ps.1518 CrossRefGoogle Scholar
  32. Duke SO, Lydon J, Koskinen WC, Moorman TB, Channey RL, Hammerschmidt R (2012) Glyphosate effects on plant mineral nutrition, crop rhizosphere microbiota and plant disease in glyphosate-resistant crops. J Agric Food Chem 60(42):10375–10397.  https://doi.org/10.1021/jf302436u CrossRefGoogle Scholar
  33. Dutra BK, Fernandes FA, Failace DM, Oliveira GT (2011) Effect of Roundup (glyphosate formulation) in the energy metabolism and reproductive traits of Hyalella castroi (Crustacea, Amphipoda, Dogielinotidae). Ecotoxicology 20(1):255–263CrossRefGoogle Scholar
  34. Estok D, Freedman B, Boyle D (1989) Effects of the herbicides 2, 4-D, glyphosate, hexazinone, and triclopyr on the growth of three species of ectomycorrhizal fungi. Bull Environ Contam Toxicol 42(6):835–839CrossRefGoogle Scholar
  35. Fishel FM, Ferrell JA (2013) Managing pesticide drift. Agronomy Department, PI232 University of Florida, Gainesville, FL, USAGoogle Scholar
  36. Folmar LC, Sanders HO, Julin AM (1979) Toxicity of the herbicide glyphosate and several of its formulations to fish and aquatic invertebrates. Arch Environ Contam Toxicol 8(3):269–278CrossRefGoogle Scholar
  37. Franz JE, Mao MK, Sikorski JA (1997) Glyphosate: a unique global herbicide. American Chemical Society, Washington, DC, p 653Google Scholar
  38. Frontera JL, Vatnick I, Chaulet A, Rodríguez EM (2011) Effects of glyphosate and polyoxyethylenamine on growth and energetic reserves in the freshwater crayfish Cherax quadricarinatus (Decapoda, Parastacidae). Arch Environ Contam Toxicol 61(4):590–598CrossRefGoogle Scholar
  39. García-Torre T, Giuffre L, Romaniuk R, Rios RP, Pagano EA (2014) Exposure assessment to glyphosate of two species of annelids. Bull Environ Contam Toxicol 93(2):209–214CrossRefGoogle Scholar
  40. Garthwaite D, Barker I, Parrish G, Smith L, Chippindale C, Pietravalle S (2010) Pesticide usage survey report 235: Arable crops in the United Kingdom. https://secure.fera.defra.gov.uk/pusstats/surveys/documents/arable2010V2.pdf
  41. Gasnier C, Dumont C, Benachour N, Clair E, Chagnon M-C, Séralini G-E (2009) Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology 262:184–191CrossRefGoogle Scholar
  42. Gaupp-Berghausen M, Hofer M, Rewald B, Zaller JG (2015) Glyphosate-based herbicides reduce the activity and reproduction of earthworms and lead to increased soil nutrient concentrations. Sci Rep 5:12886CrossRefGoogle Scholar
  43. Geiger DR, Shieh WJ, Fuchs MA (1999) Causes of self-limited translocation of glyphosate in Beta vulgaris plants. Pest Biochem Physiol 64(2):124–133CrossRefGoogle Scholar
  44. Gill JPK, Sethi N, Mohan A (2017) Analysis of the glyphosate herbicide in water, soil and food using derivatising agents. Environ Chem Lett 15(1):85–100CrossRefGoogle Scholar
  45. Glyphosate report By Pesticide Action Network Asia and the Pacific November 2009. http://www.national-toxic-encephalopathy-foundation.org/roundup.pdf
  46. Goldsborough LG, Brown DJ (1988) Effect of glyphosate (Roundup® formulation) on periphytic algal photosynthesis. Bull Environ Contam Toxicol 41(2):253–260CrossRefGoogle Scholar
  47. Gonzalez EL, Latorre MA, Larriera A, Siroski PA, Poletta GL (2013) Induction of micronuclei in broad snouted caiman (Caiman latirostris) hatchlings exposed in vivo to Roundup (glyphosate) concentrations used in agriculture. Pest Biochem Physiol 105(2):131–134CrossRefGoogle Scholar
  48. Gregorc A, Ellis JD (2011) Cell death localization in situ in laboratory reared honey bee (Apis mellifera L.) larvae treated with pesticides. Pest Biochem Physiol 99(2):200–207CrossRefGoogle Scholar
  49. Hartman WA, Martin DB (1984) Effect of suspended Bentonite clay on the acute toxicity of glyphosate to Daphnia pulex and Lemna minor. Bull Environ Contam Toxicol 33(1):355–361CrossRefGoogle Scholar
  50. Henderson AM, Gervais JA, Luukinen B, Buhl K, Stone D (2010) Glyphosate Technical Fact Sheet; National Pesticide Information Center, Oregon State University Extension Services. http://npic.orst.edu/factsheets/archive/glyphotech.html
  51. Herbert LT, Vazquez DE, Arenas A, Farina WM (2014) Effects of field-realistic doses of glyphosate on honeybee appetitive behaviour. J Exp Biol 217(19):3457–3464CrossRefGoogle Scholar
  52. Howe CM, Berrill M, Pauli BD, Helbing CC, Werry K, Veldhoen N (2004) Toxicity of glyphosate-based pesticides to four North American frog species. Environ Toxicol Chem 23(8):1928–1938CrossRefGoogle Scholar
  53. Hued AC, Oberhofer S, de los Ángeles Bistoni M (2012) Exposure to a commercial glyphosate formulation (Roundup®) alters normal gill and liver histology and affects male sexual activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes). Arch Environ Contam Toxicol 62(1):107–117CrossRefGoogle Scholar
  54. Jacob GS, Schaefer J, Stejskal EO, McKay RA (1985) Solid-state NMR determination of glyphosate metabolism in a Pseudomonas sp. J Biol Chem 260(10):5899–5905Google Scholar
  55. Johnson WG, Davis VM, Kruger GR, Weller SC (2009) Influence of glyphosate-resistant cropping systems on weed species shifts and glyphosate-resistant weed populations. Eur J Agron 31(3):162–172.  https://doi.org/10.1016/j.eja.2009.03.008 CrossRefGoogle Scholar
  56. joint FAO/WHO Meeting on Pesticide Residues, Geneva (2016) Summary Report: 1-6. http://www.who.int/foodsafety/jmprsummary2016.pdf
  57. Kirkwood RC, Hetherington R, Reynolds TL, Marshall G (2000) Absorption, localisation, translocation and activity of glyphosate in barnyardgrass (Echinochloa crus-galli (L) Beauv): influence of herbicide and surfactant concentration. Pest Manag Sci 56(4):359–367CrossRefGoogle Scholar
  58. Kittle RP, McDermid KJ (2016) Glyphosate herbicide toxicity to native Hawaiian macroalgal and seagrass species. J Appl Phycol 28(4):2597–2604CrossRefGoogle Scholar
  59. Koller VJ, Fürhacker M, Nersesyan A, Misik M, Eisenbauer M, Knasmueller S (2012) Cytotoxic and DNA-damaging properties of glyphosate and Roundup in human-derived buccal epithelial cells. Arch Toxicol 86(5):805–813CrossRefGoogle Scholar
  60. Lajmanovich RC, Attademo AM, Peltzer PM, Junges CM, Cabagna MC (2011) Toxicity of four herbicide formulations with glyphosate on Rhinella arenarum (Anura: Bufonidae) tadpoles: B-esterases and glutathione S-transferase inhibitors. Arch Environ Contam Toxicol 60(4):681–689CrossRefGoogle Scholar
  61. Lajmanovich RC, Attademo AM, Simoniello MF, Poletta GL, Junges CM, Peltzer PM, Cabagna-Zenklusen MC (2015) Harmful effects of the dermal intake of commercial formulations containing chlorpyrifos, 2, 4-D and glyphosate on the common toad Rhinella arenarum (Anura: Bufonidae). Water Air Soil Pollut 226(12):427CrossRefGoogle Scholar
  62. Lane M, Lorenz N, Saxena J, Ramsier C, Dick RP (2012) The effect of glyphosate on soil microbial activity, microbial community structure, and soil potassium. Pedobiologia 55(6):335–342.  https://doi.org/10.1016/j.pedobi.2012.08.001 CrossRefGoogle Scholar
  63. Latorre MA, Lopez González EC, Larriera A, Poletta GL, Siroski PA (2013) Effects of in vivo exposure to Roundup® on immune system of Caiman latirostris. J Immuno Toxicol 10(4):349–354CrossRefGoogle Scholar
  64. Lee HL, Kan D, Tsai CL, Liou MJ, Guo HR (2009) Comparative effects of the formulation of glyphosate-surfactant herbicides on hemodynamics in swine. Clin Toxicol 47(7):651–658CrossRefGoogle Scholar
  65. Linz GM, Blixt DC, Bergman DL, Bleier WJ (1996) Responses of red-winged blackbirds, yellow-headed blackbirds and marsh wrens to glyphosate-induced alterations in cattail density (Respuesta de Agelaius phoeniceus, Xanthocephalus xanthocephalus y Cistothorus palustris a Alteración en la Densidad de Eneas Tratadas con Yerbicidas. J Field Ornithol 167–176Google Scholar
  66. Liu CM, McLean PA, Sookdeo CC, Cannon FC (1991) Degradation of the herbicide glyphosate by members of the family Rhizobiaceae. Appl Environ Microbiol 57(6):1799–1804Google Scholar
  67. Mamy L, Barriuso E (2007) Desorption and time-dependent sorption of herbicides in soils. Eur J Soil Sci 58(1):174–187CrossRefGoogle Scholar
  68. Manas F, Peralta L, Raviolo J, Ovando HG, Weyers A, Ugnia L, Gorla N (2009) Genotoxicity of glyphosate assessed by the comet assay and cytogenetic tests. Environ Toxicol Pharmacol 28(1):37–41CrossRefGoogle Scholar
  69. Mann RM, Bidwell JR (1999) The toxicity of glyphosate and several glyphosate formulations to four species of southwestern Australian frogs. Arch Environ Contam Toxicol 36(2):193–199CrossRefGoogle Scholar
  70. Marc J, Mulner‐Lorillon O, Belle R (2004) Glyphosate‐based pesticides affect cell cycle regulation. Biol Cell 96(3):245–249CrossRefGoogle Scholar
  71. Marc J, Le Breton M, Cormier P, Morales J, Belle R, Mulner-Lorillon O (2005) A glyphosate-based pesticide impinges on transcription. Toxicol Appl Pharmacol 203(1):1–8CrossRefGoogle Scholar
  72. Martini CN, Gabrielli M, Codesido MM, Del Vila MC (2016) Glyphosate-based herbicides with different adjuvants are more potent inhibitors of 3T3-L1 fibroblast proliferation and differentiation to adipocytes than glyphosate alone. Comp Clin Path 25(3):607–613CrossRefGoogle Scholar
  73. McAuliffe KS, Hallas LE, Kulpa CF (1990) Glyphosate degradation by Agrobacterium radiobacter isolated from activated sludge. J Ind Microbiol 6(3):219–221.  https://doi.org/10.1007/BF01577700 CrossRefGoogle Scholar
  74. Menéndez-Helman RJ, Ferreyroa GV, dos Santos Afonso M, Salibián A (2012) Glyphosate as an acetylcholinesterase inhibitor in Cnesterodon decemmaculatus. Bull Environ Contam Toxicol 88(1):6–9CrossRefGoogle Scholar
  75. Mesnage R, Bernay B, Seralini GE (2013) Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology 313(2):122–128CrossRefGoogle Scholar
  76. Monsanto International and Monsanto Europe (2010) The agronomic benefits of glyphosate in Europe—benefits of glyphosate per market use. Review 1–82. https://monsanto.com/app/uploads/.../agronomic-benefits-of-glyphosate-in-europe.pdf
  77. Moore JK, Braymer HD, Larson AD (1983) Isolation of a Pseudomonas sp. which utilizes the phosphonate herbicide glyphosate. Appl Environ Microbiol 46(2):316–320Google Scholar
  78. Murussi CR, Costa MD, Leitemperger JW, Guerra L, Rodrigues CC, Menezes CC, Severo ES, Flores-Lopes F, Salbego J, Loro VL (2016) Exposure to different glyphosate formulations on the oxidative and histological status of Rhamdia quelen. Fish Physiol Biochem 42(2):445–455CrossRefGoogle Scholar
  79. Myers JP, Antoniou MN, Blumberg B, Carroll L, Colborn T, Everett LG, Vandenberg LN (2016) Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environ Health 15(1):19.  https://doi.org/10.1186/s12940-016-0117-0 CrossRefGoogle Scholar
  80. Nedelkoska TV, Low GC (2004) High-performance liquid chromatographic determination of glyphosate in water and plant material after pre-column derivatisation with 9-fluorenylmethyl chloroformate. Anal Chim Acta 511(1):145–153.  https://doi.org/10.1016/j.aca.2004.01.027 CrossRefGoogle Scholar
  81. Neskovic NK, Poleksic V, Elezovic I, Karan V, Budimir M (1996) Biochemical and histopathological effects of glyphosate on carp, Cyprinus carpio L. Bull Environ Contam Toxicol 56(2):295–302CrossRefGoogle Scholar
  82. Newman MM, Hoilett N, Lorenz N, Dick RP, Liles MR, Ramsier C, Kloepper JW (2016) Glyphosate effects on soil rhizosphere-associated bacterial communities. Sci Total Environ 543:155–160CrossRefGoogle Scholar
  83. Obojska A, Lejczak B, Kubrak M (1999) Degradation of phosphonates by streptomycete isolates. Appl Microbiol Biotechnol 51(6):872–876.  https://doi.org/10.1007/s002530051476 CrossRefGoogle Scholar
  84. Oliveira AG, Telles LF, Hess RA, Mahecha GA, Oliveira CA (2007) Effects of the herbicide Roundup on the epididymal region of drakes Anas platyrhynchos. Reprod Toxicol 23(2):182–191CrossRefGoogle Scholar
  85. Oliveira RD, Boas LK, Branco CC (2016) Assessment of the potential toxicity of glyphosate-based herbicides on the photosynthesis of Nitella microcarpa var. wrightii (Charophyceae). Phycologia 55(5):577–584CrossRefGoogle Scholar
  86. Osteen CD, Fernandez-Cornejo J (2013) Economic and policy issues of US agricultural pesticide use trends. Pest Manag Sci 69(9):1001–1025CrossRefGoogle Scholar
  87. Padgette SR, Re DB, Barry GF, Eichholtz DE, Delannay X, Fuchs RL, Fraley RT (1996) New weed control opportunities: development of soybeans with a Roundup Ready™ gene. Herbic Resist Crops 53–84Google Scholar
  88. Pérez GL, Vera MS, Miranda L (2011) Effects of herbicide glyphosate and glyphosate-based formulations on aquatic ecosystems. In: Herbicides and environment. InTechGoogle Scholar
  89. Pérez-Iglesias JM, Franco-Belussi L, Moreno L, Tripole S, de Oliveira C, Natale GS (2016) Effects of glyphosate on hepatic tissue evaluating melanomacrophages and erythrocytes responses in neotropical anuran Leptodactylus latinasus. Environ Sci Pollut Res 23(10):9852–9861CrossRefGoogle Scholar
  90. Piola L, Fuchs J, Oneto ML, Basack S, Kesten E, Casabe N (2013) Comparative toxicity of two glyphosate-based formulations to Eisenia andrei under laboratory conditions. Chemosphere 91(4):545–551CrossRefGoogle Scholar
  91. Pipke R, Amrhein N (1988) Degradation of the phosphonate herbicide glyphosate by Arthrobacter atrocyaneus ATCC 13752. Appl Environ Microbiol 54(5):1293–1296Google Scholar
  92. Pipke R, Amrhein N, Jacob GS, Schaefer J, Kishore GM (1987) Metabolism of glyphosate in an Arthrobacter sp. GLP-1. Eur J Biochem 165(2):267–273.  https://doi.org/10.1111/j.1432-1033.1987.tb11437.x CrossRefGoogle Scholar
  93. Poletta GL, Larriera A, Kleinsorge E, Mudry MD (2009) Genotoxicity of the herbicide formulation Roundup®(glyphosate) in broad-snouted caiman (Caiman latirostris) evidenced by the Comet assay and the Micronucleus test. Mutat Res, Genet Toxicol Environ Mutagen 672(2):95–102CrossRefGoogle Scholar
  94. Pollegioni L, Schonbrunn E, Siehl D (2011) Molecular basis of glyphosate resistance—different approaches through protein engineering. FEBS J 278(16):2753–2766CrossRefGoogle Scholar
  95. Riah W, Laval K, Laroche-Ajzenberg E, Mougin C, Latour X, Trinsoutrot-Gattin I (2014) Effects of pesticides on soil enzymes: a review. Environ Chem Lett 12(2):257–273.  https://doi.org/10.1007/s10311-014-0458-2001 CrossRefGoogle Scholar
  96. Richard S, Moslemi S, Sipahutar H, Benachour N, Seralini GE (2005) Differential effects of glyphosate and roundup on human placental cells and aromatase. Environ Health Perspect 113(6):716CrossRefGoogle Scholar
  97. Richardson JT, Frans RE, Talbert RE (1979) Reactions of Euglena gracilis to fluometuron, MSMA, metribuzin, and glyphosate. Weed Sci 27(6):619–624Google Scholar
  98. Romano RM, Romano MA, Bernardi MM, Furtado PV, Oliveira CAD (2010) Prepubertal exposure to commercial formulation of the herbicide glyphosate alters testosterone levels and testicular morphology. Arch Toxicol 84(4):309–317CrossRefGoogle Scholar
  99. Saenz ME, Di Marzio WD, Alberdi JL, del Carmen Tortorelli M (1997) Effects of technical grade and a commercial formulation of glyphosate on algal population growth. Bull Environ Contam Toxicol 59(4):638–644CrossRefGoogle Scholar
  100. Salbego J, Pretto A, Gioda CR, de Menezes CC, Lazzari R, Neto JR, Baldisserotto B, Loro VL (2010) Herbicide formulation with glyphosate affects growth, acetylcholinesterase activity, and metabolic and hematological parameters in piava (Leporinus obtusidens). Arch Environ Contam Toxicol 58(3):740–745CrossRefGoogle Scholar
  101. Samsel A, Seneff S (2013) Glyphosate’s suppression of cytochrome P450 enzymes and amino acid biosynthesis by the gut microbiome: pathways to modern diseases. Entropy 15(4):1416–1463CrossRefGoogle Scholar
  102. Sansom M (2012) Glyphosate use in the amenity sector. Presentation by Monsanto to the AmenityForum. http://www.amenityforum.co.uk/downloads/Presentations/GLYPHOSATE%20USE%20IN%20THE%20AMENITY%20SECTOR%20Nov%202012%20MSansom.pdf
  103. Santadino M, Coviella C, Momo F (2014) Glyphosate sublethal effects on the population dynamics of the earthworm Eisenia fetida (Savigny, 1826). Water Air Soil Pollut 225(12):2207CrossRefGoogle Scholar
  104. Santillo DJ, Brown PW, Leslie Jr DM (1989) Response of songbirds to glyphosate-induced habitat changes on clearcuts. J Wildl Manag 64–71Google Scholar
  105. Santos MJG, Ferreira MFL, Cachada A, Duarte AC, Sousa JP (2012) Pesticide application to agricultural fields: effects on the reproduction and avoidance behaviour of Folsomia candida and Eisenia andrei. Ecotoxicology 21(8):2113–2122CrossRefGoogle Scholar
  106. Schaumburg LG, Siroski PA, Poletta GL, Mudry MD (2016) Genotoxicity induced by Roundup® (Glyphosate) in tegu lizard (Salvator merianae) embryos. Pestic Biochem Physiol 130:71–78CrossRefGoogle Scholar
  107. Shehata AA, Schrödl W, Aldin AA, Hafez HM, Krüger M (2013) The effect of glyphosate on potential pathogens and beneficial members of poultry microbiota in vitro. Curr Microbiol 66(4):350–358CrossRefGoogle Scholar
  108. Siehl DL (1997) Inhibitors of EPSP synthase, glutamine synthetase and histidine synthesis. Rev Toxicol 1:37–68Google Scholar
  109. Sinhorin VD, Sinhorin AP, Teixeira JM, Miléski KM, Hansen PC, Moeller PR, Moreira PS, Baviera AM, Loro VL (2014) Metabolic and behavior changes in surubim acutely exposed to a glyphosate-based herbicide. Arch Environ Contam Toxicol 67(4):659–667CrossRefGoogle Scholar
  110. Siroski PA, Poletta GL, Latorre MA, Merchant ME, Ortega HH, Mudry MD (2016) Immunotoxicity of commercial-mixed glyphosate in broad snouted caiman (Caiman latirostris). Chem Biol Interact 244:64–70CrossRefGoogle Scholar
  111. Soloneski S, de Arcaute CR, Larramendy ML (2016) Genotoxic effect of a binary mixture of dicamba-and glyphosate-based commercial herbicide formulations on Rhinella arenarum (Hensel, 1867) (Anura, Bufonidae) late-stage larvae. Environ Sci Pollut Res 23(17):17811–17821CrossRefGoogle Scholar
  112. Steinmann HH, Dickeduisberg M, Theusen L (2012) Uses and benefits of glyphosate in German arable farming. Crop Prot 42:164–169.  https://doi.org/10.1016/j.cropro.2012.06.015 CrossRefGoogle Scholar
  113. Sullivan DS, Sullivan TP, Bisalputra T (1981) Effects of Roundup herbicide on diatom populations in the aquatic environment of a coastal forest. Bull Environ Contam Toxicol 26(1):91–96CrossRefGoogle Scholar
  114. Szekacs I, Fejes A, Klatyik S, Takacs E, Patko D, Pomóthy J, Szekacs A (2014) Environmental and toxicological impacts of glyphosate with its formulating adjuvant. Int J Biol Vet Agric Food Eng 8(3):212–218Google Scholar
  115. Tate TM, Spurlock JO, Christian FA (1997) Effect of glyphosate on the development of Pseudosuccinea columella snails. Arch Environ Contam Toxicol 33(3):286–289CrossRefGoogle Scholar
  116. Taylor EL, Holley AG, Kirk M (2007) Pesticide development: a brief look at the history. Southern Regional Extension Forestry, Athens, GAGoogle Scholar
  117. The environmental impacts of glyphosate—Friends of the Earth Europe (2013). https://www.foeeurope.org/sites/…/foee_5_environmental_impacts_glyphosate.pdf
  118. Thongprakaisang S, Thiantanawat A, Rangkadilok N, Tawit Suriyo T, Satayavivad J (2013) Glyphosate induces human breast cancer cells growth via estrogen receptors. Food Chem Toxicol 59:129–136CrossRefGoogle Scholar
  119. Tizhe EV, Ibrahim NDG, Fatihu MY, Onyebuchi II, George BDJ, Ambali SF, Shallangwa JM (2014a) Influence of zinc supplementation on histopathological changes in the stomach, liver, kidney, brain, pancreas and spleen during subchronic exposure of Wistar rats to glyphosate. Comp Clin Pathol 23(5):1535–1543CrossRefGoogle Scholar
  120. Tizhe EV, Ibrahim NDG, Fatihu MY, Igbokwe IO, George BDJ, Ambali SF, Shallangwa JM (2014b) Serum biochemical assessment of hepatic and renal functions of rats during oral exposure to glyphosate with zinc. Comp Clin Pathol 23(4):1043–1050CrossRefGoogle Scholar
  121. Tsui MT, Chu LM (2003) Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere 52(7):1189–1197CrossRefGoogle Scholar
  122. Tu M, Hurd C, Randall JM (2001) Weed control methods handbook, The Nature Conservancy7E.1-7E.10. http://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1532&context=govdocs
  123. Vande Berg BJ, Hammer PE, Chun BL, Schouten LC, Carr B, Guo R, Deter R (2008) Characterization and plant expression of a glyphosate-tolerant enolpyruvylshikimate phosphate synthase. Pest Manag Sci 64(4):340–345.  https://doi.org/10.1002/ps.1507 CrossRefGoogle Scholar
  124. Vereecken H (2005) Mobility and leaching of glyphosate: a review. Pest Manag Sci 61(12):1139–1151CrossRefGoogle Scholar
  125. Verrell P, Van Buskirk E (2004) As the worm turns: Eisenia fetida avoids soil contaminated by a glyphosate-based herbicide. Bull Environ Contam Toxicol 72(2):219–224CrossRefGoogle Scholar
  126. Webster TMU, Santos EM (2015) Global transcriptomic profiling demonstrates induction of oxidative stress and of compensatory cellular stress responses in brown trout exposed to glyphosate and Roundup. BMC Genom 16(1):32CrossRefGoogle Scholar
  127. Whiles MR, Charlton RE (2006) The ecological significance of tallgrass prairie arthropods. Annu Rev Entomol 51:387–412CrossRefGoogle Scholar
  128. Whiles MR, Lips KR, Pringle CM, Kilham SS, Bixby RJ, Brenes R, Montgomery C (2006) The effects of amphibian population declines on the structure and function of Neotropical stream ecosystems. Front Ecol Environ 4(1):27–34CrossRefGoogle Scholar
  129. Williams GM, Kroes R, Munro IC (2000) Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate for humans. Regul Toxicol Pharmacol 31(2):117–165CrossRefGoogle Scholar
  130. Yasmin S, D’Souza D (2007) Effect of pesticides on the reproductive output of Eisenia fetida. Bull Environ Contam Toxicol 79(5):529–532CrossRefGoogle Scholar
  131. Zaller JG, Heigl F, Ruess L, Grabmaier A (2014) Glyphosate herbicide affects belowground interactions between earthworms and symbiotic mycorrhizal fungi in a model ecosystem. Sci Rep.  https://doi.org/10.1038/srep05634
  132. Zhou CF, Wang YJ, Yu YC, Sun RJ, Zhu XD, Zhang HL, Zhou DM (2012) Does glyphosate impact on Cu uptake by, and toxicity to, the earthworm Eisenia fetida? Ecotoxicology 21(8):2297–2305CrossRefGoogle Scholar
  133. Zobiole L, Kremer R, Oliveira R, Constantin J (2011) Glyphosate affects microorganisms in rhizospheres of glyphosate-resistant soybeans. J Appl Microbiol 110:118–127CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Chemistry, School of Physical SciencesLovely Professional UniversityPhagwaraIndia
  2. 2.Chemistry DepartmentDM CollegeMogaIndia
  3. 3.School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraIndia
  4. 4.Department of BiotechnologyCT Group of InstitutionJalandharIndia

Personalised recommendations