Environmental Chemistry Letters

, Volume 16, Issue 2, pp 477–505 | Cite as

Supported single-atom catalysts: synthesis, characterization, properties, and applications

Review

Abstract

In recent years, there has been a wide research in supported single-atom catalysts (SACs), which contain only isolated individual metal atoms dispersed on an appropriate support or coordinated with the surface atoms of the support. The SACs exhibit many fascinating characteristics including high activity, selectivity, and maximum atomic utilization. These characteristics arise from the low coordination status, quantum size effect, and the strong metal–support interaction, which have proved to be very powerful in many typical heterogeneous catalysis field including oxidation, hydrogenation, the water–gas shift reaction, methanol steam reforming, electrocatalysis, and photocatalysis. In this review, we summarized the recent progress in synthesis, characterizations, properties, and applications of SACs.

Keywords

Catalysis Single-atom Oxidation Reforming Hydrogenation Water–gas shift 

Notes

Acknowledgements

We gratefully acknowledge financial support from the National Nature Science Foundation of China (Grant No. 21473248), the CAS/SAFEA International Partnership Program for Creative Research Teams, and the National Science Foundation under Grant #IIP-1059286 to the American Society for Engineering Education. All individual contributions in the cited references are gratefully acknowledged, and any omission is regretted.

References

  1. Abbet AS, Heiz U, Schneider WD, Ferrari AM, Pacchioni G, Rolsch N (2000) Acetylene cyclotrimerization on supported size-selected Pdn clusters (1 < n < 30): one atom is enough! J Am Chem Soc 122:3453–3457.  https://doi.org/10.1021/ja9922476 CrossRefGoogle Scholar
  2. Aich P, Wei H, Basan B, Kropf AJ, Schweitzer NM, Marshall CL, Miller JT, Meyer R (2015) Single-atom alloy Pd–Ag catalyst for selective hydrogenation of acrolein. J Phys Chem C 119:18140–18148.  https://doi.org/10.1021/acs.jpcc.5b01357 CrossRefGoogle Scholar
  3. Albert B, Yaroslava L, Iva M, Armin N, Tomas S, Nataliya T, Mykhailo V, Vitalii S, Klara S, Josef M, Roman F, Michal V, Kevin CP, Stephanie B, Valerie P, Francesc I, Vladimr M, Jçrg L, Konstantin MN (2014) Maximum noble-metal efficiency in catalytic materials: atomically dispersed surface platinum. Angew Chem Int Ed 53:10525–10530.  https://doi.org/10.1002/anie.201402342 CrossRefGoogle Scholar
  4. Aleksandrov HA, Neyman KM, Vayssilov GN (2015) The structure and stability of reduced and oxidized mononuclear platinum species on nanostructured ceria from density functional modeling. Phys Chem Chem Phys 17:14551–14560.  https://doi.org/10.1039/c5cp01685a CrossRefGoogle Scholar
  5. Alex WR, Yung-Chang L, Shanshan W, Hidetaka S, Christopher SA, Qu C, Sungwoo L, Gun DL, Joohee L, Seungwu H, Euijoon Y, Angus IK, Heeyeon K, Kazu S, Jamie HW (2016) Atomic structure and spectroscopy of single metal (Cr, V) substitutional dopants in monolayer MoS2. ACS Nano 10:10227–10236.  https://doi.org/10.1021/acsnano.6b05674 CrossRefGoogle Scholar
  6. Alexeev O, Gates BC (2000) EXAFs characterization of supported metal-complex and metal-cluster catalysts made from organometallic precursors. Top Catal 10:273–293.  https://doi.org/10.1023/a:1019184605678 CrossRefGoogle Scholar
  7. Benjamin ES, Jennifer KE, Philip L, Albert FC, Andrew H, Christopher JK, Hutchings Graham J (2006) Direct synthesis of hydrogen peroxide from H2 and O2 using Al2O3 supported Au–Pd catalysts. Chem Mater 18:2689–2695.  https://doi.org/10.1021/cm052633o CrossRefGoogle Scholar
  8. Benjamin M, Henry CA, Chaohui G, Sandy MK, Perrin ES, Jennifer MR, Howie C, Richard WB, Daniel IG (2016) Tail use improves performance on soft substrates in models of early vertebrate land locomotors. Science 353:154–159.  https://doi.org/10.1126/science.aaf0984 CrossRefGoogle Scholar
  9. Bing H, Botao Q, Aiqin W, Tao Z (2017) Highlights of the major progress in single-atom catalysis in 2015 and 2016. Chin J Catal.  https://doi.org/10.1016/S1872-2067(17)62872-9 CrossRefGoogle Scholar
  10. Botao Q, Jiaxin L, Yang-Gang W, Qingquan L, Xiaoyan L, Aiqin W, Jun L, Tao Z, Jingyue L (2015) Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catal 5:6249–6254.  https://doi.org/10.1021/acscatal.5b01114 CrossRefGoogle Scholar
  11. Cao X, Fu Q, Luo Y (2014) Catalytic activity of Pd-doped cu nanoparticles for hydrogenation as a single-atom-alloy catalyst. Phys Chem Chem Phys 16:8367–8375.  https://doi.org/10.1039/c4cp00399c CrossRefGoogle Scholar
  12. Cao X, Mirjalili A, Wheeler J, Xie W, Jang BWL (2015a) Investigation of the preparation methodologies of Pd–Cu single atom alloy catalysts for selective hydrogenation of acetylene. Front Chem Sci Eng 9:442–449.  https://doi.org/10.1007/s11705-015-1547-x CrossRefGoogle Scholar
  13. Cao X, Ji Y, Luo Y (2015b) Dehydrogenation of propane to propylene by a Pd/Cu single-atom catalyst: insight from first-principles calculations. J Phys Chem C 119:1016–1023.  https://doi.org/10.1021/jp508625b CrossRefGoogle Scholar
  14. Cavanagh RR, Yates JT (1981) Site distribution studies of Rh supported on Al2O3-an infrared study of chemisorbed CO. J Chem Phys 74:4150–4155.  https://doi.org/10.1063/1.441544 CrossRefGoogle Scholar
  15. Chen MS (2004) The structure of catalytically active gold on titania. Science 306:252–255.  https://doi.org/10.1126/science.1102420 CrossRefGoogle Scholar
  16. Cheng MJC, Ezra LP, Hieu HB, Alexis TH (2016a) Quantum mechanical screening of single-atom bimetallic alloys for the selective reduction of CO2 to C1 hydrocarbons. ACS Catal 6:7769–7777.  https://doi.org/10.1021/acscatal.6b01393 CrossRefGoogle Scholar
  17. Cheng N, Stambula S, Wang D, Banis MN, Liu J, Riese A, Xiao B, Li R, Sham TK, Liu LM, Botton GA, Sun X (2016b) Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat Commun 7:13638.  https://doi.org/10.1038/ncomms13638 CrossRefGoogle Scholar
  18. Chithra A, DeRita L, Phillip C (2017) Using probe molecule ftir spectroscopy to identify and characterize Pt-group metal based single atom catalysts. Chin J Catal 38:1473–1480.  https://doi.org/10.1016/S1872-2067(17)62876-6 CrossRefGoogle Scholar
  19. Choi CH, Kim M, Kwon HC, Cho SJ, Yun S, Kim HT, Mayrhofer KJ, Kim H, Choi M (2016) Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat Commun 7:10922–10930.  https://doi.org/10.1038/ncomms10922 CrossRefGoogle Scholar
  20. Chunlei W, Xiang-Kui G, Huan Y, Yue L, Junjie L, Dandan L, Wei-Xue L, Junling L (2017) Water-mediated Mars–Van Krevelen mechanism for CO oxidation on ceria-supported single-atom Pt1 catalyst. ACS Catal 7:887–891.  https://doi.org/10.1021/acscatal.6b02685 CrossRefGoogle Scholar
  21. Corma A, Salnikov OG, Barskiy DA, Kovtunov KV, Koptyug IV (2015) Single-atom gold catalysis in the context of developments in parahydrogen-induced polarization. Chem Eur J 21:7012–7015.  https://doi.org/10.1002/chem.201406664 CrossRefGoogle Scholar
  22. Crespo-Quesada M, Artur Y, Jin MS, Xia Y, Lioubov K (2011) Structure sensitivity of alkynol hydrogenation on shape- and size-controlled palladium nanocrystals: which sites are most active and selective? J Am Chem Soc 133:12787–12794.  https://doi.org/10.1021/ja204557m CrossRefGoogle Scholar
  23. Daniel M, Heron V, Lorenzo R, Stfephane F, Xile H (2012) Fe Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem Sci 3:2515–2525.  https://doi.org/10.1039/c2sc20539d CrossRefGoogle Scholar
  24. Deng Q, Zhao L, Gao X, Zhang M, Luo Y, Zhao Y (2013) Single layer of polymeric cobalt phthalocyanine: promising low-cost and high-activity nanocatalysts for co oxidation. Small 9:3506–3513.  https://doi.org/10.1002/smll.201300652 CrossRefGoogle Scholar
  25. Ding WC, Gu XK, Su HY, Li WX (2014) Single Pd atom embedded in CeO2(111) for NO reduction with CO: a first-principles study. J Phys Chem C 118:12216–12223.  https://doi.org/10.1021/jp503745c CrossRefGoogle Scholar
  26. Ding K, Gulec A, Alexis MJ, Neil MS, Galen DS, Laurence DM, Peter CS (2015) Identification of active sites in CO oxidation and water–gas shift over supported Pt catalysts. Science 350:189–192.  https://doi.org/10.1126/science.aac6368 CrossRefGoogle Scholar
  27. Dmitri AB, Monika Z, Alexander SL, Olga YP, Fredrik SH, Quentin MR, Ursel B, Lyubov GB (2016) Single atoms of Pt-group metals stabilized by n-doped carbon nanofibers for efficient hydrogen production from formic acid. ACS Catal 6:3442–3451.  https://doi.org/10.1021/acscatal.6b00476 CrossRefGoogle Scholar
  28. Du C, Lin H, Lin B, Ma Z, Hou T, Tang J, Li Y (2015) MoS2 supported single platinum atoms and their superior catalytic activity for CO oxidation: a density functional theory study. J Mater Chem A 3:23113–23119.  https://doi.org/10.1039/c5ta05084g CrossRefGoogle Scholar
  29. Dvořák F, Farnesi CM, Tovt A, Tran ND, Negreiros FR, Vorokhta M, Skála T, Matolínová I, Mysliveček J, Matolín V, Fabris S (2016) Creating single-atom Pt-ceria catalysts by surface step decoration. Nat Commun 7:10801–10808.  https://doi.org/10.1038/ncomms10801 CrossRefGoogle Scholar
  30. Edwards J, Solsona B, Landon P, Carley A, Herzing A, Kiely C, Hutchings G (2005) Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2-supported Au–Pd catalysts. J Catal 236:69–79.  https://doi.org/10.1016/j.jcat.2005.09.015 CrossRefGoogle Scholar
  31. Enache DI (2006) Solvent-free oxidation of primary alcohols to aldehydes using Au–Pd/TiO2 catalysts. Science 311:362–365.  https://doi.org/10.1126/science.1120560 CrossRefGoogle Scholar
  32. Ewing CS, Bagusetty A, Patriarca EG, Lambrecht DS, Veser G, Johnson JK (2016) Impact of support interactions for single-atom molybdenum catalysts on amorphous silica. Ind Eng Chem Res 55:12350–12357.  https://doi.org/10.1021/acs.iecr.6b03558 CrossRefGoogle Scholar
  33. Fei H, Dong J, Arellano-Jimenez MJ, Ye G, Dong KN, Samuel EL, Peng Z, Zhu Z, Qin F, Bao J, Yacaman MJ, Ajayan PM, Chen D, Tour JM (2015) Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat Commun 6:8668–8675.  https://doi.org/10.1038/ncomms9668 CrossRefGoogle Scholar
  34. Fengyu L, Yafei L, Xiao CZ, Zhongfang C (2015) Exploration of high-performance single-atom catalysts on support M1/FeOx for co oxidation via computational study. ACS Catal 5:544–552.  https://doi.org/10.1021/cs501790v CrossRefGoogle Scholar
  35. Figueroba A, Kovács G, Bruix A, Neyman KM (2016) Towards stable single-atom catalysts: strong binding of atomically dispersed transition metals on the surface of nanostructured ceria. Catal Sci Technol 6:6806–6813.  https://doi.org/10.1039/c6cy00294c CrossRefGoogle Scholar
  36. Flytzani-Stephanopoulos M (2014) Gold atoms stabilized on various supports catalyze the water–gas shift reaction. Acc Chem Res 47:783–792.  https://doi.org/10.1021/ar4001845 CrossRefGoogle Scholar
  37. Fu Q, Saltsburg H, Maria F (2003) Active nonmetallic Au and Pt species on ceria-based water–gas shift catalysts. Science 301:935–939.  https://doi.org/10.1126/science.1085721 CrossRefGoogle Scholar
  38. Gai PL, Yoshida K, Ward, Walsh M, Baker RT, Van De Water L, Watson MJ, Boyes ED (2016) Visualisation of single atom dynamics in water gas shift reaction for hydrogen generation. Catal Sci Technol 6:2214–2227.  https://doi.org/10.1039/c5cy01154j CrossRefGoogle Scholar
  39. Gao H (2016) CO oxidation mechanism on the γ-Al2O3 supported single Pt atom: first principle study. Appl Surf Sci 379:347–357.  https://doi.org/10.1016/j.apsusc.2016.04.009 CrossRefGoogle Scholar
  40. Gao M, Lyalin A, Taketsugu T (2013) Co oxidation on h-BN supported Au atom. J Chem Phys 138:034701–034709.  https://doi.org/10.1063/1.4774216 CrossRefGoogle Scholar
  41. Gao G, Jiao Y, Waclawik ER, Du A (2016) Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J Am Chem Soc 138:6292–6297.  https://doi.org/10.1021/jacs.6b02692 CrossRefGoogle Scholar
  42. Gates BC (1995) Supported metal clusters: synthesis, structure, and catalysis. Chem Rev 95:511–522.  https://doi.org/10.1021/cr00035a003 CrossRefGoogle Scholar
  43. Ghosh TK, Nair NN (2013) Rh1/γ-Al2O3 single-atom catalysis of O2 activation and CO oxidation: mechanism, effects of hydration, oxidation state, and cluster size. ChemCatChem 5:1811–1821.  https://doi.org/10.1002/cctc.201200799 CrossRefGoogle Scholar
  44. Gianvito V, Davide A, Maarten N, Zupeng C, Dariya D, Markus A, Núria L, Javier P (2015) A stable single-site palladium catalyst for hydrogenations. Angew Chem Int Ed 54:11265–11269.  https://doi.org/10.1002/anie.201505073 CrossRefGoogle Scholar
  45. Greecor RB, Lytle FW (1980) Morphology of supported metal clusters: determination by EXAFs and chemisorption. J Catal 63:476–486.  https://doi.org/10.1016/0021-9517(80)90102-5 CrossRefGoogle Scholar
  46. Guang XP, Xiao YL, Aiqin W, Adam FL, Mark AI, Lin L, Xiaoli P, Xiaofeng Y, Xiaodong W, Zhijun T, Karen W, Tao Z (2015) Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal 5:3717–3725.  https://doi.org/10.1021/acscatal.5b00700 CrossRefGoogle Scholar
  47. Guang XP, Xiao YL, Xiaofeng Y, Leilei Z, Aiqin W, Lin L, Hua W, Xiaodong W, Tao Z (2017a) Performance of Cu-alloyed pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catal 7:1491–1500.  https://doi.org/10.1021/acscatal.6b03293 CrossRefGoogle Scholar
  48. Guang X, Pei XY, Meng L, Qian C, Aiqin W, Tao Z (2017b) Isolation of Pd atoms by Cu for semi-hydrogenation of acetylene: effects of Cu loading. Chin J Catal 38:1540–1548.  https://doi.org/10.1016/S1872-2067(17)62847-X CrossRefGoogle Scholar
  49. Guo X, Fang G, Li G, Ma H, Fan H, Yu L, Ma C, Wu X, Deng D, Wei M, Tan D, Si R, Zhang S, Li J, Sun L, Tang Z, Pan X, Bao X (2014) Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. Science 344:616–619.  https://doi.org/10.1126/science.1253150 CrossRefGoogle Scholar
  50. Hao Z, Geng W, Da Ch, Xiaojun L, Jinghong L (2008) Tuning photoelectrochemical performances of Ag–TiO2 nanocomposites via reduction/oxidation of Ag. Chem Mater 20:6543–6549.  https://doi.org/10.1021/cm801796q CrossRefGoogle Scholar
  51. He H, Jagvaral Y (2017) Electrochemical reduction of CO2 on graphene supported transition metals—towards single atom catalysts. Phys Chem Chem Phys 19:11436–11446.  https://doi.org/10.1039/c7cp00915a CrossRefGoogle Scholar
  52. Heiz U, Sanchez A, Abbet S, Schneider WD (1999) Catalytic oxidation of carbon monoxide on monodispersed platinum clusters-each atom counts. J Am Chem Soc 121:3214–3217.  https://doi.org/10.1021/ja983616l CrossRefGoogle Scholar
  53. Hongling G, Tao Z, Jian L, Botao Q, Shu M, Aiqin W, Xiao D (2017) Enhanced performance of Rh1/TiO2 catalyst without methanation in water–gas shift reaction. AIChE J 63:2081–2088.  https://doi.org/10.1002/aic.15585 CrossRefGoogle Scholar
  54. Huan Y, Hao C, Hong Y, Yue L, Tao Y, Wang C, Li J, Wei S, Lu J (2015) Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene. J Am Chem Soc 137:10484–10487.  https://doi.org/10.1021/jacs.5b06485 CrossRefGoogle Scholar
  55. Huang X, Xia Y, Cao Y, Zheng X, Pan H, Zhu J, Ma C, Wang H, Li J, You R, Wei S, Huang W, Lu J (2017) Enhancing both selectivity and coking-resistance of a single-atom Pd1/C3N4 catalyst for acetylene hydrogenation. Nano Res 10:1302–1312.  https://doi.org/10.1007/s12274-016-1416-z CrossRefGoogle Scholar
  56. Ja HK, Jianzhi H, Donghai M, Cheol-Woo Y, Do HK, Charles HFP, Lawrence FA, Janos S (2009) Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 325:1670–1674.  https://doi.org/10.1126/science.1176745 CrossRefGoogle Scholar
  57. Jia H, Wang C (2015) Dechlorination of chlorinated phenols by subnanoscale Pd0/Fe0 intercalated in smectite: pathway, reactivity, and selectivity. J Hazard Mater 300:779–787.  https://doi.org/10.1016/j.jhazmat.2015.08.017 CrossRefGoogle Scholar
  58. Jinxia L, Congqiao X, Tao Z, Jun L (2017) Catalytic activities of single-atom catalysts for CO oxidation: Pt1/FeOx vs. Fe1/FeOx. Chin J Catal 38:1566–1573.  https://doi.org/10.1016/S1872-2067(17)62879-1 CrossRefGoogle Scholar
  59. Jirkovsky JS, Panas I, Ahlberg E, Halasa M, Romani S, Schiffrin DJ (2011) Single atom hot-spots at Au–Pd nanoalloys for electrocatalytic H2O2 production. J Am Chem Soc 133:19432–19441.  https://doi.org/10.1021/ja206477z CrossRefGoogle Scholar
  60. John J, Haifeng X, Andrew TD, Eric JP, Hien P, Sivakumar RC, Gongshin Q, Se O, Michelle HW, Xavier IPH, Yong W, Abhaya KD (2016) Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353:150–154.  https://doi.org/10.1126/science.aaf8800 CrossRefGoogle Scholar
  61. Joseph D, Kistler NC, Pinghong X, Bryan E, Piyasan P, Cong-Yan C, Nigel DB, Bruce CG (2014) A single-site platinum CO oxidation catalyst in zeolite KLTL: microscopic and spectroscopic determination of the locations of the platinum atoms. Angew Chem Int Ed 53:8904–8907.  https://doi.org/10.1002/anie.201403353 CrossRefGoogle Scholar
  62. Kaden WE, Wu T, Kunkel WA, Anderson SL (2009) Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science 326:826–829.  https://doi.org/10.1126/science.1180297 CrossRefGoogle Scholar
  63. Kesavan L, Tiruvalam R, Rahim MHA, Bin Saiman MI, Enache DI, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, Taylor SH, Knight DW, Kiely CJ, Hutchings GJ (2011) Solvent-free oxidation of primary carbon-hydrogen bonds in toluene using Au–Pd alloy nanoparticles. Science 331:195–199.  https://doi.org/10.1126/science.1198458 CrossRefGoogle Scholar
  64. Kunlun D, Ahmet G, Alexis MJ, Neil MS, Galen DS, Laurence DM, Peter CS (2015) Identification of active sites in co oxidation and water–gas shift over supported Pt catalysts. Science 350:189–192.  https://doi.org/10.1126/science.aac6368 CrossRefGoogle Scholar
  65. Kuo L, Aipin W, Zhang Tao (2012) Recent advances in preferential oxidation of CO reaction over platinum group metal catalysts. ACS Catal 2:1165–1178.  https://doi.org/10.1021/cs200418w CrossRefGoogle Scholar
  66. Kwang TR, Daejin E, Li L, Elena S, Joan MR, Siu-Wai C, Maria F, George WF (2009) Charging and chemical reactivity of gold nanoparticles and adatoms on the (111) surface of single-crystal magnetite: a scanning tunneling microscopy/spectroscopy study. J Phys Chem C 113:10198–10205.  https://doi.org/10.1021/jp8112599 CrossRefGoogle Scholar
  67. Kyriakou G, Boucher MB, Jewell AD, Lewis EA, Lawton TJ, Baber AE, Tierney HL, Flytzani-Stephanopoulos M, Sykes ECH (2012) Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335:1209–1212.  https://doi.org/10.1126/science.1215864 CrossRefGoogle Scholar
  68. Lang R, Li T, Matsumura D, Miao S, Ren Y, Cui YT, Tan Y, Qiao B, Li L, Wang A, Wang X, Zhang T (2016) Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3. Angew Chem Int Ed 55:16054–16058.  https://doi.org/10.1002/anie.201607885 CrossRefGoogle Scholar
  69. Lei Y, Mehmood F, Lee S, Greeley J, Lee B, Seifert S, Winans RE, Elam JW, Meyer RJ, Redfern PC, Teschner D, Schlogl R, Pellin MJ, Curtiss LA, Vajda S (2010) Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 328:224–228.  https://doi.org/10.1126/science.1185200 CrossRefGoogle Scholar
  70. Leilei Z, Jeffrey TM, Xiaoyan L, Xiaofeng Y, Wentao W, Lin L, Yanqiang H, Chung-Yuan M, Tao Z (2014) Efficient and durable Au alloyed pd single-atom catalyst for the Ullmann reaction of aryl chlorides in water. ACS Catal 4:1546–1553.  https://doi.org/10.1021/cs500071c CrossRefGoogle Scholar
  71. Li C (2016) Single Co atom catalyst stabilized in C/N containing matrix. Chin J Catal 37:1443–1445.  https://doi.org/10.1016/s1872-2067(16)62520-2 CrossRefGoogle Scholar
  72. Li Y, Sun Q (2014) The superior catalytic CO oxidation capacity of a Cr-phthalocyanine porous sheet. Sci Rep 4:4098–4104.  https://doi.org/10.1038/srep04098 CrossRefGoogle Scholar
  73. Li ZY, Yuan Z, Li XN, Zhao YX, He SG (2014) CO oxidation catalyzed by single gold atoms supported on aluminum oxide clusters. J Am Chem Soc 136:14307–14313.  https://doi.org/10.1021/ja508547z CrossRefGoogle Scholar
  74. Li F, Li L, Liu X, Zeng XC, Chen Z (2016) High-performance Ru1/CeO2 single-atom catalyst for CO oxidation: a computational exploration. ChemPhysChem 17:3170–3175.  https://doi.org/10.1002/cphc.201600540 CrossRefGoogle Scholar
  75. Li Q, Ma Z, Sa R, Adidharma H, Gasem KAM, Russell AG, Fan M, Wu K (2017) Computation-predicted, stable, and inexpensive single-atom nanocatalyst Pt@MO2C—an important advanced material for H2 production. J Mater Chem A 5:14658–14672.  https://doi.org/10.1039/c7ta03115g CrossRefGoogle Scholar
  76. Liang JX, Lin J, Yang XF, Wang AQ, Qiao BT, Liu J, Zhang T, Li J (2014) Theoretical and experimental investigations on single-atom catalysis: Ir1/FeO x for Co oxidation. J Phys Chem C 118:21945–21951.  https://doi.org/10.1021/jp503769d CrossRefGoogle Scholar
  77. Liang S, Hao C, Shi Y (2015) The power of single-atom catalysis. ChemCatChem 7:2559–2567.  https://doi.org/10.1002/cctc.201500363 CrossRefGoogle Scholar
  78. Liang JX, Yang XF, Wang A, Zhang T, Li J (2016) Theoretical investigations of non-noble metal single-atom catalysis: Ni1/FeOx for co oxidation. Catal Sci Technol 6:6886–6892.  https://doi.org/10.1039/c6cy00672h CrossRefGoogle Scholar
  79. Liang JX, Wang YG, Yang XF, Xing DH, Wang AQ, Zhang T, Li J (2017a) Recent advances in single-atom catalysis. Encycl Inorg Bioinorg Chem.  https://doi.org/10.1002/9781119951438.eibc2448 CrossRefGoogle Scholar
  80. Liang S, Qiao B, Song X, Hao C, Wang A, Zhang T, Shi Y (2017b) Experimental investigation and theoretical exploration of single-atom electrocatalysis in hybrid photovoltaics: the powerful role of pt atoms in triiodide reduction. Nano Energy 39:1–8.  https://doi.org/10.1016/j.nanoen.2017.06.036 CrossRefGoogle Scholar
  81. Lin ZZ (2016) Graphdiyne-supported single-atom Sc and Ti catalysts for high-efficient CO oxidation. Carbon 108:343–350.  https://doi.org/10.1016/j.carbon.2016.07.040 CrossRefGoogle Scholar
  82. Lin J, Qiao B, Liu J, Huang Y, Wang A, Li L, Zhang W, Allard LF, Wang X, Zhang T (2012) Design of a highly active Ir/Fe(OH)x catalyst: versatile application of Pt-group metals for the preferential oxidation of carbon monoxide. Angew Chem Int Ed 51:2920–2924.  https://doi.org/10.1002/anie.201106702 CrossRefGoogle Scholar
  83. Lin J, Wang A, Qiao B, Liu X, Yang X, Wang X, Liang J, Li J, Liu J, Zhang T (2013a) Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J Am Chem Soc 135:15314–15317.  https://doi.org/10.1021/ja408574m CrossRefGoogle Scholar
  84. Lin S, Ye X, Johnson RS, Guo H (2013b) First-principles investigations of metal (Cu, Ag, Au, Pt, Rh, Pd, Fe Co, and Ir) doped hexagonal boron nitride nanosheets: stability and catalysis of Co oxidation. J Phys Chem C 117:17319–17326.  https://doi.org/10.1021/jp4055445 CrossRefGoogle Scholar
  85. Lin J, Qiao B, Li N, Li L, Sun X, Liu J, Wang X, Zhang T (2015) Little do more: a highly effective Pt1/FeOx single-atom catalyst for the reduction of no by H2. Chem Commun 51:7911–7914.  https://doi.org/10.1039/c5cc00714c CrossRefGoogle Scholar
  86. Liqiong W, Feng L, Simin L, Yuhua W, Haijun Z (2017) Preparation, characterization and catalytic performance of single-atom catalysts. Chin J Catal 38:1528–1539.  https://doi.org/10.1016/S1872-2067(17)62770-0 CrossRefGoogle Scholar
  87. Liu J (2017) Catalysis by supported single metal atoms. ACS Catal 7:34–59.  https://doi.org/10.1021/acscatal.6b01534 CrossRefGoogle Scholar
  88. Liu H, Wang C (2014) Luminescent Cu(0)@Cu(i)–TGA core–shell nanoclusters via self-assembly. Synth Met 198:329–334.  https://doi.org/10.1016/j.synthmet.2014.10.044 CrossRefGoogle Scholar
  89. Liu X, Duan T, Sui Y, Meng C, Han Y (2014) Copper atoms embedded in hexagonal boron nitride as potential catalysts for CO oxidation: a first-principles investigation. RSC Adv 4:38750–38760.  https://doi.org/10.1039/c4ra06436d CrossRefGoogle Scholar
  90. Liu X, Duan T, Meng C, Han Y (2015) Pt atoms stabilized on hexagonal boron nitride as efficient single-atom catalysts for CO oxidation: a first-principles investigation. RSC Adv 5:10452–10459.  https://doi.org/10.1039/c4ra14482a CrossRefGoogle Scholar
  91. Liu J, Lucci FR, Yang M, Lee S, Marcinkowski MD, Therrien AJ, Williams CT, Sykes EC, Flytzani-Stephanopoulos M (2016a) Tackling CO poisoning with single-atom alloy catalysts. J Am Chem Soc 138:6396–6399.  https://doi.org/10.1021/jacs.6b03339 CrossRefGoogle Scholar
  92. Liu W, Zhang L, Yan W, Liu X, Yang X, Miao S, Wang W, Wang A, Zhang T (2016b) Single-atom dispersed Co–N–C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes. Chem Sci 7:5758–5764.  https://doi.org/10.1039/c6sc02105k CrossRefGoogle Scholar
  93. Liu J, Matthew DM, Colin JM, Melissa LL, Natalie AW, Felicia RL, Maria F, Charles HS (2017a) Selective formic acid dehydrogenation on Pt–Cu single-atom alloys. ACS Catal 7:413–420.  https://doi.org/10.1021/acscatal.6b02772 CrossRefGoogle Scholar
  94. Liu JC, Wang YG, Li J (2017b) Toward rational design of oxide-supported single-atom catalysts: atomic dispersion of gold on ceria. J Am Chem Soc 139:6190–6199.  https://doi.org/10.1021/jacs.7b01602 CrossRefGoogle Scholar
  95. Liu Z, He T, Liu K, Chen W, Tang Y (2017c) Structural, electronic and catalytic performances of single-atom Fe stabilized by divacancy-nitrogen-doped graphene. RSC Adv 7:7920–7928.  https://doi.org/10.1039/c6ra28387j CrossRefGoogle Scholar
  96. Liu W, Zhang L, Liu X, Liu X, Yang X, Miao S, Wang W, Wang A, Zhang T (2017d) Discriminating catalytically active FeNx species of atomically dispersed Fe–N–C catalyst for selective oxidation of the C–H bond. J Am Chem Soc.  https://doi.org/10.1021/jacs.7b05130 CrossRefGoogle Scholar
  97. Long B, Tang Y, Li J (2016) New mechanistic pathways for co oxidation catalyzed by single-atom catalysts: supported and doped Au1/ThO2. Nano Res 9:3868–3880.  https://doi.org/10.1007/s12274-016-1256-x CrossRefGoogle Scholar
  98. Longhua T, Yueming L, Hongbing F, Jin L, Jinghong L (2009) Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv Funct Mater 19:2782–2789.  https://doi.org/10.1002/adfm.200900377 CrossRefGoogle Scholar
  99. Lu J, Ceren A, Nigel DB, Bruce CG (2012) Imaging isolated gold atom catalytic sites in zeolite NaY. Angew Chem Int Ed 51:5842–5846.  https://doi.org/10.1002/anie.201107391 CrossRefGoogle Scholar
  100. Lu Z, Lv P, Yang Z, Li S, Ma D, Wu R (2017) A promising single atom catalyst for CO oxidation: Ag on boron vacancies of h-BN sheets. Phys Chem Chem Phys 19:16795–16805.  https://doi.org/10.1039/c7cp02430d CrossRefGoogle Scholar
  101. Lucci FR, Liu J, Marcinkowski MD, Yang M, Allard LF, Flytzani-Stephanopoulos M, Sykes ECH (2015) Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit. Nat Commun 6:8550–8557.  https://doi.org/10.1038/ncomms9550 CrossRefGoogle Scholar
  102. Lucci FR, Darby MT, Mattera MF, Ivimey CJ, Therrien AJ, Michaelides A, Stamatakis M, Sykes EC (2016) Controlling hydrogen activation, spillover, and desorption with Pd–Au single-atom alloys. J Phys Chem. Lett 7:480–485.  https://doi.org/10.1021/acs.jpclett.5b02400 CrossRefGoogle Scholar
  103. Ma X, Lv Y, Xu J, Liu Y, Zhang R, Zhu Y (2012) A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements: a first-principles study. J Phys Chem C 116:23485–23493.  https://doi.org/10.1021/jp308334x CrossRefGoogle Scholar
  104. Ma DW, Li T, Wang Q, Yang G, He C, Ma B, Lu Z (2015) Graphyne as a promising substrate for the noble-metal single-atom catalysts. Carbon 95:756–765.  https://doi.org/10.1016/j.carbon.2015.09.008 CrossRefGoogle Scholar
  105. Ma DW, Wang Q, Yan X, Zhang X, He C, Zhou D, Tang Y, Lu Z, Yang Z (2016) 3d transition metal embedded C2N monolayers as promising single-atom catalysts: a first-principles study. Carbon 105:463–473.  https://doi.org/10.1016/j.carbon.2016.04.059 CrossRefGoogle Scholar
  106. Machado BF, Serp P (2012) Graphene-based materials for catalysis. Catal Sci Technol 2:54–75.  https://doi.org/10.1039/c1cy00361e CrossRefGoogle Scholar
  107. Mao K, Li L, Zhang W, Pei Y, Zeng XC, Wu X, Yang J (2014) A theoretical study of single-atom catalysis of CO oxidation using Au embedded 2d h-BN monolayer: a co-promoted O2 activation. Sci Rep 4:5441–5447.  https://doi.org/10.1038/srep05441 CrossRefGoogle Scholar
  108. Mark T, Vladimir BG, Owain PHV, Pavel A, Angel BM, Mintcho ST, Brian FGJ, Richard ML (2008) Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454:981–983.  https://doi.org/10.1038/nature07194 CrossRefGoogle Scholar
  109. Matsubu JC, Yang VN, Christopher P (2015) Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J Am Chem Soc 137:3076–3084.  https://doi.org/10.1021/ja5128133 CrossRefGoogle Scholar
  110. Matthew JK, Phillip C (2016) Utilizing quantitative in situ FTIR spectroscopy to identify well-coordinated Pt atoms as the active site for CO oxidation on Al2O3-supported pt catalysts. ACS Catal 6:5599–5609.  https://doi.org/10.1021/acscatal.6b01128 CrossRefGoogle Scholar
  111. Melanie M, Mina Y, Lawrence FA, David RM, Wu Z, Yang X, Gabriel V, Stocks GM, Chaitanya KN (2013) Co oxidation on supported single Pt atoms: experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3(010) surface. J Am Chem Soc 135:12634–12645.  https://doi.org/10.1021/ja401847c CrossRefGoogle Scholar
  112. Ming Y, Sha L, Yuan W, Jeffrey AH, Ye X, Lawrence FA, Sungsik L, Jun H, Manos M, Maria F (2014) Catalytically active Au–O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 346:1498–1501.  https://doi.org/10.1126/science.1260526 CrossRefGoogle Scholar
  113. Mykola T, Pingo M, Martin O, Prokop H, Francois CB, Jindrich K, Martin V, Pavel J, Martin S (2014) Achieving high-quality single-atom nitrogen doping of graphene/SiC(0001) by ion implantation and subsequent thermal stabilization. ACS Nano 8:7318–7324.  https://doi.org/10.1021/nn502438k CrossRefGoogle Scholar
  114. Narula CK, Stocks GM (2012) Ab initio density functional calculations of adsorption of transition metal atoms on θ-Al2O3(010) surface. J Phys Chem C 116:5628–5636.  https://doi.org/10.1021/jp209725a CrossRefGoogle Scholar
  115. Narula CK, Allard LF, Stocks GM, Moses-Debusk M (2014) Remarkable no oxidation on single supported platinum atoms. Sci Rep 4:7238.  https://doi.org/10.1038/srep07238 CrossRefGoogle Scholar
  116. Neitzel A, Figueroba A, Lykhach Y, Skála T, Vorokhta M, Tsud N, Mehl S, Ševčíková K, Prince KC, Neyman KM, Matolín V, Libuda J (2016) Atomically dispersed Pd, Ni, and Pt species in ceria-based catalysts: principal differences in stability and reactivity. J Phys Chem C 120:9852–9862.  https://doi.org/10.1021/acs.jpcc.6b02264 CrossRefGoogle Scholar
  117. Ogino I (2017) X-ray absorption spectroscopy for single-atom catalysts: critical importance and persistent challenges. Chin J Catal 38:1481–1488.  https://doi.org/10.1016/S1872-2067(17)62880-8 CrossRefGoogle Scholar
  118. Parkinson GS (2017) Unravelling single atom catalysis: the surface science approach. Chin J Catal 38:1454–1459.  https://doi.org/10.1016/S1872-2067(17)62878-X CrossRefGoogle Scholar
  119. Pei GX, Liu XY, Wang A, Li L, Huang Y, Zhang T, Lee JW, Jang BWL, Mou CY (2014) Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene. New J Chem 38:2043–2051.  https://doi.org/10.1039/c3nj01136d CrossRefGoogle Scholar
  120. Pengxin L, Yun Z, Ruixuan Q, Shiguang M, Guangxu C, Lin G, Daniel MC, Peng Z, Qing G, Dandan Z, Binghui W, Gang F, Nanfeng Z (2016) Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352:797–802.  https://doi.org/10.1126/science.aaf5251 CrossRefGoogle Scholar
  121. Peterson EJ, Delariva AT, Lin S, Johnson RS, Guo H, Miller JT, Hun Kwak J, Peden CH, Kiefer B, Allard LF, Ribeiro FH, Datye AK (2014) Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat Commun 5:4885–4895.  https://doi.org/10.1038/ncomms5885 CrossRefGoogle Scholar
  122. Piernavieja-Hermida M, Lu Z, White A, Low K-B, Wu T, Elam JW, Wu Z, Lei Y (2016) Towards ALD thin film stabilized single-atom Pd1 catalysts. Nanoscale 8:15348–15356.  https://doi.org/10.1039/c6nr04403d CrossRefGoogle Scholar
  123. Ping S, Xiaozhi L, Wei X, Weilin X, Zheng J, Lin G (2017) Zn single atom catalyst for highly efficient oxygen reduction reaction. Adv Funct Mater 27:1700802.  https://doi.org/10.1002/adfm.201700802 CrossRefGoogle Scholar
  124. Pingping H, Zhiwei H, Zakariae A, Michiel M, Fei X, Freek K, Alla D, Yaxin C, Xiao G, Xingfu T (2014) Electronic metal-support interactions in single-atom catalysts. Angew Chem Int Ed 53:3418–3421.  https://doi.org/10.1002/anie.201309248 CrossRefGoogle Scholar
  125. Qiao Wang A, Yang X, Lawrence FA, Zheng J, Cui Y, Liu J, Jun L, Zhang T (2011) Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 3:634–641.  https://doi.org/10.1038/nchem.1095 CrossRefGoogle Scholar
  126. Qiao B, Lin J, Wang A, Chen Y, Zhang T, Liu J (2015a) Highly active Au1/Co3O4 single-atom catalyst for CO oxidation at room temperature. Chin J Catal 36:1505–1511.  https://doi.org/10.1016/s1872-2067(15)60889-0 CrossRefGoogle Scholar
  127. Qiao B, Liang JX, Wang A, Xu CQ, Li J, Zhang T, Liu JJ (2015b) Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res 8:2913–2924.  https://doi.org/10.1007/s12274-015-0796-9 CrossRefGoogle Scholar
  128. Qiu HJ, Ito Y, Cong W, Tan Y, Liu P, Hirata A, Fujita T, Tang Z, Chen M (2015) Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew Chem Int Ed Engl 54:14031–14035.  https://doi.org/10.1002/anie.201507381 CrossRefGoogle Scholar
  129. Rosa A, Zailai X, Youngmi Y, Gregor W, Li LS, Klaus EH, Matthias F, Patrick K, Michael H, Axel KG, Robert S (2015) Nature of the N–Pd interaction in nitrogen-doped carbon nanotube catalysts. ACS Catal 5:2740–2753.  https://doi.org/10.1021/acscatal.5b00094 CrossRefGoogle Scholar
  130. Sakthivel S, Shankar MV, Palanichamy M, Banumathi A, Bahnemann DW, Murugesan V (2004) Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res 38:3001–3008.  https://doi.org/10.1016/j.watres.2004.04.046 CrossRefGoogle Scholar
  131. Salai CA, Andreas H (2017) Water–gas shift activity of atomically dispersed cationic platinum versus metallic platinum clusters on titania supports. ACS Catal 7:301–309.  https://doi.org/10.1021/acscatal.6b02764 CrossRefGoogle Scholar
  132. Sara A, Salai CA, Andreas H (2014) On the importance of metal–oxide interface sites for the water–gas shift reaction over Pt/CeO2 catalysts. J Catal 309:314–324.  https://doi.org/10.1016/j.jcat.2013.10.012 CrossRefGoogle Scholar
  133. Seoin B, Yousung J (2017) TiC- and TiN-supported single-atom catalysts for dramatic improvements in CO2 electrochemical reduction to CH4. ACS Energy Lett 2:969–975.  https://doi.org/10.1021/acsenergylett.7b00152 CrossRefGoogle Scholar
  134. Shapovalov V, Metiu H (2007) Catalysis by doped oxides: Co oxidation by AuxCe1−xO2. J Catal 245:205–214.  https://doi.org/10.1016/j.jcat.2006.10.009 CrossRefGoogle Scholar
  135. Shi J (2017) Single-atom Co-doped MoS2 monolayers for highly active biomass hydrodeoxygenation. Chem 2:468–469.  https://doi.org/10.1016/j.chempr.2017.03.005 CrossRefGoogle Scholar
  136. Shi JL, Wu JH, Zhao XJ, Xue XL, Gao YF, Guo ZX, Li SF (2016) Substrate Co-doping modulates electronic metal-support interactions and significantly enhances single-atom catalysis. Nanoscale 8:19256–19262.  https://doi.org/10.1039/c6nr04292a CrossRefGoogle Scholar
  137. Simon FJH, Rik MB, Mhairi HG, Ian H, Andrew DN, Karen W, Adam FL (2007) High-activity, single-site mesoporous Pd/Al2O3 catalysts for selective aerobic oxidation of allylic alcohols. Angew Chem 119:8747–8750.  https://doi.org/10.1002/ange.200702534 CrossRefGoogle Scholar
  138. Song W, Hensen EJM (2013) Structure sensitivity in CO oxidation by a single au atom supported on ceria. J Phys Chem C 117:7721–7726.  https://doi.org/10.1021/jp400977m CrossRefGoogle Scholar
  139. Song W, Jansen APJ, Hensen EJM (2013) A computational study of the influence of the ceria surface termination on the mechanism of CO oxidation of isolated Rh atoms. Faraday Discuss 162:281.  https://doi.org/10.1039/c3fd20129e CrossRefGoogle Scholar
  140. Songhai X, Wataru K, Yuichi N, Tatsuya T (2012) Enhancement in aerobic alcohol oxidation catalysis of Au25 clusters by single Pd atom doping. ACS Catal 2:1519–1523.  https://doi.org/10.1021/cs300252g CrossRefGoogle Scholar
  141. Stambula S, Gauquelin N, Bugnet M, Gorantla S, Turner S, Sun S, Liu J, Zhang G, Sun X, Botton GA (2014) Chemical structure of nitrogen-doped graphene with single platinum atoms and atomic clusters as a platform for the PEMFC electrode. J Phys Chem C 118:3890–3900.  https://doi.org/10.1021/jp408979h CrossRefGoogle Scholar
  142. Strizhak PE (2013) Nanosize effects in heterogeneous catalysis. Theor Exp Chem 49:2–21.  https://doi.org/10.1007/s11237-013-9297-7 CrossRefGoogle Scholar
  143. Sun S, Zhang G, Nicolas G, Ning C, Zhou J, Yang S, Chen W, Meng X, Geng D, Mohammad NB, Ruying L, Ye S, Shanna K, Gianluigi AB, Sham T, Sun X (2013) Single-atom catalysis using Pt/graphene achieved through atomic layer deposition. Sci Rep 3(2013):1775–1783.  https://doi.org/10.1038/srep01775 CrossRefGoogle Scholar
  144. Sun X, Lin J, Zhou Y, Li L, Su Y, Wang X, Zhang T (2017) Feox supported single-atom pd bifunctional catalyst for water gas shift reaction. AIChE J 63:4022–4031.  https://doi.org/10.1002/aic.15759 CrossRefGoogle Scholar
  145. Sungeun Y, Hyunjoo L (2013) Atomically dispersed platinum on gold nano-octahedra with high catalytic activity on formic acid oxidation. ACS Catal 3:437–443.  https://doi.org/10.1021/cs300809j CrossRefGoogle Scholar
  146. Sungeun Y, Jiwhan K, Young JT, Aloysius S, Hyunjoo L (2016) Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew Chem Int Ed 55:2058–2062.  https://doi.org/10.1002/anie.201509241 CrossRefGoogle Scholar
  147. Sungeun Y, Jiwhan K, Aloysius S, Hyunjoo L (2017) Support effects in single-atom platinum catalysts for electrochemical oxygen reduction. ACS Catal 7:1301–1307.  https://doi.org/10.1021/acscatal.6b02899 CrossRefGoogle Scholar
  148. Tang Y, Zhao S, Long B, Liu JC, Li J (2016) On the nature of support effects of metal dioxides MO2(m = Ti, Zr, Hf, Ce, Th) in single-atom gold catalysts: importance of quantum primogenic effect. J Phys Chem C 120:17514–17526.  https://doi.org/10.1021/acs.jpcc.6b05338 CrossRefGoogle Scholar
  149. Tauster SJ, Fung SC, Garten RL (1978) Strong metal-support interactions group 8 noble metals supported on TiO2. J Am Chem Soc 100:170–175.  https://doi.org/10.1021/ja00469a029 CrossRefGoogle Scholar
  150. Thomas JM, Raja R, Lewis DW (2005) Single-site heterogeneous catalysts. Angew Chem Int Ed 44:6456–6482.  https://doi.org/10.1002/anie.200462473 CrossRefGoogle Scholar
  151. Ting D, Weitao Z, Wei Z (2017) Increasing the range of non-noble-metal single-atom catalysts. Chin J Catal 38:1489–1497.  https://doi.org/10.1016/S1872-2067(17)62799-2 CrossRefGoogle Scholar
  152. Wang H, Wang Q, Cheng Y, Li K, Yao Y, Zhang Q, Dong C, Wang P, Schwingenschlögl U, Yang W, Zhang XX (2012) Doping monolayer graphene with single atom substitutions. Nano Lett 12:141–144.  https://doi.org/10.1021/nl2031629 CrossRefGoogle Scholar
  153. Wang Z, Hao X, Gerhold S, Mares P, Wagner M, Bliem R, Schulte K, Schmid M, Franchini C, Diebold U (2014a) Stabilizing single Ni adatoms on a two-dimensional porous titania overlayer at the SrTiO3(110) surface. J Phys Chem C 118:19904–19909.  https://doi.org/10.1021/jp506234r CrossRefGoogle Scholar
  154. Wang WL, Santos EJG, Jiang B, Cubuk ED, Ophus C, Centeno A, Pesquera A, Zurutuza A, Ciston J, Westervelt R, Kaxiras E (2014b) Direct observation of a long-lived single-atom catalyst chiseling atomic structures in graphene. Nano Lett 14:450–455.  https://doi.org/10.1021/nl403327u CrossRefGoogle Scholar
  155. Wang Y, Yuan H, Li Y, Chen Z (2015a) Two-dimensional iron-phthalocyanine (Fe-PC) monolayer as a promising single-atom-catalyst for oxygen reduction reaction: a computational study. Nanoscale 7:11633–11641.  https://doi.org/10.1039/c5nr00302d CrossRefGoogle Scholar
  156. Wang YG, Mei D, Glezakou VA, Li J, Rousseau R (2015b) Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles. Nat Commun 6:6511–6518.  https://doi.org/10.1038/ncomms7511 CrossRefGoogle Scholar
  157. Wang Z, Zang L, Fan X, Jia H, Li L, Deng W, Wang C (2015c) Defect-mediated of Cu@TiO2 core-shell nanoparticles with oxygen vacancies for photocatalytic degradation 2,4-DCP under visible light irradiation. Appl Surf Sci 358:479–484.  https://doi.org/10.1016/j.apsusc.2015.08.051 CrossRefGoogle Scholar
  158. Wang L, Zhang W, Wang S, Gao Z, Luo Z, Wang X, Zeng R, Li A, Li H, Wang M, Zheng X, Zhu J, Zhang W, Ma C, Si R, Zeng J (2016a) Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst. Nat Commun 7:14036–14043.  https://doi.org/10.1038/ncomms14036 CrossRefGoogle Scholar
  159. Wang J, Zhao X, Lei N, Li L, Zhang L, Xu S, Miao S, Pan X, Wang A, Zhang T (2016b) Hydrogenolysis of glycerol to 1,3-propanediol under low hydrogen pressure over WOx-supported single/pseudo-single atom pt catalyst. ChemSusChem 9:784–790.  https://doi.org/10.1002/cssc.201501506 CrossRefGoogle Scholar
  160. Wang ZT, Darby MT, Therrien AJ, El-Soda M, Michaelides A, Stamatakis M, Sykes ECH (2016c) Preparation, structure, and surface chemistry of Ni–Au single atom alloys. J Phys Chem C 120:13574–13580.  https://doi.org/10.1021/acs.jpcc.6b03473 CrossRefGoogle Scholar
  161. Wei X, Yang XF, Wang AQ, Li L, Liu XY, Zhang T, Mou CY, Li J (2012) Bimetallic Au–Pd alloy catalysts for N2O decomposition: effects of surface structures on catalytic activity. J Phys Chem C 116:6222–6232.  https://doi.org/10.1021/jp210555s CrossRefGoogle Scholar
  162. Wei H, Liu X, Wang A, Zhang L, Qiao B, Yang X, Huang Y, Miao S, Liu J, Zhang T (2014) Feox-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat Commun 5:5634–5641.  https://doi.org/10.1038/ncomms6634 CrossRefGoogle Scholar
  163. Wu P, Du P, Zhang H, Cai C (2015) Graphyne-supported single fe atom catalysts for CO oxidation. Phys Chem Chem Phys 17:1441–1449.  https://doi.org/10.1039/c4cp04181j CrossRefGoogle Scholar
  164. Xiang-Kui G, Botao Q, Chuan-Qi H, Wu-Chen D, Keju S, Ensheng Z, Tao Z, Jingyue L, Wei-Xue L (2014) Supported single Pt1/Au1 atoms for methanol steam reforming. ACS Catal 4:3886–3890.  https://doi.org/10.1021/cs500740u CrossRefGoogle Scholar
  165. Xiaogang L, Wentuan B, Lei Z, Shi T, Wangsheng C, Qun Z, Yi L, Changzheng W, Yi X (2016) Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv Mater 28:2427–2431.  https://doi.org/10.1002/adma.201505281 CrossRefGoogle Scholar
  166. Xin-Bo Z, Jun-Min Y, Song H, Hiroshi S, Qiang X (2009) Magnetically recyclable Fe@Pt core-shell nanoparticles and their use as electrocatalysts for ammonia borane oxidation: the role of crystallinity of the core. J Am Chem Soc 131:2778–2779.  https://doi.org/10.1021/ja808830a CrossRefGoogle Scholar
  167. Xing J, Chen JF, Li YH, Yuan WT, Zhou Y, Zheng LR, Wang HF, Hu P, Wang Y, Zhao HJ, Wang Y, Yang HG (2014) Stable isolated metal atoms as active sites for photocatalytic hydrogen evolution. Chem Eur J 20:2138–2144.  https://doi.org/10.1002/chem.201303366 CrossRefGoogle Scholar
  168. Xinjiang C, Xingchao D, Carsten K, Marga-Martina P, Sebastian W, Feng S, Angelika B, Matthias B (2017) Synthesis of single atom based heterogeneous platinum catalysts: high selectivity and activity for hydrosilylation reactions. ACS Cent Sci 3:580–585.  https://doi.org/10.1021/acscentsci.7b00105 CrossRefGoogle Scholar
  169. Xu G, Wang R, Yang F, Ma D, Yang Z, Lu Z (2017) CO oxidation on single Pd atom embedded defect-graphene via a new termolecular Eley–Rideal mechanism. Carbon 118:35–42.  https://doi.org/10.1016/j.carbon.2017.03.034 CrossRefGoogle Scholar
  170. Yan T, Jin-Xia L, Jun L (2017a) Investigation of water adsorption and dissociation on Au1/CeO2 single-atom catalysts using density functional theory. Chin J Catal 38:1558–1565.  https://doi.org/10.1016/S1872-2067(17)62829-8 CrossRefGoogle Scholar
  171. Yan T, Yang-Gang W, Jun L (2017b) Theoretical investigations of Pt1@CeO2 single-atom catalyst for CO oxidation. J Phys Chem C 121:11281–11289.  https://doi.org/10.1021/acs.jpcc.7b00313 CrossRefGoogle Scholar
  172. Yang M, Flytzani-Stephanopoulos M (2017) Design of single-atom metal catalysts on various supports for the low-temperature water–gas shift reaction. Catal Today.  https://doi.org/10.1016/j.cattod.2017.04.034 CrossRefGoogle Scholar
  173. Yang L, Jingyue L (2017) Co oxidation on metal oxide supported single Pt atoms: the role of the support. Ind Eng Chem Res 56:6916–6925.  https://doi.org/10.1021/acs.iecr.7b01477 CrossRefGoogle Scholar
  174. Yang T, Tetsu T (2005) Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J Am Chem Soc 127:7632–7637.  https://doi.org/10.1021/ja042192u CrossRefGoogle Scholar
  175. Yang M, Allard LF, Flytzani-Stephanopoulos M (2013a) Atomically dispersed Au–(OH) species bound on titania catalyze the low-temperature water–gas shift reaction. J Am Chem Soc 135:3768–3771.  https://doi.org/10.1021/ja312646d CrossRefGoogle Scholar
  176. Yang XF, Aiqin W, Botao Q, Jun L, Jingyue L, Tao Z (2013b) Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res 46:1740–1748.  https://doi.org/10.1021/ar300361m CrossRefGoogle Scholar
  177. Yang M, Liu J, Lee S, Zugic B, Huang J, Allard LF, Flytzani-Stephanopoulos M (2015) A common single-site Pt(ii)–O(OH)x-species stabilized by sodium on “active” and “inert” supports catalyzes the water–gas shift reaction. J Am Chem Soc 137:3470–3473.  https://doi.org/10.1021/ja513292k CrossRefGoogle Scholar
  178. Yang T, Fukuda R, Hosokawa S, Tanaka T, Sakaki S, Ehara M (2017) A theoretical investigation on CO oxidation by single-atom catalysts M1/γ-Al2O3 (m = Pd, Fe Co, and Ni). ChemCatChem 9:1222–1229.  https://doi.org/10.1002/cctc.201601713 CrossRefGoogle Scholar
  179. Yantao S, Haisheng W, Jiahao G, Suxia L, Aiqin W, Tao Z, Jingyue L, Tingli M (2014) Single-atom catalysis in mesoporous photovoltaics: the principle of utility maximization. Adv Mater 26:8147–8153.  https://doi.org/10.1002/adma.201402978 CrossRefGoogle Scholar
  180. Yong W, Weitao Z, Dehui D, Xinhe B (2017) Two-dimensional materials confining single atoms for catalysis. Chin J Catal 38:1443–1453.  https://doi.org/10.1016/S1872-2067(17)62839-0 CrossRefGoogle Scholar
  181. Zhang X, Shi H, Xu BQ (2005) Catalysis by gold: isolated surface Au3+ ions are active sites for selective hydrogenation of 1,3-butadiene over Au/ZrO2 catalysts. Angew Chem Int Ed 44:7132–7135.  https://doi.org/10.1002/anie.200502101 CrossRefGoogle Scholar
  182. Zhang H, Tatsuya W, Mitsutaka O, Masatake H, Naoki T (2011) Catalytically highly active top gold atom on palladium nanocluster. Nat Mater 11:49–52.  https://doi.org/10.1038/nmat3143 CrossRefGoogle Scholar
  183. Zhang RQ, Lee TH, Yu BD, Stampfl Soon A (2012a) The role of titanium nitride supports for single-atom platinum-based catalysts in fuel cell technology. Phys Chem Chem Phys 14:16552–16557.  https://doi.org/10.1039/c2cp41392b CrossRefGoogle Scholar
  184. Zhang W, Xu S, Han X, Bao X (2012b) In situ solid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach. Chem Soc Rev 41:192–210.  https://doi.org/10.1039/c1cs15009j CrossRefGoogle Scholar
  185. Zhang X, Guo J, Guan P, Liu C, Huang H, Xue F, Dong X, Pennycook SJ, Chisholm MF (2013) Catalytically active single-atom niobium in graphitic layers. Nat Commun 4:1924–1930.  https://doi.org/10.1038/ncomms2929 CrossRefGoogle Scholar
  186. Zhang H, Kawashima K, Okumura M, Toshima N (2014) Colloidal Au single-atom catalysts embedded on Pd nanoclusters. J Mater Chem A 2:13498–13508.  https://doi.org/10.1039/c4ta01696c CrossRefGoogle Scholar
  187. Zhang X, Lei J, Wu D, Zhao X, Jing Y, Zhou Z (2016a) A Ti-anchored Ti2CO2 monolayer (MXene) as a single-atom catalyst for co oxidation. J Mater Chem A 4:4871–4876.  https://doi.org/10.1039/c6ta00554c CrossRefGoogle Scholar
  188. Zhang B, Asakura H, Zhang J, Zhang J, De S, Yan N (2016b) Stabilizing a platinum single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew Chem Int Ed 55:8319–8323.  https://doi.org/10.1002/anie.201602801 CrossRefGoogle Scholar
  189. Zhang H, Wei J, Dong J, Liu G, Shi L, An P, Zhao G, Kong J, Wang X, Meng X, Zhang J, Ye J (2016c) Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework. Angew Chem Int Ed 55:14310–14314.  https://doi.org/10.1002/anie.201608597 CrossRefGoogle Scholar
  190. Zhao P, Su Y, Zhang Y, Li SJ, Chen G (2011) CO catalytic oxidation on iron-embedded hexagonal boron nitride sheet. Chem Phys Lett 515:159–162.  https://doi.org/10.1016/j.cplett.2011.09.034 CrossRefGoogle Scholar
  191. Zhiwei H, Qingqing C, Pingping H, Jiming H, Junhua L, Xingfu T (2012) Catalytically active single-atom sites fabricated from silver particles. Angew Chem Int Ed 51:4198–4203.  https://doi.org/10.1002/anie.201109065 CrossRefGoogle Scholar
  192. Zhou S, Duan Y, Wang F, Wang C (2017) Fluorescent au nanoclusters stabilized by silane: facile synthesis, color-tunability and photocatalytic properties. Nanoscale 9:4981–4988.  https://doi.org/10.1039/c7nr01052d CrossRefGoogle Scholar
  193. Zhu C, Fu S, Shi Q, Du D, Lin Y (2017) Single-atom electrocatalysts. Angew Chem Int Ed.  https://doi.org/10.1002/anie.201703864 CrossRefGoogle Scholar
  194. Zupeng C, Sharon MEV, Rowan KL, Roland H, Tom F, Quentin MR, John MT, Paul AM, Dariya D, Markus A, Sergey P, Núria L, Javier PR (2017) Stabilization of single metal atoms on graphitic carbon nitride. Adv Funct Mater 27:1605785–1605796.  https://doi.org/10.1002/adfm.201605785 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, and Key Laboratory of Functional Materials and Devices for Special EnvironmentsChinese Academy of SciencesÜrümqiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Nano Institute of Utah and Department of Materials Science and EngineeringUniversity of UtahSalt Lake CityUSA
  4. 4.Vaporsens Inc.Salt Lake CityUSA

Personalised recommendations