Environmental Chemistry Letters

, Volume 16, Issue 1, pp 161–182 | Cite as

Nanosensors and nanobiosensors in food and agriculture

  • Anup K. Srivastava
  • Atul Dev
  • Surajit Karmakar


The food and agriculture sector controls the economic growth of a developing country. The food industries have practices of growing crops, raising livestock and sea foods, food processing and packaging, regulating production and distribution with quality and safety. The process control and monitoring quality are crucial steps. Here we review nanosensors and nanobiosensors as alternative of classical quantification methods. Nanoscale dimensions of metal nanoparticles, metal nanoclusters, metal oxide nanoparticles, metal and carbon quantum dots, graphene, carbon nanotubes, and nanocomposites expand the sensitivity by signal amplification and integrate several novel transduction principles such as enhanced electrochemical, optical, Raman, enhanced catalytic activity, and superparamagnetic properties into the nanosensors. The electrochemical nanosensors, optical nanosensors, electronic nose and electronic tongue, nanobarcode technology, and wireless nanosensors have revolutionized the sensing in food and agriculture sectors with multiplex and real-time sensing capabilities. Despite previous success stories of the remunerative health sector, the approaches are transferred subsequently to food and agriculture sector; with potential application in detection of food contaminants such as preservatives, antibiotics, heavy metal ions, toxins, microbial load, and pathogens along with the rapid monitoring of temperature, traceability, humidity, gas, and aroma of the food stuff.


Nanosensors and nanobiosensors Agriculture Food quality Precision agriculture Electrochemical nanobiosensors 



The author gratefully acknowledges the financial support from Council of Scientific and Industrial Research (CSIR), New Delhi, and Science and Engineering Research Board (SERB) grant: ECR/2016/000633/LS.


  1. Antiochia R, Vinci G, Gorton L (2013) Rapid and direct determination of fructose in food: a new osmium-polymer mediated biosensor. Food Chem 140(4):742–747. CrossRefGoogle Scholar
  2. Arami S, Sato M, Futo S (2011) Applicability of DNA barcode for identification of fish species. Food Hyg and Saf Sci 52(3):205–210CrossRefGoogle Scholar
  3. ArunKumar M, Alagumeenaakshi M (2014) RPL optimization for precise green house management using wireless sensor network. In: 2014 international conference on green computing communication and electrical engineering (Icgccee)Google Scholar
  4. Asha Chaubey BDM (2002) Mediated biosensors. Biosens Bioelectron 17:441–456CrossRefGoogle Scholar
  5. Asis A, Destura I, Santos MD (2016) Species composition of by-catch from milkfish (Chanos chanos) fry fishery in selected sites in the Philippines as determined by DNA barcodes. Mitochondrial DNA 27(3):1981–1985. Google Scholar
  6. Baldwin EA, Bai JH, Plotto A, Dea S (2011) Electronic noses and tongues: applications for the food and pharmaceutical industries. Sensors 11(5):4744–4766. CrossRefGoogle Scholar
  7. Barahona F, Bardliving CL, Phifer A, Bruno JG, Batt CA (2013) an aptasensor based on polymer-gold nanoparticle composite microspheres for the detection of malathion using surface-enhanced raman spectroscopy. Ind Biotechnol 9(1):42–50. CrossRefGoogle Scholar
  8. Bastani B, Fernandez D (2002) Intellectual property rights in nanotechnology. Thin Solid Films 420:472–477. CrossRefGoogle Scholar
  9. Ben-Amram Y, Tel-Vered R, Riskin M, Wang ZG, Willner I (2012) Ultrasensitive and selective detection of alkaline-earth metal ions using ion-imprinted Au NPs composites and surface plasmon resonance spectroscopy. Chem Sci 3(1):162–167. CrossRefGoogle Scholar
  10. Botti S, Giuffra E (2010) Oligonucleotide indexing of DNA barcodes: identification of tuna and other scombrid species in food products. BMC Biotechnol. Google Scholar
  11. Bui MPN, Ahmed S, Abbas A (2015) Single-digit pathogen and attomolar detection with the naked eye using liposome-amplified plasmonic immunoassay. Nano Lett 15(9):6239–6246. CrossRefGoogle Scholar
  12. Castro T, Reifenberger R, Choi E, Andres RP (1990) Size-dependent melting temperature of individual nanometer-sized metallic clusters. Phys Rev B Condens Matter 42(13):8548–8556CrossRefGoogle Scholar
  13. Chang CH, Lin HY, Ren Q, Lin YS, Shao KT (2016) DNA barcode identification of fish products in Taiwan: government-commissioned authentication cases. Food Control 66:38–43. CrossRefGoogle Scholar
  14. Chen C, Yuan ZQ, Chang HT, Lu FN, Li ZH, Lu C (2016) Silver nanoclusters as fluorescent nanosensors for selective and sensitive nitrite detection. Anal Methods 8(12):2628–2633. CrossRefGoogle Scholar
  15. Cho SY, Suh KI, Bae YJ (2013) DNA barcode library and its efficacy for identifying food-associated insect pests in Korea. Entomol Res 43(5):253–261. CrossRefGoogle Scholar
  16. Chouhan RS, Vinayaka AC, Thakur MS (2010) Thiol-stabilized luminescent CdTe quantum dot as biological fluorescent probe for sensitive detection of methyl parathion by a fluoroimmunochromatographic technique. Anal Bioanal Chem 397(4):1467–1475. CrossRefGoogle Scholar
  17. Čihák R, Vontorkov M (1983) Cytogenetic effects of quinoxaline-1,4-dioxide-type growth-promoting agents Mutation Research, 117 Google Scholar
  18. Colombo F, Chessa S, Cattaneo P, Bernardi C (2011) Polymerase chain reaction products (PCR) on “DNA barcode zone” resolved by temporal temperature gradient electrophoresis: a tool for species identification of mixed meat specimens—a technical note on preliminary results. Food Control 22(8):1471–1472. CrossRefGoogle Scholar
  19. Concina I, Falasconi M, Sberveglieri V (2012) Electronic noses as flexible tools to assess food quality and safety: should we trust them? IEEE Sens J 12(11):3232–3237. CrossRefGoogle Scholar
  20. Dasary SSR, Rai US, Yu HT, Anjaneyulu Y, Dubey M, Ray PC (2008) Gold nanoparticle based surface enhanced fluorescence for detection of organophosphorus agents. Chem Phys Lett 460(1–3):187–190. CrossRefGoogle Scholar
  21. Delneri D (2010) Barcode technology in yeast: application to pharmacogenomics. FEMS Yeast Res 10(8):1083–1089. CrossRefGoogle Scholar
  22. Devi R, Yadav S, Nehra R, Yadav S, Pundir CS (2013) Electrochemical biosensor based on gold coated iron nanoparticles/chitosan composite bound xanthine oxidase for detection of xanthine in fish meat. J Food Eng 115(2):207–214. CrossRefGoogle Scholar
  23. Di Natale C, Macagnano A, Davide F, D’Amico A, Paolesse R, Boschi T, Ferri G (1997) An electronic nose for food analysis. Sens and Actuators B-Chem 44(1–3):521–526. CrossRefGoogle Scholar
  24. Dong J, Zhao H, Qiao FM, Liu P, Wang XD, Ai SY (2013) Quantum dot immobilized acetylcholinesterase for the determination of organophosphate pesticides using graphene-chitosan nanocomposite modified electrode. Anal Methods 5(11):2866–2872. CrossRefGoogle Scholar
  25. Dou WC, Tang WL, Zhao GY (2013) A disposable electrochemical immunosensor arrays using 4-channel screen-printed carbon electrode for simultaneous detection of Escherichia coli O157:H7 and Enterobacter sakazakii. Electrochim Acta 97:79–85. CrossRefGoogle Scholar
  26. Duran N, Marcato PD (2013) Nanobiotechnology perspectives. Role of nanotechnology in the food industry: a review. Int J Food Sci Technol 48(6):1127–1134. CrossRefGoogle Scholar
  27. El Maazouzi L, Castro S, Gil N, Alvarez J, Pesado J, Lamas JA, et al. (2014). Contribution to precision agriculture using sap flow sensors and leaf wetness in wireless sensor network. Vii Congreso Iberico De Agroingenieria Y Ciencias Horticolas: Innovar Y Producir Para El Futuro. Innovating and Producing for the Future, pp 877–882Google Scholar
  28. Evtugyn G, Porfireva A, Stepanova V, Kutyreva M, Gataulina A, Ulakhovich N, Hianik T (2013) impedimetric aptasensor for ochratoxin a determination based on au nanoparticles stabilized with hyper-branched polymer. Sens (Basel) 13(12):16129–16145CrossRefGoogle Scholar
  29. Ferri G, Alu M, Corradini B, Licata M, Beduschi G (2009) Species identification through DNA “barcodes’’. Genet Test Mol Biomark 13(3):421–426. CrossRefGoogle Scholar
  30. Frasconi M, Tel-Vered R, Riskin M, Willner I (2010) Surface plasmon resonance analysis of antibiotics using imprinted boronic acid-functionalized Au nanoparticle composites. Anal Chem 82(6):2512–2519. CrossRefGoogle Scholar
  31. Fu ZY, Zhou XM, Xing D (2013) Rapid colorimetric gene-sensing of food pathogenic bacteria using biomodification-free gold nanoparticle. Sens Actuators B-Chem 182:633–641. CrossRefGoogle Scholar
  32. Gan T, Li K, Wu KB (2008) Multi-wall carbon nanotube-based electrochemical sensor for sensitive determination of Sudan I. Sens Actuators B-Chem 132(1):134–139. CrossRefGoogle Scholar
  33. Ganopoulos I, Madesis P, Darzentas N, Argiriou A, Tsaftaris A (2012) Barcode high resolution melting (Bar-HRM) analysis for detection and quantification of PDO “Fava Santorinis” (Lathyrus clymenum) adulterants. Food Chem 133(2):505–512. CrossRefGoogle Scholar
  34. Ge SG, Lu JJ, Ge L, Yan M, Yu JH (2011) Development of a novel deltamethrin sensor based on molecularly imprinted silica nanospheres embedded CdTe quantum dots. Spectrochimi Acta Part a-Mol Biomol Spectrosc 79(5):1704–1709. CrossRefGoogle Scholar
  35. Gomes RC, Pastore VAA, Martins OA, Biondi GF (2015) Nanotechnology applications in the food industry: a review. Braz J Hyg Anim Sanity 9(1):1–8. Google Scholar
  36. Gressel J, Ehrlich G (2002) Universal inheritable barcodes for identifying organisms. Trends Plant Sci 7(12):542–544. CrossRefGoogle Scholar
  37. Guillén I, Gabaldón JA, Núñez-Delicado E, Puchades R, Maquieira A, Morais S (2011) Detection of sulphathiazole in honey samples using a lateral flow immunoassay. Food Chem 129(2):624–629. CrossRefGoogle Scholar
  38. Guo YR, Liu SY, Gui WJ, Zhu GN (2009) Gold immunochromatographic assay for simultaneous detection of carbofuran and triazophos in water samples. Anal Biochem 389(1):32–39. CrossRefGoogle Scholar
  39. Handy SM, Deeds JR, Ivanova NV, Hebert PDN, Hanner RH, Ormos A, Yancy HF (2011) A single-laboratory validated method for the generation of DNA barcodes for the identification of fish for regulatory compliance. J AOAC Int 94(1):201–210Google Scholar
  40. Heldman DR, Lund DB (2011) The beginning, current, and future of food engineering: a perspective. Food Eng Interfaces. Google Scholar
  41. Hu LZ, Deng L, Alsaiari S, Zhang DY, Khashab NM (2014) “Light-on” sensing of antioxidants using gold nanoclusters. Anal Chem 86(10):4989–4994. CrossRefGoogle Scholar
  42. Huang X, Tu HY, Zhu DH, Du D, Zhang AD (2009) A gold nanoparticle labeling strategy for the sensitive kinetic assay of the carbamate-acetylcholinesterase interaction by surface plasmon resonance. Talanta 78(3):1036–1042. CrossRefGoogle Scholar
  43. Huang CF, Yao GH, Liang RP, Qiu JD (2013) Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A. Biosens Bioelectron 50:305–310. CrossRefGoogle Scholar
  44. Huang XC, Yuan YH, Wang XY, Jiang FH, Yue TL (2015) Application of electronic nose in tandem with chemometric analysis for detection of alicyclobacillus acidoterrestris-spawned spoilage in apple juice beverage. Food Bioprocess Technol 8(6):1295–1304. CrossRefGoogle Scholar
  45. Hwang H, Wu JZ, Yu ESH (2016) Innovation, imitation and intellectual property rights in developing countries. Rev Dev Econ 20(1):138–151. CrossRefGoogle Scholar
  46. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2(3):107–118. CrossRefGoogle Scholar
  47. Jampilek J, Kral’ova K (2015) Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecol Chem Eng S-Chemia I Inzynieria Ekologiczna S 22(3):321–361. Google Scholar
  48. Jones YL, Peters SM, Weland C, Ivanova NV, Yancy HF (2013) Potential use of DNA barcodes in regulatory science: identification of the US Food and Drug Administration’s “Dirty 22,” contributors to the spread of foodborne pathogens. J Food Prot 76(1):144–149. CrossRefGoogle Scholar
  49. Kalita H, Palaparthy VS, Baghini MS, Aslam M (2016) Graphene quantum dot soil moisture sensor. Sens Actuators B-Chem 233:582–590. CrossRefGoogle Scholar
  50. Ko S, Park TJ, Kim HS, Kim JH, Cho YJ (2009) Directed self-assembly of gold binding polypeptide-protein A fusion proteins for development of gold nanoparticle-based SPR immunosensors. Biosens Bioelectron 24(8):2592–2597. CrossRefGoogle Scholar
  51. Ko D, Kwak Y, Song S (2014) Real time traceability and monitoring system for agricultural products based on wireless sensor network. Int J Distrib Sens Netw. Google Scholar
  52. Kochhar S (2008) Institutions and capacity building for the evolution of intellectual property rights regime in India: V—analysis of review of TRIPS agreement and R&D Prospect in indian agriculture under IPR regime. J Intellect Prop Rights 13(5):536–547Google Scholar
  53. Kodali RK, Rawat N, IEEE (2013) Wireless sensor network in mango farming. In: 2013 4th Nirma University international conference on engineeringGoogle Scholar
  54. Koncki R, Radomska A, Glab S (2000) Potentiometric determination of dialysate urea nitrogen. Talanta 52(1):13–17. CrossRefGoogle Scholar
  55. Kueng A, Kranz C, Mizaikoff B (2004) Amperometric ATP biosensor based on polymer entrapped enzymes. Biosens Bioelectron 19(10):1301–1307. CrossRefGoogle Scholar
  56. Li J, Shen C, IEEE (2013) Energy conservative wireless sensor networks for black pepper monitoring in tropical area. In: 2013 IEEE global high tech congress on electronicsGoogle Scholar
  57. Li X, Shashidhar R, Ma Y (2013) Molecular imprinted nanosensors. US2013092547 (A1)Google Scholar
  58. Lichtfouse E, Schwarzbauer J, Robert D (2005) Environmental chemistry green chemistry and pollutants in ecosystems. Springer, Berlin. Google Scholar
  59. Lichtfouse E, Navarrete M, Debaeke P, Souchere V, Alberola C, Menassieu J (2009) Agronomy for sustainable agriculture: a review. Agron Sustain Dev 29(1):1–6. CrossRefGoogle Scholar
  60. Lijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. CrossRefGoogle Scholar
  61. Lin KC, Hong CP, Chen SM (2013a) Simultaneous determination for toxic ractopamine and salbutamol in pork sample using hybrid carbon nanotubes. Sens Actuators B-Chem 177:428–436. CrossRefGoogle Scholar
  62. Lin X, Ni Y, Kokot S (2013b) Glassy carbon electrodes modified with gold nanoparticles for the simultaneous determination of three food antioxidants. Anal Chim Acta 765:54–62. CrossRefGoogle Scholar
  63. Liu HL, Zhou KW, Wu D, Wang J, Sun BG (2016) A novel quantum dots-labeled on the surface of molecularly imprinted polymer for turn-off optosensing of dicyandiamide in dairy products. Biosens Bioelectron 77:512–517. CrossRefGoogle Scholar
  64. Lloret J, Garcia M, Sendra S, Lloret G (2015) An underwater wireless group-based sensor network for marine fish farms sustainability monitoring. Telecommun Syst 60(1):67–84. CrossRefGoogle Scholar
  65. Mafuta M, Zennaro M, Bagula A, Ault G, Gombachika H, Chadza T (2013) Successful deployment of a wireless sensor network for precision agriculture in Malawi. Int J Distrib Sens Netw. Google Scholar
  66. Maralit BA, Aguila RD, Ventolero MFH, Perez SKL, Willette DA, Santos MD (2013) Detection of mislabeled commercial fishery by-products in the Philippines using DNA barcodes and its implications to food traceability and safety. Food Control 33(1):119–125. CrossRefGoogle Scholar
  67. Martin YG, Oliveros MCC, Pavon JLP, Pinto CG, Cordero BM (2001) Electronic nose based on metal oxide semiconductor sensors and pattern recognition techniques: characterisation of vegetable oils. Anal Chim Acta 449(1–2):69–80CrossRefGoogle Scholar
  68. Maskey AP, Day JN, Tuan PQ, Thwaites GE, Campbell JI, Zimmerman M, Basnyat B (2006) Salmonella enterica serovar Paratyphi A and S-enterica serovar Typhi cause indistinguishable clinical syndromes in Kathmandu, Nepal. Clin Infect Dis 42(9):1247–1253. CrossRefGoogle Scholar
  69. Men H, Chen DL, Zhang XT, Liu JJ, Ning K (2014) Data fusion of electronic nose and electronic tongue for detection of mixed edible-oil. J Sens. Google Scholar
  70. Mohareb F, Papadopoulou O, Panagou E, Nychas GJ, Bessant C (2016) Ensemble-based support vector machine classifiers as an efficient tool for quality assessment of beef fillets from electronic nose data. Anal Methods 8(18):3711–3721. CrossRefGoogle Scholar
  71. Momin JK, Jayakumar C, Prajapati JB (2013) Potential of nanotechnology in functional foods. Emir J Food Agric 25(1):10–19. CrossRefGoogle Scholar
  72. Shimojo T, Tashiro Y, Morito T, Suzuki M, Lee D, Kondo I, Fukuda N, Morikawa H, IEEE (2013) A leaf area index visualization method using wireless sensor networks. In: 2013 proceedings of sice annual conference, pp 2082–2087Google Scholar
  73. Morise H, Miyazaki E, Yoshimitsu S, Eki T (2012) Profiling nematode communities in unmanaged flowerbed and agricultural field soils in Japan by DNA barcode sequencing. PLoS ONE. Google Scholar
  74. Nasirizadeh N, Hajihosseini S, Shekari Z, Ghaani M (2015) A novel electrochemical biosensor based on a modified gold electrode for hydrogen peroxide determination in different beverage samples. Food Anal Methods 8(6):1546–1555. CrossRefGoogle Scholar
  75. Neethirajan S, Jayas DS (2011) Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol 4(1):39–47. CrossRefGoogle Scholar
  76. Nesakumar N, Sethuraman S, Krishnan UM, Rayappan JBB (2016) Electrochemical acetylcholinesterase biosensor based on ZnO nanocuboids modified platinum electrode for the detection of carbosulfan in rice. Biosens Bioelectron 77:1070–1077. CrossRefGoogle Scholar
  77. O’Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209(2):171–176. CrossRefGoogle Scholar
  78. Peris M, Escuder-Gilabert L (2013) On-line monitoring of food fermentation processes using electronic noses and electronic tongues: a review. Anal Chim Acta 804:29–36. CrossRefGoogle Scholar
  79. Qiao SY, Wei ZQ, Yang YQ, IEEE (2013) Research on vegetable supply chain traceability model based on two-dimensional barcode. In: 2013 sixth international symposium on computational intelligence and design pp 317–320Google Scholar
  80. Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 03(02):315–324. CrossRefGoogle Scholar
  81. Ranjan S, Dasgupata N, Lichtfouse E (2016) Nanoscience in food and agriculture 2. Sustain Agric Rev 21:1–25. CrossRefGoogle Scholar
  82. Rong-Hwa S, Shiao-Shek T, Der-Jiang C, Yao-Wen H (2010) Gold nanoparticle-based lateral flow assay for detection of staphylococcal enterotoxin B. Food Chem 118(2):462–466. CrossRefGoogle Scholar
  83. Ruedas-Rama MJ, Orte A, Hall EA, Alvarez-Pez JM, Talavera EM (2011) Quantum dot photoluminescence lifetime-based pH nanosensor. Chem Commun (Camb) 47(10):2898–2900. CrossRefGoogle Scholar
  84. Sahota H, Kumar R, Kamal A (2011) A wireless sensor network for precision agriculture and its performance. Wirel Commun Mob Comput 11(12):1628–1645. CrossRefGoogle Scholar
  85. Santandreu M, Alegret S, Fabregas E (1999) Determination of beta-HCG using amperometric immunosensors based on a conducting immunocomposite. Anal Chim Acta 396(2–3):181–188. CrossRefGoogle Scholar
  86. Scott SM, James D, Ali Z (2006) Data analysis for electronic nose systems. Microchim Acta 156(3–4):183–207. CrossRefGoogle Scholar
  87. Selvakumar LS, Ragavan KV, Abhijith KS, Thakur MS (2013) Immunodipstick based gold nanosensor for vitamin B12 in fruit and energy drinks. Anal Methods 5(7):1806. CrossRefGoogle Scholar
  88. Sharma A, Rogers KR (1994) Biosensors. Meas Sci Technol 5:461–472CrossRefGoogle Scholar
  89. Shi HJ, Zhao GH, Liu MC, Fan LF, Cao TC (2013) Aptamer-based colorimetric sensing of acetamiprid in soil samples: sensitivity, selectivity and mechanism. J Hazard Mater 260:754–761. CrossRefGoogle Scholar
  90. Singh A, Choudhary M, Singh MP, Verma HN, Singh SP, Arora K (2015) DNA functionalized direct electro-deposited gold nanoaggregates for efficient detection of salmonella typhi. Bioelectrochemistry 105:7–15. CrossRefGoogle Scholar
  91. Srivastava AK, Dev A, Karmakar S (2017) Nanosensors for food and agriculture. In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in food and agriculture 5. Sustainable Agriculture Reviews, vol 26. Springer, Cham, pp 41–79Google Scholar
  92. Stredansky M, Pizzariello A, Stredanska S, Miertus S (1999) Determination of d-fructose in foodstuffs by an improved amperometric biosensor based on a solid binding matrix. Anal Commun 36(2):57–61. CrossRefGoogle Scholar
  93. Sun X, Wang X (2010) Acetylcholinesterase biosensor based on Prussian blue-modified electrode for detecting organophosphorous pesticides. Biosens Bioelectron 25(12):2611–2614. CrossRefGoogle Scholar
  94. Sun X, Zhai C, Wang XY (2013) A novel and highly sensitive acetyl-cholinesterase biosensor modified with hollow gold nanospheres. Bioprocess Biosyst Eng 36(3):273–283. CrossRefGoogle Scholar
  95. Tkac J, Whittaker JW, Ruzgas T (2007) The use of single walled carbon nanotubes dispersed in a chitosan matrix for preparation of a galactose biosensor. Biosens Bioelectron 22(8):1820–1824. CrossRefGoogle Scholar
  96. Torri L, Piochi M (2016) Sensory methods and electronic nose as innovative tools for the evaluation of the aroma transfer properties of food plastic bags. Food Res Int 85:235–243. CrossRefGoogle Scholar
  97. Troyer DL, Bossmann SH, Malalasekera AP, Samarakoon TN, Wang H, Kalubowilage M (2016). Nanosensors for detecting enzymatic activity in dairy production. WO2016018798 (A1)Google Scholar
  98. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510CrossRefGoogle Scholar
  99. Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28(2):232–254. CrossRefGoogle Scholar
  100. Viswanathan S, Radecka H, Radecki J (2009) Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA. Biosens Bioelectron 24(9):2772–2777. CrossRefGoogle Scholar
  101. Vyas SS, Jadhav SV, Majee SB, Shastri JS, Patravale VB (2015) Development of immunochromatographic strip test using fluorescent, micellar silica nanosensors for rapid detection of B-abortus antibodies in milk samples. Biosens Bioelectron 70:254–260. CrossRefGoogle Scholar
  102. Wang M, Li ZY (2008) Nano-composite ZrO2/Au film electrode for voltammetric detection of parathion. Sens Actuators B-Chem 133(2):607–612. CrossRefGoogle Scholar
  103. Wang YK, Yan YX, Ji WH, Wang HA, Zou Q, Sun JH (2013) Novel chemiluminescence immunoassay for the determination of zearalenone in food samples using gold nanoparticles labeled with streptavidin-horseradish peroxidase. J Agric Food Chem 61(18):4250–4256. CrossRefGoogle Scholar
  104. Wang JY, Wang H, He J, Li LL, Shen MG, Tan X, Zheng LR (2015) Wireless sensor network for real-time perishable food supply chain management. Comput Electron Agric 110:196–207. CrossRefGoogle Scholar
  105. Weerathunge P, Ramanathan R, Shukla R, Sharma TK, Bansal V (2014) Aptamer-controlled reversible inhibition of gold nanozyme activity for pesticide sensing. Anal Chem 86(24):11937–11941. CrossRefGoogle Scholar
  106. Wilson AD, Baietto M (2009) Applications and advances in electronic-nose technologies. Sensors 9(7):5099–5148. CrossRefGoogle Scholar
  107. Wu SJ, Duan N, Shi Z, Fang CC, Wang ZP (2014) Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels. Anal Chem 86(6):3100–3107. CrossRefGoogle Scholar
  108. Xu Y, Ding J, Chen HY, Zhao Q, Hou J, Yan J, Ren NQ (2013) Fast determination of sulfonamides from egg samples using magnetic multiwalled carbon nanotubes as adsorbents followed by liquid chromatography-tandem mass spectrometry. Food Chem 140(1–2):83–90. CrossRefGoogle Scholar
  109. Yan JX, Guan HN, Yu J, Chi DF (2013) Acetylcholinesterase biosensor based on assembly of multiwall carbon nanotubes onto liposome bioreactors for detection of organophosphates pesticides. Pestic Biochem Physiol 105(3):197–202. CrossRefGoogle Scholar
  110. Yancy HF, Zemlak TS, Mason JA, Washington JD, Tenge BJ, Nguyen NLT, Hebert PDN (2008) Potential use of DNA barcodes in regulatory science: applications of the Regulatory Fish Encyclopedia. J Food Prot 71(1):210–217CrossRefGoogle Scholar
  111. Yang YC, Huang YW, Hsieh CH, Huang YR, Chen CH (2012) A unique specification method for processed unicorn filefish products using a DNA barcode marker. Food Control 25(1):292–302. CrossRefGoogle Scholar
  112. Yang M, Peng ZH, Ning Y, Chen YZ, Zhou Q, Deng L (2013a) Highly specific and cost-efficient detection of salmonella paratyphi a combining aptamers with single-walled carbon nanotubes. Sensors (Basel) 13(5):6865–6881. CrossRefGoogle Scholar
  113. Yang YK, Fang GZ, Liu GY, Pan MF, Wang XM, Kong LJ, Wang S (2013b) Electrochemical sensor based on molecularly imprinted polymer film via sol-gel technology and multi-walled carbon nanotubes-chitosan functional layer for sensitive determination of quinoxaline-2-carboxylic acid. Biosens Bioelectron 47:475–481. CrossRefGoogle Scholar
  114. Yavuz S, Erkal A, Kariper IA, Solak AO, Jeon S, Mulazimoglu IE, Ustundag Z (2016) Carbonaceous materials-12: a novel highly sensitive graphene oxide-based carbon electrode: preparation, characterization, and heavy metal analysis in food samples. Food Anal Methods 9(2):322–331. CrossRefGoogle Scholar
  115. Yu HC, Wang J, Xu Y (2007) Identification of adulterated milk using electronic nose. Sens Mater 19(5):275–285Google Scholar
  116. Yu GX, Wu WX, Zhao Q, Wei XY, Lu Q (2015) Efficient immobilization of acetylcholinesterase onto amino functionalized carbon nanotubes for the fabrication of high sensitive organophosphorus pesticides biosensors. Biosens Bioelectron 68:288–294. CrossRefGoogle Scholar
  117. Zeng Y, Zhu ZH, Wang RX, Lu GH (2005) Electrochemical determination of bromide at a multiwall carbon nanotubes-chitosan modified electrode. Electrochim Acta 51(4):649–654. CrossRefGoogle Scholar
  118. Zeng SW, Baillargeat D, Ho HP, Yong KT (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 43(10):3426–3452. CrossRefGoogle Scholar
  119. Zhai C, Sun X, Zhao WP, Gong ZL, Wang XY (2013) Acetylcholinesterase biosensor based on chitosan/prussian blue/multiwall carbon nanotubes/hollow gold nanospheres nanocomposite film by one-step electrodeposition. Biosens Bioelectron 42:124–130. CrossRefGoogle Scholar
  120. Zhang D, Carr DJ, Alocilja EC (2009) Fluorescent bio-barcode DNA assay for the detection of Salmonella enterica serovar Enteritidis. Biosens Bioelectron 24(5):1377–1381. CrossRefGoogle Scholar
  121. Zhang Z, Lin M, Zhang S, Vardhanabhuti B (2013) Detection of aflatoxin M1 in milk by dynamic light scattering coupled with superparamagnetic beads and gold nanoprobes. J Agric Food Chem 61(19):4520–4525. CrossRefGoogle Scholar
  122. Zhao XJ, Hilliard LR, Mechery SJ, Wang YP, Bagwe RP, Jin SG, Tan WH (2004) A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc Natl Acad Sci USA 101(42):15027–15032. CrossRefGoogle Scholar
  123. Zhu Y, Cao YY, Sun X, Wang XY (2013) Amperometric immunosensor for carbofuran detection based on MWCNTs/GS-PEI-Au and AuNPs-antibody conjugate. Sensors (Basel) 13(4):5286–5301. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Nano Science and TechnologyMohaliIndia

Personalised recommendations