Advertisement

Environmental Chemistry Letters

, Volume 16, Issue 1, pp 147–160 | Cite as

Toxic impact of nanomaterials on microbes, plants and animals

  • Mohammed Nadim Sardoiwala
  • Babita Kaundal
  • Subhasree Roy Choudhury
Review

Abstract

Nanotechnology has many potential applications in medical, agriculture, electronic and sports industries. Nonetheless, there is actually little knowledge on toxic effects of nanomaterial. Here we review nanotoxicity, action mechanisms and fate of nanomaterials. We discuss the impact of nanotoxicity on microbes, plant, animal and human health, and factors like size, shape, surface charge, composition, ionic concentration and physiological. We explain the detection of nanotoxicity at cell and genome levels. Toxicities of commercial nanomaterials, risk management, rules and regulations regarding marketed nanoproducts are also summarized.

Keywords

Nanomaterials Nanotoxicology Cytotoxicity Genotoxicity Plants Animals Microbes 

Notes

Acknowledgements

The authors kindly acknowledge SERB DST Funding (YSS/2015/001706) to Dr. Subhasree Roy Choudhury and financial support of Council of Scientific and Industrial Research (CSIR) to Mr. Mohammed Nadim Sardoiwala.

References

  1. Adams LK, Lyon DY, Alvarez PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, ZnO water suspensions. Water Res 40(19):3527–3532.  https://doi.org/10.1016/j.watres.2006.08.004 CrossRefGoogle Scholar
  2. Ahamed M, Siddiqui MA, Akhtar MJ, Ahmad I, Pant AB, Alhadlaq HA (2010) Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem Biophys Res Commun 396:578e583.  https://doi.org/10.1016/j.bbrc.2010.04.156 CrossRefGoogle Scholar
  3. Ahamed M, Akhtar MJ, Raja M et al (2011a) ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, survivin and bax/bcl-2 pathways: the role of oxidative stress. Nanomedicine 7:904e913.  https://doi.org/10.1016/j.nano.2011.04.011 Google Scholar
  4. Ahamed M, Siddiqui MA, Ahmad J, Musarrat J, AlKhedhairy AA, AlSalhi MS, Alrokayan SA (2011b) Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology 283:101e108.  https://doi.org/10.1016/j.tox.2011.02.010 CrossRefGoogle Scholar
  5. Alarcon EI, Vulesevic B, Argawal A, Ross A, Bejjani P, Podrebarac J, Ravichandran R, Phopase J, Suuronen EJ, Griffith M (2016) Coloured cornea replacements with anti-infective properties: expanding the safe use of silver nanoparticles in regenerative medicine. Nanoscale 8:6484–6489.  https://doi.org/10.1039/C6NR01339B CrossRefGoogle Scholar
  6. Alarifi S, Ali D, Alkahtani S et al (2013) Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles. Int J Nanomed 8:983e993.  https://doi.org/10.2147/IJN.S42028 Google Scholar
  7. American Technion Society (2015) Exposure to nanoparticles may threaten heart health. ScienceDaily. www.sciencedaily.com/releases/2015/01/150108141317.htm
  8. Arefian Z, Pishbin F, Negahdary M, Ajdary M (2015) Potential toxic effects of zirconia oxide nanoparticles on liver and kidney factors. Biomed Res 26(1): 89–97. ISSN: 0970-938XGoogle Scholar
  9. Armand L, Tarantini A, Beal D, Biola-Clier M, Bobyk L, Sorieul S, Pernet-Gallay K, Marie-Desvergne C, Lynch I, Herlin-Boime N, Carriere M (2016) Long-term exposure of A549 cells to titanium dioxide nanoparticles induce DNA damage and sensitizes cells towards genotoxic agents. Nanotoxicology 10(7):913–923.  https://doi.org/10.3109/17435390.2016.1141338 CrossRefGoogle Scholar
  10. Asharani PV, Lianwu Y, Gong Z, Valiyaveettil S (2011) Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology 5:43e54.  https://doi.org/10.3109/17435390.2010.489207 CrossRefGoogle Scholar
  11. Awasthi KK, John PJ, Awasthi A, Awasthi K (2013) Multiwalled carbon nanotubes induced hepatotoxicity in Swiss albino mice. Micron 44:359–364.  https://doi.org/10.1016/j.micron.2012.08.008 CrossRefGoogle Scholar
  12. Bahadar H, Maqbool F, Niaz K, Abdollahi M (2016) Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 20(1):1–11.  https://doi.org/10.7508/ibj.2016.01.001 Google Scholar
  13. Bakand S, Hayes A (2016) Toxicological considerations, toxicity assessment, and risk management of inhaled nanoparticles. Int J Mol Sci 17(6):929.  https://doi.org/10.3390/ijms17060929 CrossRefGoogle Scholar
  14. Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17(5):387–395.  https://doi.org/10.1007/s10646-008-0208-y CrossRefGoogle Scholar
  15. Becaro AA, Jonsson CM, Puti FC, Siqueira MC, Mattoso LHC, Correa DS, Ferreira MD (2015) Toxicity of PVA-stabilized silver nanoparticles to algae and microcrustaceans. Environ Nanotechnol Monit Manag 3:22–29.  https://doi.org/10.1016/j.enmm.2014.11.002 CrossRefGoogle Scholar
  16. Blazer-Yost BL, Banga A, Amos A, Chernoff E, Lai X, Li C, Mitra S, Witzmann FA (2011) Effect of carbon nanoparticles on renal epithelial cell structure, barrier function, and protein expression. Nanotoxicology 5(3):354–371.  https://doi.org/10.3109/17435390.2010.514076 CrossRefGoogle Scholar
  17. Blinova I, Niskanen J, Kajankari P, Kanarbik L, Käkinen A, Tenhu H, Penttinen OP, Kahru A (2013) Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus. Environ Sci Pollut Res Int 20(5):3456–3463.  https://doi.org/10.1007/s11356-012-1290-5 CrossRefGoogle Scholar
  18. Bowman DM, Van Calster G, Steffi F (2010) Nanomaterials and regulation of cosmetics. Nat Nanotechnol 5(2):92.  https://doi.org/10.1038/nnano.2010.12 CrossRefGoogle Scholar
  19. Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F (2006) Toxicological impact studies based on bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6(4):866–870.  https://doi.org/10.1021/nl052326h CrossRefGoogle Scholar
  20. Buzea C, Pacheco I, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71.  https://doi.org/10.1116/1.2815690 CrossRefGoogle Scholar
  21. Chairuangkitti P, Lawanprasert S, Roytrakul S, Aueviriyavit S, Phummiratch D, Kulthong K et al (2013) Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicol In Vitro 27:330e338.  https://doi.org/10.1016/j.tiv.2012.08.021 CrossRefGoogle Scholar
  22. Chen D, Huang F, Cheng YB, Caruso RA (2009) Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high-performance dye-sensitized solar cells. Adv Mater 21:2206–2210.  https://doi.org/10.1002/adma.200802603 CrossRefGoogle Scholar
  23. Chichiricco G, Poma A (2015) Penetration and toxicity of nanomaterials in higher plants. Nanomaterials 5(2):851–873.  https://doi.org/10.3390/nano5020851 CrossRefGoogle Scholar
  24. Choi O, Deng KK, Kim N-J, Ross L, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42(12):3066–3074.  https://doi.org/10.1016/j.watres.2008.02.021 CrossRefGoogle Scholar
  25. Chueh PJ, Liang RY, Lee YH, Zeng ZM, Chuang SM (2014) Differential cytotoxic effects of gold nanoparticles in different mammalian cell lines. J Hazard Mater 264:303–312.  https://doi.org/10.1016/j.jhazmat.2013.11.031 CrossRefGoogle Scholar
  26. Coradeghini R, Gioria S, García CP, Nativo P, Franchini F, Gilliland D, Ponti J, Rossi F (2013) Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol Lett 217(3):205–216.  https://doi.org/10.1016/j.toxlet.2012.11.022 CrossRefGoogle Scholar
  27. Dalai S, Iswarya V, Bhuvaneshwari M, Pakrashi S, Chandrasekaran N, Mukherjee A (2014) Different modes of TiO2 uptake by Ceriodaphnia dubia: relevance to toxicity and bioaccumulation. Aqua Toxicol 152:139–146.  https://doi.org/10.1016/j.aquatox.2014.04.002 CrossRefGoogle Scholar
  28. Del Vecchio R (2006) Berkeley considering the need for Nano safety, articles.sfgate.comGoogle Scholar
  29. Deng X, Wu F, Liu Z, Luo M, Li L, Ni Q, Jiao Z, Wu M, Liu Y (2009) The splenic toxicity of water soluble multi-walled carbon nanotubes in mice. Carbon 47:1421–1428.  https://doi.org/10.1016/j.carbon.2008.12.032 CrossRefGoogle Scholar
  30. Descotes J (2004) Immunotoxicology of drugs and chemicals: an experimental and clinical approach. Amsterdam Elsevier 1:1–398. ISBN: 978-0-444-51093-8Google Scholar
  31. Dikio ED (2011) Morphological characterization of soot from the atmospheric combustion of kerosene. E J Chem 8:1068–1073.  https://doi.org/10.1155/2011/323872 CrossRefGoogle Scholar
  32. Dikio D, Bixa N (2011) Carbon nanotubes synthesis by catalytic decomposition of ethyne using Fe/Ni catalyst on aluminium oxide support. Int J Appl Chem 7:35–42. ISSN: 0973-1792Google Scholar
  33. Donaldson K, Poland CA, Murphy FA, MacFarlane M, Chernova T, Schinwald A (2013) Pulmonary toxicity of carbon nanotubes and asbestos—similarities and differences. Adv Drug Deliv Rev 65(15):2078–2086.  https://doi.org/10.1016/j.addr.2013.07.014 CrossRefGoogle Scholar
  34. Donmez Gungunes C, Seker S, Elcin AE, Elcin YM (2016) a comparative study on the in vitro cytotoxic responses of two mammalian cell types to fullerenes, carbon nanotubes, and iron oxide nanoparticles. Drug Chem Toxicol 40(2):215–227.  https://doi.org/10.1080/01480545.2016.1199563 CrossRefGoogle Scholar
  35. Drobne D (2007) Nanotoxicology for safe and sustainable nanotechnology. Arh Hig Rada Toksikol 58:471–478.  https://doi.org/10.2478/v10004-007-0040-4 CrossRefGoogle Scholar
  36. Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials, and sensors. J Colloid Interface Sci 363(1):1–24.  https://doi.org/10.1016/j.jcis.2011.07.017 CrossRefGoogle Scholar
  37. Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134(1):151–160.  https://doi.org/10.1111/j.1399-3054.2008.01135.x CrossRefGoogle Scholar
  38. Eom H, Choi J (2009) Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in the human bronchial epithelial cell, Beas-2B. Toxicol Lett 187:77e83.  https://doi.org/10.1016/j.toxlet.2009.01.028 CrossRefGoogle Scholar
  39. Faedmaleki F, Shirazi FH, Salarian AA, Ashtiani HA, Rastegara H (2014) Toxicity effect of silver nanoparticles on mice liver primary cell culture and HepG2 cell line. Iran J Pharm Res 13(1):235–242.  https://doi.org/10.1186/s12951-015-0114-4 Google Scholar
  40. Fahmy B, Cormier SA (2009) Copper oxides nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol In Vitro 23:1365e1371.  https://doi.org/10.1016/j.tiv.2009.08.005 CrossRefGoogle Scholar
  41. Fangli Y, Peng H, Chunlei Y, Shulan H, Jinlin L (2003) Preparation and properties of zinc oxide nanoparticles coated with zinc aluminate. J Mater Chem 13:634–637.  https://doi.org/10.1039/B208346A CrossRefGoogle Scholar
  42. Fujimori T, Morelos-Gomez A, Zhu Z, Muramatsu H, Futamura R, Urita K, Terrones M, Hayashi T, Endo M, Hong SY, Choi YC, Tomanek D, Katsumi K (2013) Conducting linear chains of sulphur inside carbon nanotubes. Nat Commun 4:2162.  https://doi.org/10.1038/ncomms3162 CrossRefGoogle Scholar
  43. Geiser M et al (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113(11):1555–1560.  https://doi.org/10.1289/ehp.8006 CrossRefGoogle Scholar
  44. Girigoswami K, Viswanathan M, Murugesan R, Girigoswami A (2015) Studies on polymer-coated zinc oxide nanoparticles: UV-blocking efficacy and in vivo toxicity. Mater Sci Eng C 56:501–510.  https://doi.org/10.1016/j.msec.2015.07.017 CrossRefGoogle Scholar
  45. Gulati N, Gupta H (2012) Two faces of carbon nanotube: toxicities and pharmaceutical applications. Crit Rev Ther Drug Carrier Syst 29:65e88.  https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v29.i1.20 CrossRefGoogle Scholar
  46. Guo D, Bi H, Liu B, Wu Q, Wang D, Cui Y (2013) Reactive oxygen species-induced cytotoxic effects of zinc oxide nanoparticles in rat retinal ganglion cells. Toxicol In Vitro 27:731e738.  https://doi.org/10.1016/j.tiv.2012.12.001 Google Scholar
  47. Hellstrand E et al (2009) Complete high-density lipoproteins in NP corona. FEBS J 276:3372–3381.  https://doi.org/10.1111/j.1742-4658.2009.07062.x CrossRefGoogle Scholar
  48. Hillegas JM, Shukla A, Lathrop SA, MacPherson MB, Fukagawa NK, Mossman BT (2010) Assessing nanotoxicity in vitro. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(3):219–231.  https://doi.org/10.1002/wnan.54 CrossRefGoogle Scholar
  49. Holsapple MP et al (2005) Research strategies for safety evaluation of nanomaterials, part II: toxicological and safety evaluation of nanomaterials, current challenges and data needs. Toxicol Sci 88(1):12–17.  https://doi.org/10.1093/toxsci/kfi293 CrossRefGoogle Scholar
  50. Huang Z, Zheng X, Danhong Yan, Yin G, Liao X, Kang Y, Yao Y, Huang D, Hao B (2008) Toxicological effect of ZnO nanoparticles based on bacteria. Langumir 24:4140–4144.  https://doi.org/10.1021/la7035949 CrossRefGoogle Scholar
  51. Huk A, Izak-Nau E, Yamani N, Uggerud H, Vadset M, Zasonska B, Duschl A, Dusinska M (2015) Impact of nanosilver on various DNA lesions and HPRT gene mutations—effects of charge and surface coating. Part Fibre Toxicol.  https://doi.org/10.1186/s12989-015-0100-x Google Scholar
  52. Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy, and application. Nanoscale Res Lett 9:229–252.  https://doi.org/10.1186/1556-276X-9-229 CrossRefGoogle Scholar
  53. ISO. ISO/TR 12885 (2008) Nanotechnologies—health and safety practices in occupational settings relevant to nanotechnologies, 1st edn. the International Organization for Standardization, GenevaGoogle Scholar
  54. ISO. ISO/TR 13121 (2011) Nanotechnologies—nanomaterial risk evaluation, 1st edn. Geneva, International Organization for StandardizationGoogle Scholar
  55. Ivask A, Kurvet I, Kasemets K, Blinova I, Aruoja V, Suppi Vija H, Kakinen A, Titma T, Heinlaan M, Visnapuu M, Koller D, Kisand V, Kahru A (2014) Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS ONE 9(7):e102108.  https://doi.org/10.1371/journal.pone.0102108 CrossRefGoogle Scholar
  56. Jiang G, Shen Z, Niu J, Bao Y, Chen J, He T (2011) Toxicological assessment of TiO2 nanoparticles by recombinant Escherichia coli bacteria. J Environ Monit 13(1):42–48.  https://doi.org/10.1039/C0EM00499E CrossRefGoogle Scholar
  57. Jimenez JA, Madsen OS (2003) A simple formula to estimate setting velocity of natural sediments. J Waterw Port Coast Ocean Eng 129(2):70–78.  https://doi.org/10.1061/(ASCE)0733-950X CrossRefGoogle Scholar
  58. Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23(17):8670–8673.  https://doi.org/10.1021/la701067r CrossRefGoogle Scholar
  59. Karlsson HL, Cronholm P, Gustafsson J, Moller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732.  https://doi.org/10.1021/tx800064j CrossRefGoogle Scholar
  60. Karlsson HL, Gustafsson J, Cronholm P, Moller L (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano- and micrometer size. Toxicol Lett 188:112e118.  https://doi.org/10.1016/j.toxlet.2009.03.014 CrossRefGoogle Scholar
  61. Kaundal B, Dalai S, Choudhury SR (2017) Nanomaterial toxicity in microbes, plants and animals. In: Ranjan S, Dasgupta N, Lichtfouse E (eds) Nanoscience in food and agriculture, vol 26. Springer, Cham.  https://doi.org/10.1007/978-3-319-58496-6_9 Google Scholar
  62. Kim IY, Joachim E, Choi H, Kim KT (2015) oxicity of silica nanoparticles depends on size, dose, and cell type. Nanomedicine 11(6):1407–1416.  https://doi.org/10.1016/j.nano.2015.03.004 CrossRefGoogle Scholar
  63. Kovriznych JA, Sotnikova R, Zeljenkova D, Rollerova E, Szabova E, Wimmerova S (2013) Acute toxicity of 31 different nanoparticles to zebrafish (Danio rerio) tested in adulthood and in early life stages—comparative study. Interdiscip Toxicol 6(2):67–73.  https://doi.org/10.2478/intox-2013-0012 CrossRefGoogle Scholar
  64. Kumar AA, Pandey AK, Singh SS, Shanker R, Dhawan A (2011) Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Rad Biol Med 51:1872e1881.  https://doi.org/10.1371/journal.pone.0110247 CrossRefGoogle Scholar
  65. Kumari M, Ernest V, Mukherjee A, Chandrasekaran N (2012) In vivo nanotoxicity assays in plant models. Methods Mol Biol 926:399–410.  https://doi.org/10.1007/978-1-62703-002-1_26 CrossRefGoogle Scholar
  66. Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smalle JA (2010) Uptake and distribution of ultrasmall anatase TiO alizarin red S nanoconjugates. Nano Lett 10(7):2296–2302.  https://doi.org/10.1021/nl903518f CrossRefGoogle Scholar
  67. Lei R, Wu C, Yang B et al (2008) Integrated metabolomics analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a rapid in vivo screening method for nanotoxicity. Toxicol Appl Pharm 232:292e301.  https://doi.org/10.1016/j.taap.2008.06.026 CrossRefGoogle Scholar
  68. Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J (2002) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111(4):455–460.  https://doi.org/10.1289/ehp.6000 CrossRefGoogle Scholar
  69. Li JJ, Hartono D, Ong C, Bay B, Yung LL (2010) Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials 31:5996e6003.  https://doi.org/10.1016/j.biomaterials.2010.04.014 Google Scholar
  70. Lipovsky A, Levitski L, Tzitrinovich Z, Gedanken A, Lubart R (2012) The different behavior of rutile and anatase nanoparticles in forming oxy radicals upon illumination with visible light: an EPR study. Photochem Photobiol 88(1):14–20.  https://doi.org/10.1111/j.1751-1097.2011.01015.x CrossRefGoogle Scholar
  71. Lopes I, Ribeiro R, Antunes FE, Rocha-Santos TAP, Rasteiro MG, Soares AMVM, Gonçalves F, Pereira R (2012) Toxicity and genotoxicity of organic and inorganic nanoparticles to the bacteria Vibrio fischeri and Salmonella typhimurium. Ecotoxicology 21(3):637–648.  https://doi.org/10.1007/s10646-011-0808-9 CrossRefGoogle Scholar
  72. Lorenz C, Tiede K, Tear S, Boxall A, Von Goetz N, Hungerbuhler K (2010) Imaging and characterization of engineered nanoparticles in sunscreens by electron microscopy, under wet and dry conditions. Int J Occup Environ Health 16:406–408.  https://doi.org/10.1179/107735210799160101 CrossRefGoogle Scholar
  73. Lyon DY, Adams LK, Falkner JC, Alvarez PJJ (2006) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40(14):4360–4366.  https://doi.org/10.1021/es0603655 CrossRefGoogle Scholar
  74. Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake, and accumulation. Sci Total Environ 408(16):3053–3061.  https://doi.org/10.1016/j.scitotenv.2010.03.031 CrossRefGoogle Scholar
  75. Ma JY, Zhao H, Mercer RR, Barger M, Rao M, Meighan T, Schwegler-Berry D, Castranova V, Ma JK (2011) Cerium oxide NP induced pulmonary inflammation and alveolar macrophage functional change in rats. Nanotechnology 5:312e325.  https://doi.org/10.3109/17435390.2010.519835 Google Scholar
  76. Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of NP-induced oxidative stress and toxicity. Biomed Res Int.  https://doi.org/10.1155/2013/942916 Google Scholar
  77. Marcone GPS, Oliveira ÁC, Almeida G, Umbuzeiro GA, Jardim WF (2012) Ecotoxicity of TiO2 to Daphnia similis under irradiation. J Hazard Mater 211–212:436–442.  https://doi.org/10.1016/j.jhazmat.2011.12.075 CrossRefGoogle Scholar
  78. Marin S, Vlasceanu GM, Tiplea RE, Bucur IR, Lemnaru M, Marin MM, Grumezescu AM (2015) Applications and toxicity of silver nanoparticles: a recent review.Curr Top Med Chem 15(16):1596–604. ISSN: 1568-0266Google Scholar
  79. Milic M, Leitinger G, Pavicic I, Avdicevic MZ, Dobrovic S, Goessler M, Vrcek IV (2015) Cellular uptake and toxicity effects of silver nanoparticles in mammalian kidney cells. J Appl Toxicol 35(6):581–592.  https://doi.org/10.1002/jat.3081 CrossRefGoogle Scholar
  80. Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46:9224–9239.  https://doi.org/10.1021/es202995d CrossRefGoogle Scholar
  81. Mitchell LA, Lauer FT, Burchiel SW, McDonald JD (2009) Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat Nanotechnol 4:451–456.  https://doi.org/10.1038/nnano.2009.151 CrossRefGoogle Scholar
  82. Mukherjee SG, O’Claonadh N, Casey A, Chambers G (2012) Comparative in vitro cytotoxicity study of silver NP on two mammalian cell lines. Toxicol In Vitro 26(2):238–251.  https://doi.org/10.1016/j.tiv.2011.12.004 CrossRefGoogle Scholar
  83. Nel A (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627.  https://doi.org/10.1126/science.1114397 CrossRefGoogle Scholar
  84. Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150(1):5–22.  https://doi.org/10.1016/j.envpol.2007.06.006 CrossRefGoogle Scholar
  85. O’Brien N, Cummins E (2010) Ranking initial environmental and human health risk resulting from environmentally relevant nanomaterials. J Environ Sci Health A Tox Hazard Subst Environ Eng 45(8):992–1007.  https://doi.org/10.1080/10934521003772410 CrossRefGoogle Scholar
  86. Oberdorster G, Sharp Z, Atudorei A, Elder A, Gelein G, Luntsm A, Kreyling W, Cox C (2002) Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A 65:1531–1543.  https://doi.org/10.1080/00984100290071658 CrossRefGoogle Scholar
  87. Oberdorster G et al (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8.  https://doi.org/10.1186/1743-8977-2-8 CrossRefGoogle Scholar
  88. Oukarroum A, Barhoumi L, Pirastru L, Dewez D (2013) Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant. Environ Toxicol Chem 32(4):902–907.  https://doi.org/10.1002/etc.2131 CrossRefGoogle Scholar
  89. Pakrashi S, Dalai S, Sabat D, Singh S, Chandrasekaran N, Mukherjee A (2011) Cytotoxicity of Al2O3 nanoparticles at low exposure levels to a freshwater bacterial isolate. Chem Res Toxicol 24:1899–1904.  https://doi.org/10.1021/tx200244g CrossRefGoogle Scholar
  90. Papageorgiou I, Brown C, Schins R et al (2007) The effect of nano- and micron-sized particles of cobalt-chromium alloy on human fibroblasts in vitro. Biomaterials 28(19):2946e2958.  https://doi.org/10.1016/j.biomaterials.2007.02.034 CrossRefGoogle Scholar
  91. Park EJ, Bae E, Yi J, Kim Y, Choi K, Lee SH, Yoon J, Lee BC, Park K (2010) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 30(2):162–168.  https://doi.org/10.1016/j.etap.2010.05.004 CrossRefGoogle Scholar
  92. Pati R, Das I, Mehta RK, Sahu R, Sonawane A (2016) Zinc-oxide nanoparticles exhibit genotoxic, clastogenic, cytotoxic and actin depolymerization effects by inducing oxidative stress responses in macrophages and adult mice. Toxicol Sci 150(2):454–472.  https://doi.org/10.1093/toxsci/kfw010 CrossRefGoogle Scholar
  93. Petit AN, Eullaffroy P, Debenest T, Gagné F (2010) Toxicity of PAMAM dendrimers to Chlamydomonas reinhardtii. Aquat Toxicol 100:187–193.  https://doi.org/10.1016/j.aquatox.2010.01.019 CrossRefGoogle Scholar
  94. Petrick L, Rosenblat M, Paland N, Aviram M (2014) Silicon dioxide nanoparticles increase macrophage atherogenicity: stimulation of cellular cytotoxicity, oxidative stress, and triglycerides accumulation. Environ Toxicol 31(6):713–723.  https://doi.org/10.1002/tox.22084 CrossRefGoogle Scholar
  95. Planchon M, Ferrari R, Guyot F, Gélabert A, Menguy N, Chanéacd C, Thill A, Benedetti MF, Spalla O (2013) Interaction between Escherichia coli and TiO2 nanoparticles in natural and artificial waters. Colloids Surf B 102:158–164.  https://doi.org/10.1016/j.colsurfb.2012.08.034 CrossRefGoogle Scholar
  96. Poma A, Colafarina S, Fontecchio G, Chichiricco G (2014) transgenerational effects of nanomaterials in nanomaterials, impacts on cell biology and medicine. Springer Sci Bus Media Dordr Ger 811:235–254. ISBN: 978-94-017-8739-0Google Scholar
  97. Porter AE et al (2007) Visualizing the uptake of C60 to the cytoplasm and nucleus of human monocyte-derived macrophage cells using energy-filtered transmission electron microscopy and electron tomography. Environ Sci Technol 41(8):3012–3017.  https://doi.org/10.1021/es062541f CrossRefGoogle Scholar
  98. Radic S (2015) Biophysical interaction between nanoparticles and biomolecules. All dissertations paper 1517. link:tigerprints.clemson.edu/all_dissertations/1517Google Scholar
  99. Radoslav S et al (2003) Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 300(5619):615–618.  https://doi.org/10.1126/science.1078192 CrossRefGoogle Scholar
  100. Raghunathan VK, Devey M, Hawkins S et al (2013) Influence of particle size and reactive oxygen species on cobalt chrome NP-mediated genotoxicity. Biomaterials 34:3559e3570.  https://doi.org/10.1016/j.biomaterials.2013.01.085 CrossRefGoogle Scholar
  101. Rajendran P, Muthukrishnan J, Gunasekaran P (2003) Microbes in heavy metal remediation. Ind J Exp Biol 41:935–944. http://nopr.niscair.res.in/handle/123456789/17153
  102. Ramachandran G, Ostraat M, Evans DE, Methner MM, O’Shaughnessy P, D’Arcy J, Geraci CL, Stevenson E, Maynard A, Rickabaugh K (2011) A strategy for assessing workplace exposures to nanomaterials. J Occup Environ Hyg 8:673–685.  https://doi.org/10.1080/15459624.2011.623223 CrossRefGoogle Scholar
  103. Royal Society and Royal Academy of Engineering (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. ISBN: 0 85403 604 0Google Scholar
  104. Ryman-Rasmussen JP et al (2006) Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci 91(1):159–165.  https://doi.org/10.1093/toxsci/kfj122 CrossRefGoogle Scholar
  105. Sadiq IM, Swayamprava D, Chandrasekaran N, Mukherjee A (2011) Ecotoxicity study of titania (TiO2) NPs on two microalgae species: scenedesmus sp. and Chlorella sp. Ecotoxicol Environ Saf 74(5):1180–1187.  https://doi.org/10.1016/j.ecoenv.2011.03.006 CrossRefGoogle Scholar
  106. Sambale F, Wagner S, Stahl F, Khaydarov RR, Scheper T, Bahnemann D (2015) Investigations of the toxic effect of silver nanoparticles on mammalian cell lines. J Nanomater.  https://doi.org/10.1155/2015/136765 Google Scholar
  107. Sasidharan A, Panchakarla LS, Chandran P, Menon D, Nair S, Rao CN, Koyakutty M (2011) Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale 3(6):2461–2464.  https://doi.org/10.1039/c1nr10172b CrossRefGoogle Scholar
  108. Saunders AM, Larsen P, Nielsen PH (2013) Comparison of nutrient-removing microbial communities in activated sludge from full-scale MBRs and conventional plants. Water Sci Technol 68(2):366.  https://doi.org/10.2166/wst.2013.183 CrossRefGoogle Scholar
  109. Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, Warheit DB, Colvin VL (2006) Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92(1):174–185.  https://doi.org/10.1093/toxsci/kfj197 CrossRefGoogle Scholar
  110. Schilling K, Bradford B, Castelli D, Dufour E, Nash JF, Pape W, Schulte S, Tooley I, van den Bosch J, Schellauf F (2010) Human safety review of “nano” titanium dioxide and zinc oxide. Photochem Photobiol Sci 9(4):495–509.  https://doi.org/10.1039/b9pp00180h CrossRefGoogle Scholar
  111. Seabra AB, Duran N (2015) Nanotoxicology of metal oxide nanoparticles. Metals 5(2):934–975.  https://doi.org/10.3390/met5020934 CrossRefGoogle Scholar
  112. Shang L, Nienhaus K, Nienhaus GU (2014) Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol 12:5.  https://doi.org/10.1186/1477-3155-12-5 CrossRefGoogle Scholar
  113. Sharma V, Anderson D, Dhawan A (2012) Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17:852e870.  https://doi.org/10.1007/s10495-012-0705-6 CrossRefGoogle Scholar
  114. Shenava A, Sharma M, Shetty V, Shenoy S (2015) Silver nanoparticles: a boon in clinical medicine. J Oral Res Rev 7(1):35–38. http://www.jorr.org/text.asp?2015/7/1/35/160194
  115. Siddiqui MA, Ahamed M, Ahmad J et al (2012) Nickel oxide nanoparticles induce cytotoxicity, oxidative stress, and apoptosis in cultured human cells that are abrogated by the dietary antioxidant curcumin. Food Chem Toxicol 50:641e647.  https://doi.org/10.1016/j.fct.2012.01.017 CrossRefGoogle Scholar
  116. Silvestre C, Duraccio D, Sossio C (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36:1766–1782.  https://doi.org/10.1016/j.progpolymsci.2011.02.003 CrossRefGoogle Scholar
  117. Sioutas C, Delfino RJ, Singh M (2005) Exposure assesment for atmospheric ultrafine particles and implications in epidemiologic research. Environ Health Perspect 113(8):947–955.  https://doi.org/10.1289/ehp.7939 CrossRefGoogle Scholar
  118. Sohaebuddin SK, Thevenot PT, Baker D, Eaton JW, Tang L (2010) Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol 7:22.  https://doi.org/10.1186/1743-8977-7-22 CrossRefGoogle Scholar
  119. Sohn EK, Johari SA, Kim TG, Kim JK, Kim E, Lee JH, Chung YS, Yu IJ (2015) Aquatic toxicity comparison of silver nanoparticles and silver nanowires. Biomed Res Int.  https://doi.org/10.1155/2015/893049 Google Scholar
  120. Song L, Connolly M, Fernandez-Cruz ML, Vijver MG, Fernandez M, Conde E, de Snoo GR, Peijnenburg WJ, Navas JM (2014) Species-specific toxicity of copper nanoparticles among mammalian and piscine cell lines. Nanotoxicology 8(4):383–393.  https://doi.org/10.3109/17435390.2013.790997 CrossRefGoogle Scholar
  121. Stampfl A, Maier M, Radykewicz R, Reitmeir P, Gottlicher M, Niessner R (2011) Langendorff heart: a model system to study cardiovascular effects of engineered nanoparticles. ACS Nano 5(7):5345–5353.  https://doi.org/10.1021/nn200801c CrossRefGoogle Scholar
  122. Tavares AM, Louro H, Antunes S, Quarré S, Simar S, De Temmerman PJ, Verleysen E, Mast J, Jensen KA, Norppa H, Nesslany F, Silva MJ (2014) Genotoxicity evaluation of nanosized titanium dioxide, synthetic amorphous silica and multi-walled carbon nanotubes in human lymphocytes. Toxicol In Vitro 28(1):60–69.  https://doi.org/10.1016/j.tiv.2013.06.009 CrossRefGoogle Scholar
  123. Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Cytotoxicity of CeO nanoparticles for physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40(19):6151–6156. http://www.ncbi.nlm.nih.gov/pubmed/17051814
  124. Tinkle SS, Antonini JM, Rich BA, Roberts JR, Salmen R, DePree K, Adkins EJ (2003) Skin as a route of exposure and sensitization in chronic beryllium disease. Environ Health Perspect 111(9):1202–1218.  https://doi.org/10.1289/ehp.5999 CrossRefGoogle Scholar
  125. Tran DT, Salmon R (2010) Preparation and properties of zinc oxide nanoparticles coated with zinc aluminate. Australas J Dermatol 52:1–6.  https://doi.org/10.1039/B208346A CrossRefGoogle Scholar
  126. Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780.  https://doi.org/10.3762/bjnano.6.181 CrossRefGoogle Scholar
  127. Vishwakarma V, Samal SS, Manoharan N (2010) Safety and risk associated with nanoparticles—a review. J Miner Mater Charact Eng 9(5):455–459.  https://doi.org/10.4236/jmmce.2010.95031 Google Scholar
  128. Von der Kammer F, Ferguson PL, Holden PA, Masion A, Rogers KR, Klaine SJ, Koelmans AA, Horne N, Unrine JM (2012) Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. Environ Toxicol Chem 31(1):32–49.  https://doi.org/10.1002/etc.723 CrossRefGoogle Scholar
  129. Warheit D, Hoke R, Finlay C, Donner E, Reed K, Sayes C (2007) Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett 171(3):99–110.  https://doi.org/10.1016/j.toxlet.2007.04.008 CrossRefGoogle Scholar
  130. Wehmas LC, Anders C, Chess J, Punnoose A, Pereira CB, Greenwood JA, Tanguay RL (2015) Comparative metal oxide nanoparticle toxicity using embryonic zebrafish. Toxicol Rep 2:702–715.  https://doi.org/10.1016/j.toxrep.2015.03.015 CrossRefGoogle Scholar
  131. Wiesenthal A, Hunter L, Wang S, Wickliffe J, Wilkerson M (2011) Nanoparticles: small and mighty. Int J Dermatol 50:247–254.  https://doi.org/10.1111/j.1365-4632.2010.04815.x CrossRefGoogle Scholar
  132. Xia T, Kovochich M, Liong M et al (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121e2134.  https://doi.org/10.1021/nn800511k Google Scholar
  133. Xu J, Shi H, Ruth M, Yu H, Lazar L, Zou B, Yang C, Wu A, Zhao J (2013) Acute toxicity of intravenously administered titanium dioxide nanoparticles in mice. PLoS ONE 8(8):e70618.  https://doi.org/10.1371/journal.pone.0070618 CrossRefGoogle Scholar
  134. Yoo KC, Yoon CH, Kwon D, Hyun KH, Woo SJ, Kim RK et al (2012) Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated fas upregulation and bax activation. Int J Nanomed 7:1203e1214.  https://doi.org/10.2147/IJN.S28647 Google Scholar
  135. Yu L, Xi J (2012) CeO2 nanoparticles improved Pt-based catalysts for direct alcohol fuel cells. Int J Hydrog Energy 37(21):15938–15947.  https://doi.org/10.1016/j.ijhydene.2012.08.063 CrossRefGoogle Scholar
  136. Yue Y, Behra R, Sigg L, Fernández Freire P, Pillai S, Schirmer K (2015) Toxicity of silver nanoparticles to a fish gill cell line: the role of medium composition. Nanotoxicology 9(1):54–63.  https://doi.org/10.3109/17435390.2014.889236 CrossRefGoogle Scholar
  137. Zhu X, Chang Y, Chen Y (2010) Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 78(3):209–215.  https://doi.org/10.1016/j.chemosphere.2009.11.013 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Nano Science and Technology, Habitat CentreMohaliIndia

Personalised recommendations