Advertisement

Environmental Chemistry Letters

, Volume 16, Issue 1, pp 113–146 | Cite as

Applications of nanocomposite hydrogels for biomedical engineering and environmental protection

  • Gaurav Sharma
  • Bharti Thakur
  • Mu. Naushad
  • Amit Kumar
  • Florian J. Stadler
  • Sulaiman M. Alfadul
  • Genene Tessema Mola
Review

Abstract

Nanocomposite hydrogels are polymeric networks that possess a unique property of hydration. The presence of alcohols, carboxylic acids and amides as hydrophilic moieties in structure of nanocomposite hydrogels enhances their stiffness and water-absorbing capacity. Addition of cross-linker in the synthesis of hydrogels increases their stability under extreme conditions of temperature, pH and pressure. Natural polymer-based nanocomposite hydrogels are biodegradable, highly hydrophilic and possess good mechanical strength. Gelatin, chitin, cellulose, pectin, carrageenan, starch and alginate are natural polymers commonly used to fabricate nanocomposite hydrogels. Nanocomposite hydrogels have special characteristics such as high swelling rate, selectivity and stimuli-sensitive nature. Here we review nanocomposite hydrogels for environmental protection and biomedical engineering. Applications in biomedical engineering include drug delivery agents, wound dressing, tissue engineering and antibacterials. Applications in environmental protection include ion exchangers, adsorption, photocatalysis and soil conditioning. Many nanocomposite hydrogels show excellent adsorption selectivity for heavy metal ions: Cu2+ up to 30.35 mg/g, Pb2+ up to 35.94 mg/g, and Zn2+ and Fe3+ up to 94.34 mg/g. Xanthan gum-based nanocomposite hydrogel has removed 96% dye from industrial effluent as reported. In addition, most of the nanocomposite hydrogels showed better adsorption capacity for pollutants in the pH range from 5 to 7. The nanocomposite hydrogels could also be regenerated and successfully utilized for several times. Nanocomposite hydrogels are therefore good bio-absorbent materials for environmental detoxification.

Keywords

Nanocomposite hydrogels Environmental protection Biomedical engineering Adsorption Photocatalysis 

Notes

Acknowledgements

This work was supported by the Deanship of Scientific Research, King Saud University, for funding through Vice Deanship of Scientific Research Chairs.

References

  1. Abd SG, Sen M, El-naggar AWM (2012) Swelling and mechanical properties of superabsorbent hydrogels based on Tara gum/acrylic acid synthesized by gamma radiation. Carbohydr Polym 89:478–485. doi: 10.1016/j.carbpol.2012.03.031 CrossRefGoogle Scholar
  2. Adhikari B, Biswas A, Banerjee A (2012) Graphene oxide-based hydrogels to make metal nanoparticle-containing reduced graphene oxide-based functional hybrid hydrogels. ACS Appl Mater Interfaces 4:5472–5482. doi: 10.1021/am301373n CrossRefGoogle Scholar
  3. Agnihotri S, Mukherji S, Mukherji S (2012) Antimicrobial chitosan–PVA hydrogel as a nanoreactor and immobilizing matrix for silver nanoparticles. Appl Nanosci 2:179–188. doi: 10.1007/s13204-012-0080-1 CrossRefGoogle Scholar
  4. Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121. doi: 10.1016/j.jare.2013.07.006 CrossRefGoogle Scholar
  5. Alzari V, Nuvoli D, Scognamillo S (2011) Graphene-containing thermoresponsive nanocomposite hydrogels of poly (N-isopropylacrylamide) prepared by frontal polymerization. J Mater. doi: 10.1039/c1jm11076d Google Scholar
  6. Am Ende MT, Hariharan D, Peppas NA (1995) Factors influencing drug and protein transport and release from ionic hydrogels. React Polym 25:127–137. doi: 10.1016/0923-1137(94)00040-C CrossRefGoogle Scholar
  7. Anirudhan TS, Radhakrishnan PG (2011) Thermodynamics of chromium(III) adsorption onto a cation exchanger derived from saw dust of Jack wood. Environ Chem Lett 9:121–125. doi: 10.1007/s10311-009-0255-5 CrossRefGoogle Scholar
  8. Anirudhan TS, Divya PL, Nima J (2015) Synthesis and characterization of silane coated magnetic nanoparticles/glycidylmethacrylate-grafted-maleated cyclodextrin composite hydrogel as a drug carrier for the controlled delivery of 5-fluorouracil. Mater Sci Eng, C 55:471–481. doi: 10.1016/j.msec.2015.05.068 CrossRefGoogle Scholar
  9. Annabi N, Tamayol A, Uquillas JA et al (2014) 25th anniversary article: rational design and applications of hydrogels in regenerative medicine. Adv Mater 26:85–124. doi: 10.1002/adma.201303233 CrossRefGoogle Scholar
  10. Argenziano M, Dianzani C, Ferrara B et al (2017) Cyclodextrin-based nanohydrogels containing polyamidoamine units: a new dexamethasone delivery system for inflammatory diseases. Gels 3:1–15CrossRefGoogle Scholar
  11. Atia AA, Donia AM, Hussin RA, Rashad RT (2009) Swelling and metal ion uptake characteristics of kaolinite containing poly [(acrylic acid)-co-acrylamide] hydrogels. Desalin Water Treat 3:73–82. doi: 10.5004/dwt.2009.262 CrossRefGoogle Scholar
  12. Ayekoe PY, Robert D, Goné DL (2016) Preparation of effective TiO2/Bi2O3 photocatalysts for water treatment. Environ Chem Lett 14:387–393. doi: 10.1007/s10311-016-0565-3 CrossRefGoogle Scholar
  13. Azizi Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whisker, their properties and their application in nanocomposites field. Biomacromol 6:612–626. doi: 10.1021/bm0493685 CrossRefGoogle Scholar
  14. Bae H, Chu H, Edalat F et al (2014) Development of functional biomaterials with micro- and nanoscale technologies for tissue engineering and drug delivery applications. J Tissue Eng Regen Med 8:1–14. doi: 10.1002/term.1494 CrossRefGoogle Scholar
  15. Bai H, Li C, Wang X, Shi G (2010) A pH-sensitive graphene oxide composite hydrogel. Chem Commun 46:2376. doi: 10.1039/c000051e CrossRefGoogle Scholar
  16. Banerjee SS, Chen DH (2007) Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent. J Hazard Mater 147:792–799. doi: 10.1016/j.jhazmat.2007.01.079 CrossRefGoogle Scholar
  17. Bao Y, Ma J, Li N (2011) Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84:76–82. doi: 10.1016/j.carbpol.2010.10.061 CrossRefGoogle Scholar
  18. Barkhordari S, Yadollahi M, Namazi H (2014) pH sensitive nanocomposite hydrogel beads based on carboxymethyl cellulose/layered double hydroxide as drug delivery systems. J Polym Res 21:454. doi: 10.1007/s10965-014-0454-z CrossRefGoogle Scholar
  19. Baruah U, Chowdhury D (2016) Functionalized graphene oxide quantum dot–PVA hydrogel: a colorimetric sensor for Fe2+, Co2+ and Cu2+ ions. Nanotechnology 27:145501CrossRefGoogle Scholar
  20. Baskovich B, Sampson EM, Schultz GS, Parnell LKS (2008) Wound dressing components degrade proteins detrimental to wound healing. Int Wound J 5:543–551. doi: 10.1111/j.1742-481X.2007.00422.x CrossRefGoogle Scholar
  21. Bhattacharya S, Nandi S, Jelinek R (2017) Carbon-dot-hydrogel for enzyme-mediated bacterial detection. RSC Adv 7:588–594. doi: 10.1039/C6RA25148J CrossRefGoogle Scholar
  22. Bhattacharyya R, Ray SK (2015) Removal of congo red and methyl violet from water using nano clay filled composite hydrogels of poly acrylic acid and polyethylene glycol. Chem Eng J 260:269–283. doi: 10.1016/j.cej.2014.08.030 CrossRefGoogle Scholar
  23. Billiet T, Vandenhaute M, Schelfhout J et al (2012) A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33:6020–6041. doi: 10.1016/j.biomaterials.2012.04.050 CrossRefGoogle Scholar
  24. Bitar A, Ahmad NM, Fessi H, Elaissari A (2012) Silica-based nanoparticles for biomedical applications. Drug Discov Today 17:1147–1154. doi: 10.1016/j.drudis.2012.06.014 CrossRefGoogle Scholar
  25. Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene Photonics and Optoelectronics. Nat Phot. doi: 10.1038/nphoton.2010.186 Google Scholar
  26. Bortolin A, Aouada FA, Mattoso LHC, Ribeiro C (2013) Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agric Food Chem 61:7431–7439. doi: 10.1021/jf401273n CrossRefGoogle Scholar
  27. Boruah M, Gogoi P, Manhar AK et al (2014) Biocompatible carboxymethylcellulose-g-poly(acrylic acid)/OMMT nanocomposite hydrogel for in vitro release of vitamin B 12. RSC Adv 4:43865–43873. doi: 10.1039/C4RA07962K CrossRefGoogle Scholar
  28. Brannon-Peppas L, Peppas NA (1991) Equilibrium swelling behavior of pH-sensitive hydrogels. Chem Eng Sci 46:715–722. doi: 10.1016/0009-2509(91)80177-Z CrossRefGoogle Scholar
  29. Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267. doi: 10.1016/j.eurpolymj.2014.11.024 CrossRefGoogle Scholar
  30. Carrow JK, Gaharwar AK (2015) Bioinspired polymeric nanocomposites for regenerative medicine. Macromol Chem Phys 216:248–264. doi: 10.1002/macp.201400427 CrossRefGoogle Scholar
  31. Carvalho HWP, Batista APL, Hammer P et al (2010) Removal of metal ions from aqueous solution by chelating polymeric hydrogel. Environ Chem Lett 8:343–348. doi: 10.1007/s10311-009-0231-0 CrossRefGoogle Scholar
  32. Cayuela A, Soriano ML, Kennedy SR et al (2016) Fluorescent carbon quantum dot hydrogels for direct determination of silver ions. Talanta 151:100–105. doi: 10.1016/j.talanta.2016.01.029 CrossRefGoogle Scholar
  33. Chang C, Zhang L (2011) Cellulose-based hydrogels: present status and application prospects. Carbohydr Polym 84:40–53. doi: 10.1016/j.carbpol.2010.12.023 CrossRefGoogle Scholar
  34. Chen Z (2012) Synthesis of Mn3O4-encapsulated graphene sheet nanocomposites via a facile, fast microwave hydrothermal method and their supercapacitive behaviourGoogle Scholar
  35. Chen P, Xu S, Wu R et al (2013) A transparent Laponite polymer nanocomposite hydrogel synthesis via in-situ copolymerization of two ionic monomers. Appl Clay Sci 72:196–200. doi: 10.1016/j.clay.2013.01.012 CrossRefGoogle Scholar
  36. Chiefari J, Chong YKB, Ercole F et al (1998) Living free-radical polymerization by reversible addition—fragmentation chain transfer: the raft process we wish to report a new living free-radical polymer- ization of exceptional effectiveness and versatility. 1 the living character is conferred by. Macromolecules 31:5559–5562CrossRefGoogle Scholar
  37. Çöle G, Gök MK, Güçlü G (2013) Removal of basic dye from aqueous solutions using a novel nanocomposite hydrogel: N-vinyl 2-pyrrolidone/itaconic acid/organo clay. Water Air Soil Pollut. doi: 10.1007/s11270-013-1760-5 Google Scholar
  38. Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70. doi: 10.1016/j.progpolymsci.2004.11.002 CrossRefGoogle Scholar
  39. Dalaran M, Emik S, Güçlü G et al (2009) Removal of acidic dye from aqueous solutions using poly(DMAEMA-AMPS-HEMA) terpolymer/MMT nanocomposite hydrogels. Polym Bull 63:159–171. doi: 10.1007/s00289-009-0077-4 CrossRefGoogle Scholar
  40. Dallas P, Sharma VK, Zboril R (2011) Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Colloid Interface Sci 166:119–135. doi: 10.1016/j.cis.2011.05.008 CrossRefGoogle Scholar
  41. Darvishi Z, Kabiri K, Zohuriaan-Mehr MJ, Morsali A (2011) Nanocomposite super-swelling hydrogels with nanorod bentonite. J Appl Polym Sci 120:3453–3459. doi: 10.1002/app.33417 CrossRefGoogle Scholar
  42. Dash R, Cateto CA, Ragauskas AJ (2014) Synthesis of a co-cross-linked nanocomposite hydrogels from poly(methyl vinyl ether-co-maleic acid)-polyethylene glycol and nanofibrillated cellulose. Cellulose 21:529–534. doi: 10.1007/s10570-013-0142-x CrossRefGoogle Scholar
  43. Datta KKR, Achari A, Eswaramoorthy M (2013) Aminoclay: a functional layered material with multifaceted applications. J Mater Chem A 1:6707. doi: 10.1039/c3ta00100h CrossRefGoogle Scholar
  44. Discher DE, Janmey P, Wang Y-L (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143. doi: 10.1126/science.1116995 CrossRefGoogle Scholar
  45. Dispenza C, Sabatino MA, Niconov A et al (2012) E-beam crosslinked, biocompatible functional hydrogels incorporating polyaniline nanoparticles. Radiat Phys Chem 81:1456–1459. doi: 10.1016/j.radphyschem.2011.11.043 CrossRefGoogle Scholar
  46. Dupont L, Jolly G, Aplincourt M (2007) Arsenic adsorption on lignocellulosic substrate loaded with ferric ion. Environ Chem Lett 5:125–129. doi: 10.1007/s10311-007-0092-3 CrossRefGoogle Scholar
  47. Eid M, El-Arnaouty MB, Salah M et al (2012) Radiation synthesis and characterization of poly(vinyl alcohol)/poly(N- vinyl-2-pyrrolidone) based hydrogels containing silver nanoparticles. J Polym Res. doi: 10.1007/s10965-012-9835-3 Google Scholar
  48. El Salmawi KM (2007) Gamma radiation-induced crosslinked PVA/chitosan blends for wound dressing. J Macromol Sci Part A Pure Appl Chem 44:541–545. doi: 10.1080/10601320701235891 CrossRefGoogle Scholar
  49. Elias DC, Nair RR, Mohiuddin TMG et al (2009) Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 80(323):610–613. doi: 10.1126/science.1167130 CrossRefGoogle Scholar
  50. Eswaramma S, Reddy NS, Rao KSVK (2017) Phosphate crosslinked pectin based dual responsive hydrogel networks and nanocomposites: development, swelling dynamics and drug release characteristics. Int J Biol Macromol 103:1162–1172. doi: 10.1016/j.ijbiomac.2017.05.160 CrossRefGoogle Scholar
  51. Faghihi S, Gheysour M, Karimi A, Salarian R (2014) Fabrication and mechanical characterization of graphene oxide-reinforced poly (acrylic acid)/gelatin composite hydrogels. J Appl Phys 10(1063/1):4864153Google Scholar
  52. Fan J, Shi Z, Lian M et al (2013) Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. J Mater Chem A 1:7433. doi: 10.1039/c3ta10639j CrossRefGoogle Scholar
  53. Ferse B, Richter S, Eckert F et al (2008) Gelation mechanism of poly(N-isopropylacrylamide)-clay nanocomposite hydrogels synthesized by photopolymerization. Langmuir 24:12627–12635. doi: 10.1021/la802162g CrossRefGoogle Scholar
  54. Franking R, Kim H, Chambers SA et al (2012) Photochemical grafting of organic alkenes to single-crystal TiO2 surfaces: a mechanistic study. Langmuir 28:12085–12093. doi: 10.1021/la302169k CrossRefGoogle Scholar
  55. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manag 92:407–418. doi: 10.1016/j.jenvman.2010.11.011 CrossRefGoogle Scholar
  56. Fu S, Guo G, Gong C et al (2009) Injectable biodegradable thermosensitive hydrogel composite for orthopedic tissue engineering. 1. Preparation and characterization of nanohydroxyapatite/ poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) hydrogel nanocomposites. J Phys Chem B 113:16518–16525. doi: 10.1021/jp907974d CrossRefGoogle Scholar
  57. Gaharwar AK, Rivera CP, Wu CJ, Schmidt G (2011) Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles. Acta Biomater 7:4139–4148. doi: 10.1016/j.actbio.2011.07.023 CrossRefGoogle Scholar
  58. Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111:441–453. doi: 10.1002/bit.25160 CrossRefGoogle Scholar
  59. Georgieva N, Bryaskova R, Tzoneva R (2012) New Polyvinyl alcohol-based hybrid materials for biomedical application. Mater Lett 88:19–22. doi: 10.1016/j.matlet.2012.07.111 CrossRefGoogle Scholar
  60. Ghorai S, Sinhamahpatra A, Sarkar A et al (2012) Novel biodegradable nanocomposite based on XG–g–PAM/SiO2: application of an efficient adsorbent for Pb2+ ions from aqueous solution. Bioresour Technol 119:181–190. doi: 10.1016/j.biortech.2012.05.063 CrossRefGoogle Scholar
  61. Ghorai S, Sarkar A, Raoufi M et al (2014) Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica. ACS Appl Mater Interfaces 6:4766–4777. doi: 10.1021/am4055657 CrossRefGoogle Scholar
  62. Glicklis R, Shapiro L, Agbaria R et al (2000) Hepatocyte behavior within three-dimensional porous alginate scaffolds. Biotechnol Bioeng 67:344–353CrossRefGoogle Scholar
  63. Goenka S, Sant V, Sant S (2014) Graphene-based nanomaterials for drug delivery and tissue engineering. J Control Release 173:75–88. doi: 10.1016/j.jconrel.2013.10.017 CrossRefGoogle Scholar
  64. Gonzalez JS, Ludueña LN, Ponce A, Alvarez VA (2014) Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater Sci Eng, C 34:54–61. doi: 10.1016/j.msec.2013.10.006 CrossRefGoogle Scholar
  65. Güçlü G, Al E, Emik S et al (2010) Removal of Cu2+ and Pb2+ ions from aqueous solutions by Starch-graft-acrylic acid/montmorillonite superabsorbent nanocomposite hydrogels. Polym Bull 65:333–346. doi: 10.1007/s00289-009-0217-x CrossRefGoogle Scholar
  66. Guilherme MR, Fajardo AR, Moia TA et al (2010) Porous nanocomposite hydrogel of vinyled montmorillonite-crosslinked maltodextrin-co-dimethylacrylamide as a highly stable polymer carrier for controlled release systems. Eur Polym J 46:1465–1474. doi: 10.1016/j.eurpolymj.2010.04.008 CrossRefGoogle Scholar
  67. Gultepe E, Nagesha D, Sridhar S, Amiji M (2010) Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices. Adv Drug Deliv Rev 62:305–315. doi: 10.1016/j.addr.2009.11.003 CrossRefGoogle Scholar
  68. Guo J, Zhou M, Yang C (2017) Fluorescent hydrogel waveguide for on-site detection of heavy metal ions. Sci Rep 7:7902. doi: 10.1038/s41598-017-08353-8 CrossRefGoogle Scholar
  69. Gupta VK, Ali I (2004) Removal of lead and chromium from wastewater using bagasse fly ash—a sugar industry waste. J Colloid Interface Sci 271:321–328. doi: 10.1016/j.jcis.2003.11.007 CrossRefGoogle Scholar
  70. Gupta MK, Bajpai J, Bajpai AK (2014a) Preparation and characterizations of superparamagnetic iron oxide-embedded poly(2-hydroxyethyl methacrylate) nanocarriers. J Appl Polym Sci. doi: 10.1002/app.40791 Google Scholar
  71. Gupta VK, Pathania D, Asif M, Sharma G (2014b) Liquid phase synthesis of pectin–cadmium sulfide nanocomposite and its photocatalytic and antibacterial activity. J Mol Liq 196:107–112. doi: 10.1016/j.molliq.2014.03.021 CrossRefGoogle Scholar
  72. Gupta VK, Sharma G, Pathania D, Kothiyal NC (2015) Nanocomposite pectin Zr(IV) selenotungstophosphate for adsorptional/photocatalytic remediation of methylene blue and malachite green dyes from aqueous system. J Ind Eng Chem 21:957–964. doi: 10.1016/j.jiec.2014.05.001 CrossRefGoogle Scholar
  73. Haas HC, Kamath PM, Norman W (1957) Ionic Grafting. J Plym Sci Part A Polym Chem XXIV:85–92Google Scholar
  74. Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60:1638–1649. doi: 10.1016/j.addr.2008.08.002 CrossRefGoogle Scholar
  75. Haraguchi K (2011) Synthesis and properties of soft nanocomposite materials with novel organic/inorganic network structures. Polym J 43:223–241. doi: 10.1038/pj.2010.141 CrossRefGoogle Scholar
  76. Haraguchi K, Takehisa T, Fan S (2002) Effects of Clay Content on the Properties of Nanocomposite Hydrogels Composed of Poly(N-isopropylacrylamide) and Clay. Macromolecules 35:10162–10171. doi: 10.1021/ma021301r CrossRefGoogle Scholar
  77. Haraguchi K, Li HJ, Matsuda K et al (2005) Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA-clay nanocomposite hydrogels. Macromolecules 38:3482–3490. doi: 10.1021/ma047431c CrossRefGoogle Scholar
  78. Haraguchi K, Uyama K, Tanimoto H (2011) Self-healing in nanocomposite hydrogels. Macromol Rapid Commun 32:1253–1258. doi: 10.1002/marc.201100248 CrossRefGoogle Scholar
  79. Hashem M, Sharaf S, Abd El-Hady MM, Hebeish A (2013) Synthesis and characterization of novel carboxymethylcellulose hydrogels and carboxymethylcellulolse-hydrogel-ZnO-nanocomposites. Carbohydr Polym 95:421–427. doi: 10.1016/j.carbpol.2013.03.013 CrossRefGoogle Scholar
  80. He Y, Zhang N, Gong Q et al (2012) Alginate/graphene oxide fibers with enhanced mechanical strength prepared by wet spinning. Carbohydr Polym 88:1100–1108. doi: 10.1016/j.carbpol.2012.01.071 CrossRefGoogle Scholar
  81. Hebeish A, Sharaf S (2015) Novel nanocomposite hydrogel for wound dressing and other medical applications. RSC Adv 5:103036–103046. doi: 10.1039/C5RA07076G CrossRefGoogle Scholar
  82. Hebeish A, Hashem M, El-Hady MMA, Sharaf S (2013) Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohydr Polym 92:407–413. doi: 10.1016/j.carbpol.2012.08.094 CrossRefGoogle Scholar
  83. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polym (Guildf) 49:1993–2007. doi: 10.1016/j.polymer.2008.01.027 CrossRefGoogle Scholar
  84. Holloway JL, Lowman AM, VanLandingham MR, Palmese GR (2013) Chemical grafting for improved interfacial shear strength in UHMWPE/PVA-hydrogel fiber-based composites used as soft fibrous tissue replacements. Compos Sci Technol 85:118–125. doi: 10.1016/j.compscitech.2013.06.007 CrossRefGoogle Scholar
  85. Hu S, Zhao Q, Dong Y et al (2013) Carbon-dot-loaded alginate gels as recoverable probes: fabrication and mechanism of fluorescent detection. Langmuir 29:12615–12621. doi: 10.1021/la402647t CrossRefGoogle Scholar
  86. Huang X, Xu S, Zhong M et al (2009) Modification of Na-bentonite by polycations for fabrication of amphoteric semi-IPN nanocomposite hydrogels. Appl Clay Sci 42:455–459. doi: 10.1016/j.clay.2008.05.008 CrossRefGoogle Scholar
  87. Huh HW, Zhao L, Kim SY (2015) Biomineralized biomimetic organic/inorganic hybrid hydrogels based on hyaluronic acid and poloxamer. Carbohydr Polym 126:130–140. doi: 10.1016/j.carbpol.2015.03.033 CrossRefGoogle Scholar
  88. Hussain F (2006) Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40:1511–1575. doi: 10.1177/0021998306067321 CrossRefGoogle Scholar
  89. Ifuku S (2015) Chitin nanofibers: preparations, modifications, and applications. Handb Polym Nanocompos Process Perform Appl Vol C Polym Nanocompo Cellul Nanopart. doi: 10.1007/978-3-642-45232-1-73 Google Scholar
  90. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. doi: 10.1038/354056a0 CrossRefGoogle Scholar
  91. Janas D, Boncel S, Koziol KKK (2014) Electrothermal halogenation of carbon nanotube films. Carbon N Y 73:259–266. doi: 10.1016/j.carbon.2014.02.062 CrossRefGoogle Scholar
  92. Jayaramudu T, Raghavendra GM, Varaprasad K et al (2013) Iota-Carrageenan-based biodegradable Ag0 nanocomposite hydrogels for the inactivation of bacteria. Carbohydr Polym 95:188–194. doi: 10.1016/j.carbpol.2013.02.075 CrossRefGoogle Scholar
  93. Jovanović Ž, Krklješ A, Stojkovska J et al (2011) Synthesis and characterization of silver/poly(N-vinyl-2-pyrrolidone) hydrogel nanocomposite obtained by in situ radiolytic method. Radiat Phys Chem 80:1208–1215. doi: 10.1016/j.radphyschem.2011.06.005 CrossRefGoogle Scholar
  94. Ju X-J, Zhang S-B, Zhou M-Y et al (2009) Novel heavy-metal adsorption material: ion-recognition P(NIPAM-co-BCAm) hydrogels for removal of lead(II) ions. J Hazard Mater 167:114–118. doi: 10.1016/j.jhazmat.2008.12.089 CrossRefGoogle Scholar
  95. Kabiri K, Zohuriaan-Mehr MJ (2003) Superabsorbent hydrogel composites. Polym Adv Technol 14:438–444. doi: 10.1002/pat.356 CrossRefGoogle Scholar
  96. Kadirvelu K, Palanival M, Kalpana R, Rajeswari S (2000) Activated carbon from an agricultural by-product, for the treatment of dyeing industry wastewater. Bioresour Technol 74:263–265. doi: 10.1016/S0960-8524(00)00013-4 CrossRefGoogle Scholar
  97. Kalapathy U, Proctor A, Shultz J (2000) A simple method for production of pure silica from rice hull ash. Bioresour Technol 73:257–262. doi: 10.1016/S0960-8524(99)00127-3 CrossRefGoogle Scholar
  98. Kamari A, Aljafree NFA, Yusoff SNM (2016) Oleoyl–carboxymethyl chitosan as a new carrier agent for the rotenone pesticide. Environ Chem Lett 14:417–422. doi: 10.1007/s10311-016-0550-x CrossRefGoogle Scholar
  99. Kamath SR, Proctor A (1998) Silica gel from rice hull ash: preparation and characterization. Cereal Chem 75:484–487. doi: 10.1094/CCHEM.1998.75.4.484 CrossRefGoogle Scholar
  100. Kania RE, Meunier A, Hamadouche M et al (1998) Addition of fibrin sealant to ceramic promotes bone repair: long-term study in rabbit femoral defect model. J Biomed Mater Res 43:38–45CrossRefGoogle Scholar
  101. Kawaguchi M, Fukushima T, Hayakawa T et al (2006) Preparation of carbon nanotube-alginate nanocomposite gel for tissue engineering. Dent Mater J 25:719–725. doi: 10.4012/dmj.25.719 CrossRefGoogle Scholar
  102. Kaya IGB, Duranoglu D, Beker U, Senkal BF (2011) Development of polymeric and polymer-based hybrid adsorbents for chromium removal from aqueous solution. CLEAN Soil Air Water 39:980–988. doi: 10.1002/clen.201000552 CrossRefGoogle Scholar
  103. Keener JP, Sircar S, Fogelson AL (2011) Kinetics of swelling gels. SIAM J Appl Math 71:854–875. doi: 10.1137/100796984 CrossRefGoogle Scholar
  104. Keng P-S, Lee S-L, Ha S-T et al (2014) Removal of hazardous heavy metals from aqueous environment by low-cost adsorption materials. Environ Chem Lett 12:15–25. doi: 10.1007/s10311-013-0427-1 CrossRefGoogle Scholar
  105. Khalek MAM, Mahmoud GA, El-kelesh NA (2012) Synthesis and characterization of poly-methacrylic acid grafted chitosan-bentonite composite and its application for heavy metals recovery. Chem Mater Res 2:1–8Google Scholar
  106. Kokabi M, Sirousazar M, Hassan ZM (2007) PVA-clay nanocomposite hydrogels for wound dressing. Eur Polym J 43:773–781. doi: 10.1016/j.eurpolymj.2006.11.030 CrossRefGoogle Scholar
  107. Kuilla T, Bhadra S, Yao D et al (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375. doi: 10.1016/j.progpolymsci.2010.07.005 CrossRefGoogle Scholar
  108. Kumar R, Katare OP (2005) Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: a review. AAPS PharmSciTech 6:E298–E310. doi: 10.1208/pt060240 CrossRefGoogle Scholar
  109. Kumar A, Sharma G, Naushad M et al (2014) Polyacrylamide/Ni0.02 Zn0.98 O nanocomposite with high solar light photocatalytic activity and efficient adsorption capacity for toxic dye removal. Ind Eng Chem Res 53:15549–15560. doi: 10.1021/ie5018173 CrossRefGoogle Scholar
  110. Kumar A, Sharma G, Naushad M, Thakur S (2015) SPION/β-cyclodextrin core-shell nanostructures for oil spill remediation and organic pollutant removal from waste water. Chem Eng J 280:175–187. doi: 10.1016/j.cej.2015.05.126 CrossRefGoogle Scholar
  111. Kumar A, Guo C, Sharma G et al (2016) Magnetically recoverable ZrO2/Fe3O4/chitosan nanomaterials for enhanced sunlight driven photoreduction of carcinogenic Cr(VI) and dechlorination & mineralization of 4-chlorophenol from simulated waste water. RSC Adv 6:13251–13263. doi: 10.1039/C5RA23372K CrossRefGoogle Scholar
  112. Kumar A, Naushad M, Rana A et al (2017a) ZnSe-WO3 nano-hetero-assembly stacked on Gum ghatti for photo-degradative removal of Bisphenol A: symbiose of adsorption and photocatalysis. Int J Biol Macromol. doi: 10.1016/j.ijbiomac.2017.06.116 Google Scholar
  113. Kumar A, Shalini Sharma G et al (2017b) Facile hetero-assembly of superparamagnetic Fe3O4/BiVO4 stacked on biochar for solar photo-degradation of methyl paraben and pesticide removal from soil. J Photochem Photobiol A Chem 337:118–131. doi: 10.1016/j.jphotochem.2017.01.010 CrossRefGoogle Scholar
  114. Lee Y-J, Braun PV (2003) Tunable inverse opal hydrogel pH sensors. Adv Mater 15:563–566. doi: 10.1002/adma.200304588 CrossRefGoogle Scholar
  115. Lee W, Chen Y (2003) Effect of bentonite on the physical properties and drug- release behavior of poly (aa-co-pegmea)/ bentonite nanocomposite hydrogels for mucoadhesive. J App Poly Sci 91:2934–2941CrossRefGoogle Scholar
  116. Lee WF, Chen YC (2004) Effect of hydrotalcite on the physical properties and drug-release behavior of nanocomposite hydrogels based on poly[acrylic acid-co-poly(ethylene glycol) methyl ether acrylate] gels. J Appl Polym Sci 94:692–699. doi: 10.1002/app.20936 CrossRefGoogle Scholar
  117. Lee WF, Fu YT (2003) Effect of montmorillonite on the swelling behavior and drug-release behavior of nanocomposite hydrogels. J Appl Polym Sci 89:3652–3660. doi: 10.1002/app.12624 CrossRefGoogle Scholar
  118. Lee WF, Lee SC (2006) Effect of hydrotalcite on the swelling and mechanical behaviors for the hybrid nanocomposite hydrogels based on gelatin and hydrotalcite. J Appl Polym Sci 100:500–507. doi: 10.1002/app.23219 CrossRefGoogle Scholar
  119. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126. doi: 10.1016/j.progpolymsci.2011.06.003 CrossRefGoogle Scholar
  120. Lee S, Pérez-Luna VH (2005) Dextran-gold nanoparticle hybrid material for biomolecule immobilization and detection. Anal Chem 77:7204–7211. doi: 10.1021/ac050484n CrossRefGoogle Scholar
  121. Lee WF, Tsao KT (2010) Effect of silver nanoparticles content on the various properties of nanocomposite hydrogels by in situ polymerization. J Mater Sci 45:89–97. doi: 10.1007/s10853-009-3896-7 CrossRefGoogle Scholar
  122. Lee SB, Seo SM, Lim YM et al (2004) Preparation of alginate/poly (N-isopropylacrylamide) hydrogels using gamma-ray irradiation grafting. Macromol Res 12:269–275CrossRefGoogle Scholar
  123. Li HJ, Haraguchi K (2006) Mechanical and swelling/de-swelling properties of nanocomposite gel with high clay content. Polym Prepr Japan 55:1077. doi: 10.1021/ma052468y Google Scholar
  124. Li P, Siddaramaiah Kim NH et al (2008) Novel PAAm/Laponite clay nanocomposite hydrogels with improved cationic dye adsorption behavior. Compos Part B Eng 39:756–763. doi: 10.1016/j.compositesb.2007.11.003 CrossRefGoogle Scholar
  125. Li S, Liu X, Huang W et al (2011a) Magnetically assisted removal and separation of cationic dyes from aqueous solution by magnetic nanocomposite hydrogels. Polym Adv Technol 22:2439–2447. doi: 10.1002/pat.1782 CrossRefGoogle Scholar
  126. Li X, Hu A, Ye L (2011b) Structure and property of porous polyvinylalcohol hydrogels for microorganism immobilization. J Polym Environ 19:398–404. doi: 10.1007/s10924-011-0289-1 CrossRefGoogle Scholar
  127. Li C, Chen G, Sun J et al (2016) Doping effect of phosphate in Bi2WO6 and universal improved photocatalytic activity for removing various pollutants in water. Appl Catal B Environ 188:39–47. doi: 10.1016/j.apcatb.2016.01.054 CrossRefGoogle Scholar
  128. Lima-Tenório MK, Tenório-Neto ET, Guilherme MR et al (2015) Water transport properties through starch-based hydrogel nanocomposites responding to both pH and a remote magnetic field. Chem Eng J 259:620–629. doi: 10.1016/j.cej.2014.08.045 CrossRefGoogle Scholar
  129. Liu P, Zhang L (2007) Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents. Sep Purif Technol 58:32–39. doi: 10.1016/j.seppur.2007.07.007 CrossRefGoogle Scholar
  130. Liu L, Cooke PH, Coffin DR et al (2004) Pectin and polyacrylamide composite hydrogels: effect of pectin on structural and dynamic mechanical properties. J Appl Polym Sci 92:1893–1901. doi: 10.1002/app.20174 CrossRefGoogle Scholar
  131. Liu KH, Liu TY, Chen SY, Liu DM (2008) Drug release behavior of chitosan-montmorillonite nanocomposite hydrogels following electrostimulation. Acta Biomater 4:1038–1045. doi: 10.1016/j.actbio.2008.01.012 CrossRefGoogle Scholar
  132. Liu F, Wang J, Li L et al (2009) Adsorption of direct yellow 12 onto ordered mesoporous carbon and activated carbon. J Chem Eng Data 54:3043–3050. doi: 10.1021/je900391p CrossRefGoogle Scholar
  133. Liu H, Liu M, Zhang L et al (2010) Dual-stimuli sensitive composites based on multi-walled carbon nanotubes and poly(N, N-diethylacrylamide-co-acrylic acid) hydrogels. React Funct Polym 70:294–300. doi: 10.1016/j.reactfunctpolym.2010.02.002 CrossRefGoogle Scholar
  134. Liu Z, Yang Z, Luo Y (2012a) Swelling, pH sensitivity, and mechanical properties of poly(acrylamide-cosodium methacrylate) nanocomposite hydrogels impregnated with carboxyl-functionalized carbon nanotubes. Polym Compos 33:665–674. doi: 10.1002/pc.22180
  135. Liu CD, Zhang ZX, Chan VMH et al (2012b) A gelatin-based hydrogel with $β$-cyclodextrin crosslinker for controlled drug release. In: Jobbágy Á (ed) 5th European conference of the international federation for medical and biological engineering: 14–18 September 2011, Budapest, Hungary. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 1090–1093Google Scholar
  136. Liu Y, Meng H, Konst S et al (2014) Injectable dopamine-modified poly(ethylene glycol) nanocomposite hydrogel with enhanced adhesive property and bioactivity. ACS Appl Mater Interfaces 6:16982–16992. doi: 10.1021/am504566v CrossRefGoogle Scholar
  137. Liu M, Huang J, Luo B, Zhou C (2015a) Tough and highly stretchable polyacrylamide nanocomposite hydrogels with chitin nanocrystals. Int J Biol Macromol 78:23–31. doi: 10.1016/j.ijbiomac.2015.03.059 CrossRefGoogle Scholar
  138. Liu P, Jiang L, Zhu L et al (2015b) Synthesis of covalently crosslinked attapulgite/poly(acrylic acid-co-acrylamide) nanocomposite hydrogels and their evaluation as adsorbent for heavy metal ions. J Ind Eng Chem 23:188–193. doi: 10.1016/j.jiec.2014.08.014 CrossRefGoogle Scholar
  139. Llanos GR, Seftont MV (2000) Immobilization of poly (ethylene glycol) onto a poly (viny1 alcohol) hydrogel: 2. Eval Thrombogenicity 27:1383–1391Google Scholar
  140. Lo C-W, Zhu D, Jiang H (2011) An infrared-light responsive graphene-oxide incorporated poly(N-isopropylacrylamide) hydrogel nanocomposite. Soft Matter 7:5604. doi: 10.1039/c1sm00011j CrossRefGoogle Scholar
  141. Lu B, Li T, Zhao H et al (2012) Graphene-based composite materials beneficial to wound healing. Nanoscale 4:2978. doi: 10.1039/c2nr11958g CrossRefGoogle Scholar
  142. Luo W, Zhang W, Chen P, Fang Y (2005) Synthesis and properties of starch grafted poly[acrylamide-co-(acrylic acid)]/montmorillonite nanosuperabsorbent via ??-ray irradiation technique. J Appl Polym Sci 96:1341–1346. doi: 10.1002/app.21447 CrossRefGoogle Scholar
  143. Luo YL, Wei QB, Xu F et al (2009) Assembly, characterization and swelling kinetics of Ag nanoparticles in PDMAA-g-PVA hydrogel networks. Mater Chem Phys 118:329–336. doi: 10.1016/j.matchemphys.2009.07.063 CrossRefGoogle Scholar
  144. Ma J, Xu Y, Fan B, Liang B (2007) Preparation and characterization of sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/clay semi-IPN nanocomposite hydrogels. Eur Polym J 43:2221–2228. doi: 10.1016/j.eurpolymj.2007.02.026 CrossRefGoogle Scholar
  145. Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A Appl Sci Manuf 41:1345–1367CrossRefGoogle Scholar
  146. Maciel DJ, de Ferreira IL, da Costa GM, da Silva MR (2016) Nanocomposite hydrogels based on iota-carrageenan and maghemite: morphological, thermal and magnetic properties. Eur Polym J 76:147–155. doi: 10.1016/j.eurpolymj.2016.01.043 CrossRefGoogle Scholar
  147. Madhumathi K, Sudheesh Kumar PT, Abhilash S et al (2010) Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J Mater Sci Mater Med 21:807–813. doi: 10.1007/s10856-009-3877-z CrossRefGoogle Scholar
  148. Mahdavinia GR, Asgari A (2013) Synthesis of kappa-carrageenan-g-poly(acrylamide)/sepiolite nanocomposite hydrogels and adsorption of cationic dye. Polym Bull 70:2451–2470. doi: 10.1007/s00289-013-0966-4 CrossRefGoogle Scholar
  149. Mahdavinia GR, Etemadi H (2014) In situ synthesis of magnetic CaraPVA IPN nanocomposite hydrogels and controlled drug release. Mater Sci Eng, C 45:250–260. doi: 10.1016/j.msec.2014.09.023 CrossRefGoogle Scholar
  150. Mahdavinia GR, Pourjavadi A, Zohuriaan-Mehr MJ (2006) A convenient one-step preparation of chitosan-poly(sodium acrylate-co-acrylamide) hydrogel hybrids with super-swelling properties. J Appl Polym Sci 99:1615–1619. doi: 10.1002/app.22521 CrossRefGoogle Scholar
  151. Mahdavinia GR, Massoudi A, Baghban A, Massoumi B (2012) Novel carrageenan-based hydrogel nanocomposites containing laponite RD and their application to remove cationic dye. Iran Polym J Engl. doi: 10.1007/s13726-012-0066-6 Google Scholar
  152. Mahdavinia GR, Baghban A, Zorofi S, Massoudi A (2014a) Kappa-carrageenan biopolymer-based nanocomposite hydrogel and adsorption of methylene blue cationic dye from water. J Mater Environ Sci 5:330–337Google Scholar
  153. Mahdavinia GR, Massoudi A, Baghban A, Shokri E (2014b) Study of adsorption of cationic dye on magnetic kappa-carrageenan/PVA nanocomposite hydrogels. J Environ Chem Eng 2:1578–1587. doi: 10.1016/j.jece.2014.05.020 CrossRefGoogle Scholar
  154. Makino K, Suzuki K, Sakurai Y et al (1995) Electroosmotic flow on a poly(N-isopropylacrylamide) hydrogel surface. Colloids Surf A Physicochem Eng Asp 103:221–226. doi: 10.1016/0927-7757(95)03285-L CrossRefGoogle Scholar
  155. Mall ID, Srivastava VC, Agarwal NK, Mishra IM (2005) Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: kinetic study and equilibrium isotherm analyses. Chemosphere 61:492–501. doi: 10.1016/j.chemosphere.2005.03.065 CrossRefGoogle Scholar
  156. Mansoori Y, Atghia SV, Zamanloo MR et al (2010) Polymer-clay nanocomposites: free-radical grafting of polyacrylamide onto organophilic montmorillonite. Eur Polym J 46:1844–1853. doi: 10.1016/j.eurpolymj.2010.07.006 CrossRefGoogle Scholar
  157. Mathur AM, Moorjani SK, Scranton AB (1996) Methods for synthesis of hydrogel networks: a review. J Macromol Sci Part C Polym Rev 36:405–430. doi: 10.1080/15321799608015226 CrossRefGoogle Scholar
  158. Mbhele ZH, Salemane MG, Van Sittert CGCE et al (2003) Fabrication and characterization of silver—polyvinyl alcohol nanocomposites. Chem Mater 15:5019–5024. doi: 10.1021/cm034505a CrossRefGoogle Scholar
  159. Meena R, Prasad K, Siddhanta AK (2009) Development of a stable hydrogel network based on agar-kappa-carrageenan blend cross-linked with genipin. Food Hydrocoll 23:497–509. doi: 10.1016/j.foodhyd.2008.03.008 CrossRefGoogle Scholar
  160. Meenach SA, Hilt JZ, Anderson KW (2010) Poly(ethylene glycol)-based magnetic hydrogel nanocomposites for hyperthermia cancer therapy. Acta Biomater 6:1039–1046. doi: 10.1016/j.actbio.2009.10.017 CrossRefGoogle Scholar
  161. Mellati A, Dai S, Bi J et al (2014) A biodegradable thermosensitive hydrogel with tuneable properties for mimicking three-dimensional microenvironments of stem cells. RSC Adv 4:63951–63961. doi: 10.1039/C4RA12215A CrossRefGoogle Scholar
  162. Mittal A, Naushad M, Sharma G et al (2016a) Fabrication of MWCNTs/ThO2 nanocomposite and its adsorption behavior for the removal of Pb(II) metal from aqueous medium. Desalin Water Treat 57:21863–21869. doi: 10.1080/19443994.2015.1125805 CrossRefGoogle Scholar
  163. Mittal H, Kumar V, Saruchi Ray SS (2016b) Adsorption of methyl violet from aqueous solution using gum xanthan/Fe3O4 based nanocomposite hydrogel. Int J Biol Macromol 89:1–11. doi: 10.1016/j.ijbiomac.2016.04.050 CrossRefGoogle Scholar
  164. Miyake T, Asakawa T (2005) Recently developed catalytic processes with bimetallic catalysts. Appl Catal A Gen 280:47–53. doi: 10.1016/j.apcata.2004.08.026 CrossRefGoogle Scholar
  165. Moon YE, Jung G, Yun J, Il Kim H (2013) Poly(vinyl alcohol)/poly(acrylic acid)/TiO2/graphene oxide nanocomposite hydrogels for pH-sensitive photocatalytic degradation of organic pollutants. Mater Sci Eng B Solid State Mater Adv Technol 178:1097–1103. doi: 10.1016/j.mseb.2013.07.002 CrossRefGoogle Scholar
  166. Motshekga SC, Ray SS, Onyango MS, Momba MNB (2015) Preparation and antibacterial activity of chitosan-based nanocomposites containing bentonite-supported silver and zinc oxide nanoparticles for water disinfection. Appl Clay Sci 114:330–339. doi: 10.1016/j.clay.2015.06.010 CrossRefGoogle Scholar
  167. Murali Mohan Y, Lee K, Premkumar T, Geckeler KE (2007) Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications. Polymer (Guildf) 48:158–164. doi: 10.1016/j.polymer.2006.10.045 CrossRefGoogle Scholar
  168. Nadagouda MN, Varma RS (2007) Preparation of novel metallic and bimetallic cross-linked poly(vinyl alcohol) nanocomposites under microwave irradiation. Macromol Rapid Commun 28:465–472. doi: 10.1002/marc.200600735 CrossRefGoogle Scholar
  169. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798. doi: 10.1016/j.progpolymsci.2007.05.017 CrossRefGoogle Scholar
  170. Naushad M, Vasudevan S, Sharma G et al (2015) Adsorption kinetics, isotherms, and thermodynamic studies for Hg2+ adsorption from aqueous medium using alizarin red-S-loaded amberlite IRA-400 resin. Desalin Water Treat 3994:2237–2245. doi: 10.1080/19443994.2015.1090914 Google Scholar
  171. Naushad M, Ahamad T, Sharma G et al (2016a) Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion. Chem Eng J 300:306–316. doi: 10.1016/j.cej.2016.04.084 CrossRefGoogle Scholar
  172. Naushad M, Vasudevan S, Sharma G, AloZ Kumar A (2016b) Adsorption kinetics, isotherms, and thermodynamic studies for Hg2+ adsorption from aqueous medium using alizarin red-S-loaded amberlite IRA-400 resin. Desalin Water Treat 57:18551–18559CrossRefGoogle Scholar
  173. Naushad M, Sharma G, Kumar A et al (2017) Efficient removal of toxic phosphate anions from aqueous environment using pectin based quaternary amino anion exchanger. Int J Biol Macromol. doi: 10.1016/j.ijbiomac.2017.07.169 Google Scholar
  174. Ni C, Zhu XX (2004) Synthesis and swelling behavior of thermosensitive hydrogels based on N-substituted acrylamides and sodium acrylate. Eur Polym J 40:1075–1080. doi: 10.1016/j.eurpolymj.2003.12.017 CrossRefGoogle Scholar
  175. Nie X, Adalati A, Du J et al (2014) Preparation of amphoteric nanocomposite hydrogels based on exfoliation of montmorillonite via in-situ intercalative polymerization of hydrophilic cationic and anionic monomers. Appl Clay Sci 97–98:132–137. doi: 10.1016/j.clay.2014.05.020 CrossRefGoogle Scholar
  176. Nieto M, Nardecchia S, Peinado C et al (2010) Enzyme-induced graft polymerization for preparation of hydrogels: synergetic effect of laccase-immobilized-cryogels for pollutants adsorption. Soft Matter 6:3533. doi: 10.1039/C0SM00079E CrossRefGoogle Scholar
  177. Ninan N, Muthiah M, Park IK et al (2013) Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering. Carbohydr Polym 98:877–885. doi: 10.1016/j.carbpol.2013.06.067 CrossRefGoogle Scholar
  178. Nnadi F, Brave C (2011) Environmentally friendly superabsorbent polymers for water conservation in agricultural lands. J Soil Environ Manag 2:206–211Google Scholar
  179. Noori S, Kokabi M, Hassan ZM (2015) Nanoclay enhanced the mechanical properties of poly(vinyl alcohol) /chitosan /montmorillonite nanocomposite hydrogel as wound dressing. Proc Mater Sci 11:152–156. doi: 10.1016/j.mspro.2015.11.023 CrossRefGoogle Scholar
  180. Noppakundilograt S, Sonjaipanich K, Thongchul N, Kiatkamjornwong S (2013) Syntheses, characterization, and antibacterial activity of chitosan grafted hydrogels and associated mica-containing nanocomposite hydrogels. J Appl Polym Sci 127:4927–4938. doi: 10.1002/app.37612 CrossRefGoogle Scholar
  181. Nor Hanisah Z, Yamin Y, Ahmad Faujan BH (2007) Use of anion clay hydrotalcite to remove coloured organics from aqueous solutions. Res J Chem Environ 11:31–36. doi: 10.1016/S1383-5866(02)00158-2 Google Scholar
  182. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 80(306):666–669. doi: 10.1126/science.1102896 CrossRefGoogle Scholar
  183. Okamoto M (2006) Recent advances in polymer/layered silicate nanocomposites: an overview from science to technology. Mater Sci Technol 22:756–779. doi: 10.1179/174328406X101319 CrossRefGoogle Scholar
  184. Omidi M, Yadegari A, Tayebi L (2017) Wound dressing application of pH-sensitive carbon dots/chitosan hydrogel. RSC Adv 7:10638–10649. doi: 10.1039/C6RA25340G CrossRefGoogle Scholar
  185. Pal S, Ghorai S, Das C et al (2012) Carboxymethyl tamarind-g-poly(acrylamide)/silica: a high performance hybrid nanocomposite for adsorption of methylene blue dye. Ind Eng Chem Res 51:15546–15556. doi: 10.1021/ie301134a CrossRefGoogle Scholar
  186. Pan Y, Wu T, Bao H, Li L (2011) Green fabrication of chitosan films reinforced with parallel aligned graphene oxide. Carbohydr Polym 83:1908–1915. doi: 10.1016/j.carbpol.2010.10.054 CrossRefGoogle Scholar
  187. Pandis C, Spanoudaki A, Kyritsis A et al (2011) Water sorption characteristics of poly(2-hydroxyethyl acrylate)/silica nanocomposite hydrogels. J Polym Sci, Part B: Polym Phys 49:657–668. doi: 10.1002/polb.22225 CrossRefGoogle Scholar
  188. Papaphilippou P (2012) Multiresponsive polymer conetworks capable of responding to changes in pH, temperature, and magnetic field: synthesis, characterization, and evaluation of theirGoogle Scholar
  189. Papaphilippou PC, Pourgouris A, Marinica O et al (2011) Fabrication and characterization of superparamagnetic and thermoresponsive hydrogels based on oleic-acid-coated Fe3O4 nanoparticles, hexa(ethylene glycol) methyl ether methacrylate and 2-(acetoacetoxy)ethyl methacrylate. J Magn Magn Mater 323:557–563. doi: 10.1016/j.jmmm.2010.10.009 CrossRefGoogle Scholar
  190. Paranhos CM, Soares BG, Oliveira RN, Pessan LA (2007) Poly(vinyl alcohol)/clay-based nanocomposite hydrogels: swelling behavior and characterization. Macromol Mater Eng 292:620–626. doi: 10.1002/mame.200700004 CrossRefGoogle Scholar
  191. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224. doi: 10.1038/nnano.2009.58 CrossRefGoogle Scholar
  192. Patel VR, Amiji MM (1996) Preparation and characterization of freeze-dried chitosan-poly(ethylene oxide) hydrogels for site-specific antibiotic delivery in the stomach. Pharm Res 13:588–593CrossRefGoogle Scholar
  193. Pathania D, Sharma G, Naushad M, Priya V (2014) A biopolymer-based hybrid cation exchanger pectin cerium(IV) iodate: synthesis, characterization, and analytical applications. Desalin Water Treat 3994:1–8. doi: 10.1080/19443994.2014.967731 CrossRefGoogle Scholar
  194. Pathania D, Gupta D, Al-Muhtaseb AH et al (2016a) Photocatalytic degradation of highly toxic dyes using chitosan-g-poly(acrylamide)/ZnS in presence of solar irradiation. J Photochem Photobiol A Chem 329:61–68. doi: 10.1016/j.jphotochem.2016.06.019 CrossRefGoogle Scholar
  195. Pathania D, Gupta D, Kothiyal NC et al (2016b) Preparation of a novel chitosan-g-poly(acrylamide)/Zn nanocomposite hydrogel and its applications for controlled drug delivery of ofloxacin. Int J Biol Macromol 84:340–348. doi: 10.1016/j.ijbiomac.2015.12.041 CrossRefGoogle Scholar
  196. Pathania D, Katwal R, Sharma G et al (2016c) Novel guar gum/Al2O3 nanocomposite as an effective photocatalyst for the degradation of malachite green dye. Int J Biol Macromol 87:366–374. doi: 10.1016/j.ijbiomac.2016.02.073 CrossRefGoogle Scholar
  197. Peng N, Hu D, Zeng J et al (2016) Superabsorbent cellulose-clay nanocomposite hydrogels for highly efficient removal of dye in water. ACS Sustain Chem Eng 4:7217–7224. doi: 10.1021/acssuschemeng.6b02178 CrossRefGoogle Scholar
  198. Pernetti M, van Malssen KF, Flöter E, Bot A (2007) Structuring of edible oils by alternatives to crystalline fat. Curr Opin Colloid Interface Sci 12:221–231. doi: 10.1016/j.cocis.2007.07.002 CrossRefGoogle Scholar
  199. Piao Y, Chen B (2016) One-pot synthesis and characterization of reduced graphene oxide-gelatin nanocomposite hydrogels. RSC Adv 6:6171–6181. doi: 10.1039/C5RA20674J CrossRefGoogle Scholar
  200. Pourjavadi A, Mahdavinia GR (2006) Chitosan-g-Poly (Acrylic Acid)/ Kaolin superabsorbent composite : synthesis and characterization. Polym Plym Compos 14:203–212Google Scholar
  201. Pourjavadi A, Hosseini SH, Seidi F, Soleyman R (2013) Magnetic removal of crystal violet from aqueous solutions using polysaccharide-based magnetic nanocomposite hydrogels. Polym Int 62:1038–1044. doi: 10.1002/pi.4389 CrossRefGoogle Scholar
  202. Pourjavadi A, Nazari M, Hosseini SH (2015) Synthesis of magnetic graphene oxide-containing nanocomposite hydrogels for adsorption of crystal violet from aqueous solution. RSC Adv 5:32263–32271. doi: 10.1039/C4RA17103A CrossRefGoogle Scholar
  203. Pradhan AK, Rana PK, Sahoo PK (2015) Biodegradability and Swelling capacity of Kaolin based Chitosan-g-PHEMA Nanocomposite hydrogel. Int J Biol Macromol 74:620–626. doi: 10.1016/j.ijbiomac.2014.12.024 CrossRefGoogle Scholar
  204. Qian H, Greenhalgh ES, Shaffer MSP, Bismarck A (2010) Carbon nanotube-based hierarchical composites: a review. J Mater Chem 20:4751. doi: 10.1039/c000041h CrossRefGoogle Scholar
  205. Rai LC, Gaur JP, Kumar HD (1981) Phycology and heavy metal pollution. Biol Rev 56:99–151. doi: 10.1111/j.1469-185X.1981.tb00345.x CrossRefGoogle Scholar
  206. Ramteke K (2012) Stimuli sensitive hydrogels in drug delivery systems. Int J Pharm Sci and Res 3:4604–4616Google Scholar
  207. Rao KM, Nagappan S, Seo DJ, Ha CS (2014) PH sensitive halloysite-sodium hyaluronate/poly(hydroxyethyl methacrylate) nanocomposites for colon cancer drug delivery. Appl Clay Sci 97–98:33–42. doi: 10.1016/j.clay.2014.06.002 CrossRefGoogle Scholar
  208. Ravindra S, Mulaba-Bafubiandi AF, Rajinikanth V et al (2012) Development and characterization of curcumin loaded silver nanoparticle hydrogels for antibacterial and drug delivery applications. J Inorg Organomet Polym Mater 22:1254–1262. doi: 10.1007/s10904-012-9734-4 CrossRefGoogle Scholar
  209. Reddy TT, Kano A, Maruyama A et al (2009) Synthesis and characterization of semi-interpenetrating polymer networks based on polyurethane and N-isopropylacrylamide for wound dressing. J Biomed Mater Res Part B Appl Biomater 88:32–40. doi: 10.1002/jbm.b.31185 CrossRefGoogle Scholar
  210. Reddy NN, Varaprasad K, Ravindra S et al (2011) Evaluation of blood compatibility and drug release studies of gelatin based magnetic hydrogel nanocomposites. Colloids Surf A Physicochem Eng Asp 385:20–27. doi: 10.1016/j.colsurfa.2011.05.006 CrossRefGoogle Scholar
  211. Reddy PR, Varaprasad K, Sadiku R et al (2013) Development of gelatin based inorganic nanocomposite hydrogels for inactivation of bacteria. J Inorg Organomet Polym Mater 23:1054–1060. doi: 10.1007/s10904-013-9886-x CrossRefGoogle Scholar
  212. Reddy PRS, Rao KM, Rao KSVK et al (2014) Synthesis of alginate based silver nanocomposite hydrogels for biomedical applications. Macromol Res 22:832–842. doi: 10.1007/s13233-014-2117-7 CrossRefGoogle Scholar
  213. Regiel A, Kyzioł A, Arruebo M (2013) Chitosan-silver nanocomposites—modern antibacterial materials. Chemik 67:683–692Google Scholar
  214. Roy D, Cambre JN, Sumerlin BS (2010) Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci 35:278–301. doi: 10.1016/j.progpolymsci.2009.10.008 CrossRefGoogle Scholar
  215. Sadeghi M, Ghasemi N, Kazemi M (2012) Synthesis and swelling behavior of carrageenans—Graft-Poly (Sodium Acrylate)/kaolin superabsorbent hydrogel. Composites 16:113–118Google Scholar
  216. Saha S, Pal A, Kundu S et al (2010) Photochemical green synthesis of calcium-alginate-stabilized ag and au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 26:2885–2893. doi: 10.1021/la902950x CrossRefGoogle Scholar
  217. Sanna R, Sanna D, Alzari V et al (2012) Synthesis and characterization of graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-vinylcaprolactam) prepared by frontal polymerization. J Polym Sci, Part A: Polym Chem 50:4110–4118. doi: 10.1002/pola.26215 CrossRefGoogle Scholar
  218. Sant S, Tao SL, Fisher OZ et al (2012) Microfabrication technologies for oral drug delivery. Adv Drug Deliv Rev 64:496–507. doi: 10.1016/j.addr.2011.11.013 CrossRefGoogle Scholar
  219. Santiago F, Mucientes AE, Osorio M, Rivera C (2007) Preparation of composites and nanocomposites based on bentonite and poly(sodium acrylate). Effect of amount of bentonite on the swelling behaviour. Eur Polym J 43:1–9. doi: 10.1016/j.eurpolymj.2006.07.023 CrossRefGoogle Scholar
  220. Satarkar NS, Zach Hilt J (2008) Hydrogel nanocomposites as remote-controlled biomaterials. Acta Biomater 4:11–16. doi: 10.1016/j.actbio.2007.07.009 CrossRefGoogle Scholar
  221. Sehga T, Rattan S (2010) Graft-copolymerization of N-vinyl-2-pyrrolidone onto isotactic polypropylene film by gamma radiation using peroxidation method. Indian J Pure Appl Phys 48:823–829Google Scholar
  222. Sen MY, Puskas JE (2008) Green polymer chemistry: telechelic poly(ethylene glycol)s via enzymatic catalysis. Am Chem Soc Polym Prepr Div Polym Chem 49:487–488. doi: 10.1002/pola Google Scholar
  223. Shahid SA, Qidwai AA, Anwar F et al (2012) Improvement in the water retention characteristics of sandy loam soil using a newly synthesized poly(acrylamide-co-acrylic acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite material. Molecules 17:9397–9412. doi: 10.3390/molecules17089397 CrossRefGoogle Scholar
  224. Sharma G, Pathania D, Naushad M, Kothiyal NC (2014) Fabrication, characterization and antimicrobial activity of polyaniline Th(IV) tungstomolybdophosphate nanocomposite material: efficient removal of toxic metal ions from water. Chem Eng J 251:413–421. doi: 10.1016/j.cej.2014.04.074 CrossRefGoogle Scholar
  225. Sharma R, Kaith BS, Kalia S et al (2015) Biodegradable and conducting hydrogels based on Guar gum polysaccharide for antibacterial and dye removal applications. J Environ Manag 162:37–45. doi: 10.1016/j.jenvman.2015.07.044 CrossRefGoogle Scholar
  226. Sharma G, Kumar A, Naushad M et al (2016a) Polyacrylamide@Zr(IV) vanadophosphate nanocomposite: ion exchange properties, antibacterial activity, and photocatalytic behavior. J Ind Eng Chem 33:201–208. doi: 10.1016/j.jiec.2015.10.011 CrossRefGoogle Scholar
  227. Sharma G, Naushad M, Pathania D, Kumar A (2016b) A multifunctional nanocomposite pectin thorium(IV) tungstomolybdate for heavy metal separation and photoremediation of malachite green. Desalin Water Treat 57:19443–19455. doi: 10.1080/19443994.2015.1096834 CrossRefGoogle Scholar
  228. Sharma G, Alothman ZA, Kumar A et al (2017a) Fabrication and characterization of a nanocomposite hydrogel for combined photocatalytic degradation of a mixture of malachite green and fast green dye. Nanotechnol Environ Eng 2:4. doi: 10.1007/s41204-017-0014-y CrossRefGoogle Scholar
  229. Sharma G, Bhogal S, Naushad M et al (2017b) Microwave assisted fabrication of La/Cu/Zr/carbon dots trimetallic nanocomposites with their adsorptional vs photocatalytic efficiency for remediation of persistent organic pollutants. J Photochem Photobiol A Chem 347:235–243. doi: 10.1016/j.jphotochem.2017.07.001 CrossRefGoogle Scholar
  230. Sharma G, Kumar D, Kumar A et al (2017c) Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: a review. Mater Sci Eng, C 71:1216–1230. doi: 10.1016/j.msec.2016.11.002 CrossRefGoogle Scholar
  231. Sharma G, Naushad M, Al-Muhtaseb AH et al (2017d) Fabrication and characterization of chitosan-crosslinked-poly(alginic acid) nanohydrogel for adsorptive removal of Cr(VI) metal ion from aqueous medium. Int J Biol Macromol 95:484–493. doi: 10.1016/j.ijbiomac.2016.11.072 CrossRefGoogle Scholar
  232. Sharma G, Naushad M, Kumar A et al (2017e) Efficient removal of coomassie brilliant blue R-250 dye using starch/poly(alginic acid-cl-acrylamide) nanohydrogel. Process Saf Environ Prot 109:301–310. doi: 10.1016/j.psep.2017.04.011 CrossRefGoogle Scholar
  233. Sharma G, Thakur B, Naushad M et al (2017f) Fabrication and characterization of sodium dodecyl sulphate@ironsilicophosphate nanocomposite: ion exchange properties and selectivity for binary metal ions. Mater Chem Phys 193:129–139. doi: 10.1016/j.matchemphys.2017.02.010 CrossRefGoogle Scholar
  234. Sheeney-Haj-Ichia L, Sharabi G, Willner I (2002) Control of the electronic properties of thermosensitive poly(N-isopropylacrylamide) and Au-nanoparticle/poly(N-isopropylacrylamide) composite hydrogels upon phase transition. Adv Funct Mater 12:27–32CrossRefGoogle Scholar
  235. Shen J, Yan B, Li T et al (2012) Study on graphene-oxide-based polyacrylamide composite hydrogels. Compos Part A Appl Sci Manuf 43:1476–1481. doi: 10.1016/j.compositesa.2012.04.006 CrossRefGoogle Scholar
  236. Shen M, Sun Y, Xu J et al (2014) Rheology and adhesion of poly(acrylic acid)/Laponite nanocomposite hydrogels as biocompatible adhesives. Langmuir 30:1636–1642. doi: 10.1021/la4045623 CrossRefGoogle Scholar
  237. Shin MS, Kim SJ, Park SJ et al (2002) Synthesis and characteristics of the interpenetrating polymer network hydrogel composed of chitosan and polyallylamine. J Appl Polym Sci 86:498–503. doi: 10.1002/app.11008 CrossRefGoogle Scholar
  238. Shin MK, Spinks GM, Shin SR et al (2009) Nanocomposite hydrogel with high toughness for bioactuators. Adv Mater 21:1712–1715. doi: 10.1002/adma.200802205 CrossRefGoogle Scholar
  239. Shirsath SR, Hage AP, Zhou M et al (2011) Ultrasound assisted preparation of nanoclay Bentonite-FeCo nanocomposite hybrid hydrogel: a potential responsive sorbent for removal of organic pollutant from water. Desalination 281:429–437. doi: 10.1016/j.desal.2011.08.031 CrossRefGoogle Scholar
  240. Shukla RK, Tiwari A (2012) Carbohydrate polymers: applications and recent advances in delivering drugs to the colon. Carbohydr Polym 88:399–416. doi: 10.1016/j.carbpol.2011.12.021 CrossRefGoogle Scholar
  241. Si H, Luo H, Xiong G et al (2014) One-step in situ biosynthesis of graphene oxide-bacterial cellulose nanocomposite hydrogels. Macromol Rapid Commun 35:1706–1711. doi: 10.1002/marc.201400239 CrossRefGoogle Scholar
  242. Siengchin S, Karger-Kocsis J (2012) Polystyrene nanocomposites produced by melt-compounding with polymer-coated magnesium carbonate nanoparticles. J Reinf Plast Compos 31:145–152. doi: 10.1177/0731684411433060 CrossRefGoogle Scholar
  243. Singh B, Sharma N (2008) Development of novel hydrogels by functionalization of sterculia gum for use in anti-ulcer drug delivery. Carbohydr Polym 74:489–497. doi: 10.1016/j.carbpol.2008.04.003 CrossRefGoogle Scholar
  244. Sirousazar M, Kokabi M, Hassan ZM (2011) In vivo and cytotoxic assays of a poly(vinyl alcohol)/clay nanocomposite hydrogel wound dressing. J Biomater Sci Polym Ed 22:1023–1033. doi: 10.1163/092050610X497881 CrossRefGoogle Scholar
  245. Skelton S, Bostwick M, O’Connor K et al (2013) Biomimetic adhesive containing nanocomposite hydrogel with enhanced materials properties. Soft Matter 9:3825. doi: 10.1039/c3sm27352k CrossRefGoogle Scholar
  246. Song SZ, Cardinal JR, Kim SH, Kim SW (1981) Progestin permeation through polymer membranes V: progesterone release from monolithic hydrogel devices. J Pharm Sci 70:216–219. doi: 10.1002/jps.2600700226 CrossRefGoogle Scholar
  247. Song F, Li X, Wang Q et al (2015) Nanocomposite hydrogels and their applications in drug delivery and tissue engineering. J Biomed Nanotechnol 11:40–52. doi: 10.1166/jbn.2015.1962 CrossRefGoogle Scholar
  248. Souda P, Sreejith L (2015) Magnetic hydrogel for better adsorption of heavy metals from aqueous solutions. J Environ Chem Eng 3:1882–1891. doi: 10.1016/j.jece.2015.03.007 CrossRefGoogle Scholar
  249. Sudheesh Kumar PT, Srinivasan S, Lakshmanan VK et al (2011) β-Chitin hydrogel/nano hydroxyapatite composite scaffolds for tissue engineering applications. Carbohydr Polym 85:584–591. doi: 10.1016/j.carbpol.2011.03.018 CrossRefGoogle Scholar
  250. Sugunan A, Thanachayanont C, Dutta J, Hilborn JG (2005) Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci Technol Adv Mater 6:335–340. doi: 10.1016/j.stam.2005.03.007 CrossRefGoogle Scholar
  251. Sun J-Y, Zhao X, Illeperuma WRK et al (2012) Highly stretchable and tough hydrogels. Nature 489:133–136. doi: 10.1038/nature11409 CrossRefGoogle Scholar
  252. Swetha M, Sahithi K, Moorthi A et al (2010) Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 47:1–4. doi: 10.1016/j.ijbiomac.2010.03.015 CrossRefGoogle Scholar
  253. Takeno H, Kimura Y (2016) Molecularweight effects on tensile properties of blend hydrogels composed of clay and polymers. Polym (United Kingdom) 85:47–54. doi: 10.1016/j.polymer.2016.01.008 Google Scholar
  254. Tan S, Ladewig K, Fu Q et al (2014) Cyclodextrin-based supramolecular assemblies and hydrogels: recent advances and future perspectives. Macromol Rapid Commun 35:1166–1184. doi: 10.1002/marc.201400080 CrossRefGoogle Scholar
  255. Tanaka Y, Gong JP, Osada Y (2005) Novel hydrogels with excellent mechanical performance. Prog Polym Sci 30:1–9. doi: 10.1016/j.progpolymsci.2004.11.003 CrossRefGoogle Scholar
  256. Tang Y, Ma D, Zhu L (2014) Sorption behavior of methyl violet onto poly(acrylic acid-co-acrylamide)/kaolin hydrogel composite. Polym Plast Technol Eng 53:851–857. doi: 10.1080/03602559.2014.886052 CrossRefGoogle Scholar
  257. Tanpichai S, Oksman K (2016) Cross-linked nanocomposite hydrogels based on cellulose nanocrystals and PVA: mechanical properties and creep recovery. Compos Part A Appl Sci Manuf 88:226–233. doi: 10.1016/j.compositesa.2016.06.002 CrossRefGoogle Scholar
  258. Thakur M, Sharma G, Ahamad T et al (2017) Efficient photocatalytic degradation of toxic dyes from aqueous environment using gelatin-Zr(IV) phosphate nanocomposite and its antimicrobial activity. Colloids Surf B Biointerfaces 157:456–463. doi: 10.1016/j.colsurfb.2017.06.018 CrossRefGoogle Scholar
  259. Thomas V, Namdeo M, Murali Mohan Y et al (2007a) Review on polymer, hydrogel and microgel metal nanocomposites: a facile nanotechnological approach. J Macromol Sci Part A 45:107–119. doi: 10.1080/10601320701683470 CrossRefGoogle Scholar
  260. Thomas V, Yallapu MM, Sreedhar B, Bajpai SK (2007b) A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity. J Colloid Interface Sci 315:389–395. doi: 10.1016/j.jcis.2007.06.068 CrossRefGoogle Scholar
  261. Tiwari A, Grailer JJ, Pilla S et al (2009) Biodegradable hydrogels based on novel photopolymerizable guar gum-methacrylate macromonomers for in situ fabrication of tissue engineering scaffolds. Acta Biomater 5:3441–3452. doi: 10.1016/j.actbio.2009.06.001 CrossRefGoogle Scholar
  262. Tongwa P, Nygaard R, Bai B (2013) Evaluation of a nanocomposite hydrogel for water shut-off in enhanced oil recovery applications: design, synthesis, and characterization. J Appl Polym Sci 128:787–794. doi: 10.1002/app.38258 CrossRefGoogle Scholar
  263. Torkkeli A (2003) Droplet microfluidics on a planar surface. VTT Publ 55:3–194Google Scholar
  264. Usuki A, Kawasumi M, Kojima Y et al (1993) Swelling behavior of montmorillonite cation exchanged for omega-amino acids by epsilon-caprolactam. J Mater Res 8:1174–1178. doi: 10.1557/jmr.1993.1174 CrossRefGoogle Scholar
  265. Vaia RA, Giannelis EP (1997) Polymer melt intercalation in Organically-modified layered silicates: model predictions and experiment. Macromolecules 30:8000–8009. doi: 10.1021/ma9603488 CrossRefGoogle Scholar
  266. Varaprasad K, Raghavendra GM, Jayaramudu T et al (2017) A mini review on hydrogels classification and recent developments in miscellaneous applications. Mater Sci Eng, C. doi: 10.1016/j.msec.2017.05.096 Google Scholar
  267. Varshney L (2007) Role of natural polysaccharides in radiation formation of PVA-hydrogel wound dressing. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 255:343–349. doi: 10.1016/j.nimb.2006.11.101 CrossRefGoogle Scholar
  268. Viseras C, Aguzzi C, Cerezo P, Bedmar MC (2008) Biopolymer–clay nanocomposites for controlled drug delivery. Mater Sci Technol 24:1020–1026. doi: 10.1179/174328408X341708 CrossRefGoogle Scholar
  269. Visintin RFG, Lapasin R, Vignati E et al (2005) Rheological behavior and structural interpretation of waxy crude oil gels. Langmuir 21:6240–6249. doi: 10.1021/la050705k CrossRefGoogle Scholar
  270. Wan YZ, Wang YL, Luo HL et al (2000) Carbon fiber-reinforced gelatin composites. I. Preparation and mechanical properties. J Appl Polym Sci 75:987–993CrossRefGoogle Scholar
  271. Wang Y, Chen D (2012) Preparation and characterization of a novel stimuli-responsive nanocomposite hydrogel with improved mechanical properties. J Colloid Interface Sci 372:245–251. doi: 10.1016/j.jcis.2012.01.041 CrossRefGoogle Scholar
  272. Wang W, Wang A (2010) Nanocomposite of carboxymethyl cellulose and attapulgite as a novel pH-sensitive superabsorbent: synthesis, characterization and properties. Carbohydr Polym 82:83–91. doi: 10.1016/j.carbpol.2010.04.026 CrossRefGoogle Scholar
  273. Wang J, Wu W (2005) Swelling behaviors, tensile properties and thermodynamic studies of water sorption of 2-hydroxyethyl methacrylate/epoxy methacrylate copolymeric hydrogels. Eur Polym J 41:1143–1151. doi: 10.1016/j.eurpolymj.2004.11.034 CrossRefGoogle Scholar
  274. Wang T, Liu D, Lian C et al (2011a) Rapid cell sheet detachment from alginate semi-interpenetrating nanocomposite hydrogels of PNIPAm and hectorite clay. React Funct Polym 71:447–454. doi: 10.1016/j.reactfunctpolym.2011.01.004 CrossRefGoogle Scholar
  275. Wang Y, Ma J, Yang S, Xu J (2011b) PDMAA/Clay nanocomposite hydrogels based on two different initiations. Colloids Surfaces A Physicochem Eng Asp 390:20–24. doi: 10.1016/j.colsurfa.2011.08.029 CrossRefGoogle Scholar
  276. Wang T, Liu D, Lian C et al (2012a) Large deformation behavior and effective network chain density of swollen poly(N-isopropylacrylamide)–Laponite nanocomposite hydrogels. Soft Matter 8:774–783. doi: 10.1039/C1SM06484C CrossRefGoogle Scholar
  277. Wang Y, Dong A, Yuan Z, Chen D (2012b) Fabrication and characterization of temperature-, pH- and magnetic-field-sensitive organic/inorganic hybrid poly (ethylene glycol)-based hydrogels. Colloids Surfaces A Physicochem Eng Asp 415:68–76. doi: 10.1016/j.colsurfa.2012.10.009 CrossRefGoogle Scholar
  278. Wang E, Desai MS, Lee S-W (2013a) Light-controlled graphene-elastin composite hydrogel actuators. Nano Lett 13:2826–2830. doi: 10.1021/nl401088b CrossRefGoogle Scholar
  279. Wang M, Yuan D, Fan X et al (2013b) Polymer nanocomposite hydrogels exhibiting both dynamic restructuring and unusual adhesive properties. Langmuir 29:7087–7095. doi: 10.1021/la401269p CrossRefGoogle Scholar
  280. Wang T, Sun W, Liu X et al (2013c) Promoted cell proliferation and mechanical relaxation of nanocomposite hydrogels prepared in cell culture medium. React Funct Polym 73:683–689. doi: 10.1016/j.reactfunctpolym.2013.02.012 CrossRefGoogle Scholar
  281. Wang Y, Wang W, Wang A (2013d) Efficient adsorption of methylene blue on an alginate-based nanocomposite hydrogel enhanced by organo-illite/smectite clay. Chem Eng J. doi: 10.1016/j.cej.2013.04.090 Google Scholar
  282. Wei X, Chen Q, Peng LM et al (2009) Tensile loading of double-walled and triple-walled carbon nanotubes and their mechanical properties. J Phys Chem C 113:17002–17005. doi: 10.1021/jp902471q CrossRefGoogle Scholar
  283. Wei L, Hu N, Zhang Y (2010) Synthesis of polymer-mesoporous silica nanocomposites. Materials (Basel) 3:4066–4079. doi: 10.3390/ma3074066 CrossRefGoogle Scholar
  284. Wu J, Gong X, Fan Y, Xia H (2011) Physically crosslinked poly(vinyl alcohol) hydrogels with magnetic field controlled modulus. Soft Matter 7:6205. doi: 10.1039/c1sm05386h CrossRefGoogle Scholar
  285. Xia M, Wu W, Liu F et al (2015) Swelling behavior of thermosensitive nanocomposite hydrogels composed of oligo(ethylene glycol) methacrylates and clay. Eur Polym J 69:472–482. doi: 10.1016/j.eurpolymj.2015.03.072 CrossRefGoogle Scholar
  286. Xiong L, Hu X, Liu X, Tong Z (2008) Network chain density and relaxation of in situ synthesized polyacrylamide/hectorite clay nanocomposite hydrogels with ultrahigh tensibility. Polymer (Guildf) 49:5064–5071. doi: 10.1016/j.polymer.2008.09.021 CrossRefGoogle Scholar
  287. Xiong L, Zhu M, Hu X et al (2009) Ultrahigh deformability and transparence of hectorite clay nanocomposite hydrogels with nimble pH response. Macromolecules 42:3811–3817. doi: 10.1021/ma900284a CrossRefGoogle Scholar
  288. Xu Y, Wu Q, Sun Y et al (2010) Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 4:7358–7362. doi: 10.1021/nn1027104 CrossRefGoogle Scholar
  289. Xue P, Lu R, Chen G et al (2007) Functional organogel based on a salicylideneaniline derivative with enhanced fluorescence emission and photochromism. Chem A Eur J 13:8231–8239. doi: 10.1002/chem.200700321 CrossRefGoogle Scholar
  290. Xue X, Cheng R, Shi L et al (2017) Nanomaterials for water pollution monitoring and remediation. Environ Chem Lett 15:23–27. doi: 10.1007/s10311-016-0595-x CrossRefGoogle Scholar
  291. Engineering B, Cha C, Shin SR, et al Carbon-based nanomaterials : multifunctional materials forGoogle Scholar
  292. Yadollahi M, Farhoudian S, Namazi H (2015) One-pot synthesis of antibacterial chitosan/silver bio-nanocomposite hydrogel beads as drug delivery systems. Int J Biol Macromol 79:37–43. doi: 10.1016/j.ijbiomac.2015.04.032 CrossRefGoogle Scholar
  293. Yang J, Zhao J (2014) Preparation and mechanical properties of silica nanoparticles reinforced composite hydrogels. Mater Lett 120:36–38. doi: 10.1016/j.matlet.2014.01.078 CrossRefGoogle Scholar
  294. Yang X, Liu Q, Chen X et al (2008) Investigation of PVA/ws-chitosan hydrogels prepared by combined irradiation and freeze-thawing. Carbohydr Polym 73:401–408. doi: 10.1016/j.carbpol.2007.12.008 CrossRefGoogle Scholar
  295. Yang J, Deng L-H, Han C-R et al (2013a) Synthetic and viscoelastic behaviors of silicananoparticle reinforced poly(acrylamide) core–shell nanocomposite hydrogels. Soft Matter 9:1220–1230. doi: 10.1039/C2SM27233D CrossRefGoogle Scholar
  296. Yang J, Han C-R, Duan J-F et al (2013b) Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals–polyacrylamide nanocomposite hydrogels. Cellulose 20:227–237. doi: 10.1007/s10570-012-9841-y CrossRefGoogle Scholar
  297. Yang J, Zhao JJ, Han CR et al (2014) Tough nanocomposite hydrogels from cellulose nanocrystals/poly(acrylamide) clusters: influence of the charge density, aspect ratio and surface coating with PEG. Cellulose 21:541–551. doi: 10.1007/s10570-013-0111-4 CrossRefGoogle Scholar
  298. Yano K, Usuki A, Okada A et al (1993) Synthesis and properties of polyimide—clay hybrid. J Polym Sci, Part A: Polym Chem 31:2493–2498. doi: 10.1002/pola.1993.080311009 CrossRefGoogle Scholar
  299. Yoshida R, Sakai K, Okano T, Sakurai Y (1993) Pulsatile drug delivery systems using hydrogels. Adv Drug Deliv Rev 11:85–108. doi: 10.1016/0169-409X(93)90028-3 CrossRefGoogle Scholar
  300. Yu Y, Li Y, Liu L et al (2011a) Synthesis and characterization of pH- and thermoresponsive Poly(N-isopropylacrylamide-co-itaconic acid) hydrogels crosslinked with N-maleyl chitosan. J Polym Res 18:283–291. doi: 10.1007/s10965-010-9417-1 CrossRefGoogle Scholar
  301. Yu Y, Zhu C, Liu Y et al (2011b) Synthesis and characterization of N-maleyl Chitosan-cross-linked poly(acrylamide)/montmorillonite nanocomposite hydrogels. Polym Plast Technol Eng 50:525–529. doi: 10.1080/03602559.2010.543735 CrossRefGoogle Scholar
  302. Yu H-R, Hu J-Q, Liu Z et al (2017) Ion-recognizable hydrogels for efficient removal of cesium ions from aqueous environment. J Hazard Mater 323:632–640. doi: 10.1016/j.jhazmat.2016.10.024 CrossRefGoogle Scholar
  303. Zaharia A, Sarbu A, Radu AL et al (2015) Preparation and characterization of polyacrylamide-modified kaolinite containing poly [acrylic acid-co-methylene bisacrylamide] nanocomposite hydrogels. Appl Clay Sci 103:46–54. doi: 10.1016/j.clay.2014.11.009 CrossRefGoogle Scholar
  304. Zainal Z, Hui LK, Hussein MZ et al (2009) Characterization of TiO2-Chitosan/Glass photocatalyst for the removal of a monoazo dye via photodegradation-adsorption process. J Hazard Mater 164:138–145. doi: 10.1016/j.jhazmat.2008.07.154 CrossRefGoogle Scholar
  305. Zhang J, Wang A (2007) Study on superabsorbent composites. IX: synthesis, characterization and swelling behaviors of polyacrylamide/clay composites based on various clays. React Funct Polym 67:737–745. doi: 10.1016/j.reactfunctpolym.2007.05.001 CrossRefGoogle Scholar
  306. Zhang X-Z, Zhang J-T, Zhuo R-X, Chu C-C (2002) Synthesis and properties of thermosensitive, crown ether incorporated poly(N-isopropylacrylamide) hydrogel. Polymer (Guildf) 43:4823–4827. doi: 10.1016/S0032-3861(02)00299-9 CrossRefGoogle Scholar
  307. Zhang J, Xu S, Kumacheva E (2004) Polymer microgels: reactors for semiconductor, metal, and magnetic nanoparticles. J Am Chem Soc 126:7908–7914. doi: 10.1021/ja031523k CrossRefGoogle Scholar
  308. Zhang YT, Zhi TT, Zhang L et al (2009) Immobilization of carbonic anhydrase by embedding and covalent coupling into nanocomposite hydrogel containing hydrotalcite. Polymer (Guildf) 50:5693–5700. doi: 10.1016/j.polymer.2009.09.067 CrossRefGoogle Scholar
  309. Zhang J, Wang Q, Wang A (2010) In situ generation of sodium alginate/hydroxyapatite nanocomposite beads as drug-controlled release matrices. Acta Biomater 6:445–454. doi: 10.1016/j.actbio.2009.07.001 CrossRefGoogle Scholar
  310. Zhang X, Pint CL, Lee MH et al (2011) Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites. Nano Lett 11:3239–3244. doi: 10.1021/nl201503e CrossRefGoogle Scholar
  311. Zhang L, Wang L, Guo B, Ma PX (2014a) Cytocompatible injectable carboxymethyl chitosan/N-isopropylacrylamide hydrogels for localized drug delivery. Carbohydr Polym 103:110–118. doi: 10.1016/j.carbpol.2013.12.017 CrossRefGoogle Scholar
  312. Zhang Q, Zhang T, He T, Chen L (2014b) Removal of crystal violet by clay/PNIPAm nanocomposite hydrogels with various clay contents. Appl Clay Sci 90:1–5. doi: 10.1016/j.clay.2014.01.003 CrossRefGoogle Scholar
  313. Zheng Y, Wang A (2009) Evaluation of ammonium removal using a chitosan-g-poly (acrylic acid)/rectorite hydrogel composite. J Hazard Mater 171:671–677. doi: 10.1016/j.jhazmat.2009.06.053 CrossRefGoogle Scholar
  314. Zhou C, Wu Q, Zhang Q (2011) Dynamic rheology studies of in situ polymerization process of polyacrylamide-cellulose nanocrystal composite hydrogels. Colloid Polym Sci 289:247–255. doi: 10.1007/s00396-010-2342-3 CrossRefGoogle Scholar
  315. Zhu M, Xiong L, Wang T et al (2010) High tensibility and pH-responsive swelling of nanocomposite hydrogels containing the positively chargeable 2-(dimethylamino)ethyl methacrylate monomer. React Funct Polym 70:267–271. doi: 10.1016/j.reactfunctpolym.2010.01.003 CrossRefGoogle Scholar
  316. Zhu C, Zhai J, Wen D, Dong S (2012) Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage. J Mater Chem 22:6300. doi: 10.1039/c2jm16699b CrossRefGoogle Scholar
  317. Zolfaghari R, Katbab AA, Nabavizadeh J et al (2006) Preparation and characterization of nanocomposite hydrogels based on polyacrylamide for enhanced oil recovery applications. J Appl Polym Sci 100:2096–2103. doi: 10.1002/app.23193 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety EvaluationShenzhen UniversityShenzhenPeople’s Republic of China
  2. 2.Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic EngineeringShenzhen UniversityShenzhenPeople’s Republic of China
  3. 3.School of ChemistryShoolini UniversitySolanIndia
  4. 4.Advanced Materials Research Chair, Department of Chemistry, College of Science, Bld.#5King Saud UniversityRiyadhSaudi Arabia
  5. 5.King Abdulaziz City for Science and TechnologyRiyadhSaudi Arabia
  6. 6.School of Chemistry and PhysicsUniversity of KwaZulu-NatalScottsvilleSouth Africa

Personalised recommendations