Environmental Chemistry Letters

, Volume 16, Issue 1, pp 101–112 | Cite as

Chitosan nanoparticles preparation and applications



Shell fish processing industry is very common in coastal areas. While processing, only the meat is taken, the head and shells are discarded as waste. On an average, the sea food industry produces 80,000 tons of waste per year. The sheer amount of waste makes degradation a slow process causing accumulation of waste over a period of time. A very simple and effective solution to this environmental hazard is the recycling of shell waste to commercially viable products like chitin. Chitosan is the N-acetyl derivative of chitin obtained by N-deacetylation. Chitosan is widely used in food and bioengineering industries for encapsulation of active food ingredients, enzyme immobilization, as a carrier for controlled drug delivery, in agriculture as a plant growth promoter. Chitosan is also a defense elicitor and an antimicrobial agent. Chitosan has interesting properties such as biodegradability, biocompatibility, bioactivity, nontoxicity and polycationic nature. This review presents structural characteristics and physicochemical properties of chitosan. The methods of preparation of chitosan nanoparticles are detailed. Applications of chitosan nanoparticles are discussed. Applications include drug delivery, encapsulation, antimicrobial agent, plant growth-promoting agent and plant protector.


Chitin Chitosan Chitosan nanoparticles Antimicrobial action Agriculture 


  1. Abdel-Aziz HM, Hasaneen MN, Omer AM (2016) Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Span J Agric Res 14(1):0902CrossRefGoogle Scholar
  2. Abdou ES, Osheba AS, Sorour MA (2012) Effect of chitosan and chitosan-nanoparticles as active coating on microbiological characteristics of fish fingers. Int J Appl Sci Technol 2(7):158–169Google Scholar
  3. Agbodjato NA, Noumavo PA, Adjanohoun A, Agbessi L, Baba-Moussa L (2016) Synergistic effects of plant growth promoting rhizobacteria and chitosan on in vitro seeds germination, greenhouse growth, and nutrient uptake of maize (zea mays l.). Biotechnol Res Int 2016:1–11CrossRefGoogle Scholar
  4. Agrawal GK, Rakwal R, Tamogami S, Yonekura M, Kubo A, Saji H (2002) Chitosan activates defense/stress response (s) in the leaves of oryza sativa seedlings. Plant Physiol Biochem 40(12):1061–1069CrossRefGoogle Scholar
  5. Ahmed RA, Fekry A (2013) Preparation and characterization of a nanoparticles modified chitosan sensor and its application for the determination of heavy metals from different aqueous media. Int J Electrochem Sci 8(3):6692–6708Google Scholar
  6. Aiping Z, Jianhong L, Wenhui Y (2006) Effective loading and controlled release of camptothecin by O-carboxymethylchitosan aggregates. Carbohydr Polym 63(1):89–96CrossRefGoogle Scholar
  7. Algam S, Xie G, Li B, Yu S, Su T, Larsen J (2010) Effects of paenibacillus strains and chitosan on plant growth promotion and control of ralstonia wilt in tomato. J Plant Pathol 92(3):593–600Google Scholar
  8. Ali SW, Rajendran S, Joshi M (2011) Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydr Polym 83(2):438–446CrossRefGoogle Scholar
  9. Allen MJ, Schoonmaker JE, Bauer TW, Williams PF, Higham PA, Yuan HA (2004) Preclinical evaluation of a poly (vinyl alcohol) hydrogel implant as a replacement for the nucleus pulposus. Spine 29(5):515–523CrossRefGoogle Scholar
  10. Arafat A, Samad SA, Huq D, Moniruzzaman M, Masum SM (2015) Textile dye removal from wastewater effluents using chitosan–ZnO nanocomposite. J Text Sci Eng 5(3):1Google Scholar
  11. Aranaz I, Mengabar M, Harris R, Is Paos, Miralles B, Acosta N, Heras A et al (2009) Functional characterization of chitin and chitosan. Curr Chem Biol 3(2):203–230Google Scholar
  12. Badawy MEI, Rabea EI (2011) A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. Int J Carbohydr Chem 2011:1–29CrossRefGoogle Scholar
  13. Baxter A, Dillon M, Anthony Taylor KD, Roberts GAF (1992) Improved method for ir determination of the degree of n-acetylation of chitosan. Int J Biol Macromol 14(3):166–169CrossRefGoogle Scholar
  14. Brunel F, Varon L, David L, Domard A, Delair T (2008) A novel synthesis of chitosan nanoparticles in reverse emulsion. Langmuir 24(20):11370–11377CrossRefGoogle Scholar
  15. Calvo P, Remunanae-Lopez C, Vila-Jato JL, Alonso MJ (1997) Novel hydrophilic chitosan polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63(1):125–132CrossRefGoogle Scholar
  16. Chamnanmanoontham N, Pongprayoon W, Pichayangkura R, Roytrakul S, Chadchawan S (2015) Chitosan enhances rice seedling growth via gene expression network between nucleus and chloroplast. Plant Growth Regul 75(1):101–114CrossRefGoogle Scholar
  17. Chandra S, Chakraborty N, Dasgupta A, Sarkar J, Panda K, Acharya K (2015) Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Sci Rep 5:1–14Google Scholar
  18. Cheba BA (2011) Chitin and chitosan: marine biopoly-mers with unique properties and versatile applications. Glob J Biotechnol Biochem 6(3):149–153Google Scholar
  19. Chen DH, Leu JC, Huang TC (1994) Transport and hydrolysis of urea in a reactor–separator combining an anion-exchange membrane and immobilized urease. J Chem Technol Biotechnol 61(4):351–357CrossRefGoogle Scholar
  20. Cho M, No H, Prinyawiwatkul W (2008) Chitosan treatments affect growth and selected quality of sunflower sprouts. J Food Sci 73(1):70–77CrossRefGoogle Scholar
  21. Chowdappa P, Gowda S (2013) Nanotechnology in crop protection: status and scope. Pest Manag Hortic Ecosyst 19(2):131–151Google Scholar
  22. Chowdappa P, Kumar SM, Lakshmi MJ, Upreti K (2013) Growth stimulation and induction of systemic resistance in tomato against early and late blight by bacillus subtilis OTPB1 or trichoderma harzianum OTPB3. Biol Control 65(1):109–117CrossRefGoogle Scholar
  23. Chowdappa P, Gowda S, Chethana C, Madhura S (2014) Antifungal activity of chitosan–silver nanoparticle composite against colletotrichum gloeosporioides associated with mango anthracnose. Afr J Microbiol Res 8(17):1803–1812CrossRefGoogle Scholar
  24. Cicek S, Nadaroglu H (2015) The use of nanotechnology in the agriculture. Adv Nano Res 3(4):207–223CrossRefGoogle Scholar
  25. Corradini E, De Moura MR, Mattoso LHC (2010) A preliminary study of the incorparation of NPK fertilizer into chitosan nanoparticles. Express Polym Lett 4(8):509–515CrossRefGoogle Scholar
  26. Dahlan KZHM, Hashim K, Bahari K, Mahmod M, Yaacob N, Talip N et al (2010) Application of radiation degraded chitosan as plant growth promoter. A pilot scale production and field trial study of radiation processed chitosan as plant growth promoter for rice crops. International Atomic Energy AgencyGoogle Scholar
  27. de Paz LEC, Resin A, Howard KA, Sutherland DS, Wejse PL (2011) Antimicrobial effect of chitosan nanoparticles on streptococcus mutans biofilms. Appl Environ Microbiol 77(11):3892–3895CrossRefGoogle Scholar
  28. De TK, Ghosh PK, Maitra A, Sahoo SK (1999) Process for the preparation of highly monodispersed polymeric hydrophilic nanoparticles: Google PatentsGoogle Scholar
  29. Dehaghi SM, Rahmanifar B, Moradi AM, Azar PA (2014) Removal of permethrin pesticide from water by chitosan–zinc oxide nanoparticles composite as an adsorbent. J Saudi Chem Soc 18(4):348–355CrossRefGoogle Scholar
  30. Divya K, Rebello S, Jisha MS (2014) A simple and effective method for extraction of high purity chitosan from shrimp shell waste. In: Proceedings of the international conference on advances in applied science and environmental engineering-ASEEGoogle Scholar
  31. Divya K, Vijayan S, George TK, Jisha M (2017) Antimicrobial properties of chitosan nanoparticles: mode of action and factors affecting activity. Fibers Polym 18(2):221–230CrossRefGoogle Scholar
  32. Du W-L, Niu S-S, Xu Y-L, Xu Z-R, Fan C-L (2009) Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carbohydr Polym 75(3):385–389CrossRefGoogle Scholar
  33. Dzung NA, Khanh VTP, Dzung TT (2011) Research on impact of chitosan oligomers on biophysical characteristics, growth, development and drought resistance of coffee. Carbohydr Polym 84(2):751–755CrossRefGoogle Scholar
  34. Einbu A, Vayrum KM (2008) Characterization of chitin and its hydrolysis to glcnac and glcn. Biomacromol 9(7):1870–1875CrossRefGoogle Scholar
  35. El-Shabouri MH (2002) Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. Int J Pharm 249(1):101–108CrossRefGoogle Scholar
  36. Erbacher P, Zou S, Bettinger T, Steffan A-M, Remy J-S (1998) Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. Pharm Res 15(9):1332–1339CrossRefGoogle Scholar
  37. Falcon-Rodriguez AB, Costales D, Cabrera JC, Martinez-Tellez MA (2011) Chitosan physico–chemical properties modulate defense responses and resistance in tobacco plants against the oomycete phytophthora nicotianae. Pestic Biochem Physiol 100(3):221–228CrossRefGoogle Scholar
  38. Fang H, Huang J, Ding L, Li M, Chen Z (2009) Preparation of magnetic chitosan nanoparticles and immobilization of laccase. J Wuhan Univ Technol Mater Sci Ed 24(1):42–47CrossRefGoogle Scholar
  39. Fernandez-Urrusuno R, Calvo P, Remuan-Lopez C, Vila-Jato JL, Alonso MJ (1999) Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res 16(10):1576–1581CrossRefGoogle Scholar
  40. Franca EF, Lins RD, Freitas LCG, Straatsma TP (2008) Characterization of chitin and chitosan molecular structure in aqueous solution. J Chem Theory Comput 4(12):2141–2149CrossRefGoogle Scholar
  41. Geng X, Kwon O-H, Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26(27):5427–5432CrossRefGoogle Scholar
  42. Ghadi A, Mahjoub S, Tabandeh F, Talebnia F (2014) Synthesis and optimization of chitosan nanoparticles: potential applications in nanomedicine and biomedical engineering. Casp J Int Med 5(3):156Google Scholar
  43. Ghadi A, Tabandeh F, Mahjoub S, Mohsenifar A, Roshan FT, Alavije RS (2015) Fabrication and characterization of core-shell magnetic chitosan nanoparticles as a novel carrier for immobilization of Burkholderia cepacia lipase. J Oleo Sci 64(4):423–430CrossRefGoogle Scholar
  44. Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803CrossRefGoogle Scholar
  45. Grenha A (2010) Chitosan nanoparticles: a survey of preparation methods. J Drug Target 20(4):291–300CrossRefGoogle Scholar
  46. Grillo R, Pereira AE, Nishisaka CS, de Lima R, Oehlke K, Greiner R, Fraceto LF (2014) Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. J Hazard Mater 278:163–171CrossRefGoogle Scholar
  47. Gupta AK, Naregalkar RR, Vaidya VD, Gupta M (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine (Lond) 2(1):23–29CrossRefGoogle Scholar
  48. Hadwiger L, Klosterman S, Choi J (2002) The mode of action of chitosan and its oligomers in inducing plant promoters and developing disease resistance in plants. Adv Chitin Sci 5:452–457Google Scholar
  49. Haider S, Park S-Y (2009) Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu (II) and Pb(II) ions from an aqueous solution. J Membr Sci 328(1):90–96CrossRefGoogle Scholar
  50. Hajirasouliha MJM, Soheili F, Naja Fabadi (2012) Effect of novel chitosan nanoparticle coating on pot harvest qualities of strawberry. In: Proceedings of the 4th international conference on nanostructuresGoogle Scholar
  51. Hatton RA, Miller AJ, Silva SRP (2008) Carbon nanotubes: a multi-functional material for organic optoelectronics. J Mater Chem 18:1183–1192CrossRefGoogle Scholar
  52. Hernandez-Lauzardo AN, Velaizquez-del Valle MG, Guerra-Sanchez MG (2011) Current status of action mode and effect of chitosan against phytopathogens fungi. Afr J Microbiol Res 5(25):4243–4247Google Scholar
  53. Hirano S, Yamaguchi Y, Kamiya M (2002) Novel N-saturated-fatty-acyl derivatives of chitosan soluble in water and in aqueous acid and alkaline solutions. Carbohydr Polym 48(2):203–207CrossRefGoogle Scholar
  54. Honary S, Ghajar K, Khazaeli P, Shalchian P (2011) Preparation, characterization and antibacterial properties of silver–chitosan nanocomposites using different molecular weight grades of chitosan. Trop J Pharm Res 10(1):69–74CrossRefGoogle Scholar
  55. Hosseini F, SadighianS Hosseini-Monfared F, Mahmoodi NM (2016) Dye removal and kinetics of adsorption by magnetic chitosan nanoparticles. Desalin Water Treat 57(51):24378–24386CrossRefGoogle Scholar
  56. Hu Z, Zhang J, Chan W, Szeto Y (2006) The sorption of acid dye onto chitosan nanoparticles. Polymer 47(16):5838–5842CrossRefGoogle Scholar
  57. Hu B, Pan C, Sun Y, Hou Z, Ye H, Zeng X (2008) Optimization of fabrication parameters to produce chitosan tripolyphosphate nanoparticles for delivery of tea catechins. J Agric Food Chem 56(16):7451–7458CrossRefGoogle Scholar
  58. Huang YC, Li RY (2014) Preparation and characterization of antioxidant nanoparticles composed of chitosan and fucoidan for antibiotics delivery. Mar Drugs 12(8):4379–4398CrossRefGoogle Scholar
  59. Huang L, Cheng X, Liu C, Xing K, Zhang J, Sun G, Chen X et al (2009) Preparation, characterization, and antibacterial activity of oleic acid-grafted chitosan oligosaccharide nanoparticles. Front Biol China 4(3):321–327CrossRefGoogle Scholar
  60. Ilium L (1998) Chitosan and its use as a pharmaceutical excipient. Pharm Res 15(9):1326–1331CrossRefGoogle Scholar
  61. Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4(2):141–144CrossRefGoogle Scholar
  62. Janes KA, Fresneau MP, Marazuela A, Fabra A, Alonso MJ (2001) Chitosan nanoparticles as delivery systems for doxorubicin. J Control Release 73(2):255–267CrossRefGoogle Scholar
  63. Jang K-I, Lee HG (2008) Stability of chitosan nanoparticles for l-ascorbic acid during heat treatment in aqueous solution. J Agric Food Chem 56(6):1936–1941CrossRefGoogle Scholar
  64. Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010a) Biomedical applications of chitin and chitosan based nanomaterials: a short review. Carbohydr Polym 82(2):227–232CrossRefGoogle Scholar
  65. Jayakumar R, Prabaharan M, Nair S, Tamura H (2010b) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28(1):142–150CrossRefGoogle Scholar
  66. Jeon SJ, Oh M, Yeo W-S, Galvao KN, Jeong KC (2014) Underlying mechanism of antimicrobial activity of chitosan microparticles and implications for the treatment of infectious diseases. PLoS ONE 9(3):92723CrossRefGoogle Scholar
  67. Jia Y-T, Gong J, Gu X-H, Kim H-Y, Dong J, Shen X-Y (2007) Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method. Carbohydr Polym 67(3):403–409CrossRefGoogle Scholar
  68. Jonassen H, Kjoniksen AL, Hiorth M (2012) Stability of chitosan nanoparticles cross-linked with tripolyphosphate. Biomacromol 13(11):3747–3756CrossRefGoogle Scholar
  69. Kananont N, Pichyangkura R, Chanprame S, Chadchawan S, Limpanavech P (2010) Chitosan specificity for the in vitro seed germination of two dendrobium orchids (asparagales: Orchidaceae). Sci Hortic 124(2):239–247CrossRefGoogle Scholar
  70. Kasaai MR (2009) Various methods for determination of the degree of n-acetylation of chitin and chitosan: a review. J Agric Food Chem 57(5):1667–1676CrossRefGoogle Scholar
  71. Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51CrossRefGoogle Scholar
  72. Kaur P, Thakur R, Choudhary A (2012) An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens. Int J Sci Technol Res 1:83–86Google Scholar
  73. Kaur P, Choudhary A, Thakur R (2013) Synthesis of chitosan–silver nanocomposites and their antibacterial activity. Int J Sci Eng Res 4:869–872Google Scholar
  74. Kong M, Chen X, Xue Y, Liu C, Yu L, Ji Q et al (2008) Preparation and antibacterial activity of chitosan microshperes in a solid dispersing system. Front Mater Sci China 2(2):214–220CrossRefGoogle Scholar
  75. Kumar MNVR (1999) Chitin and chitosan fibres: a review. Bull Mater Sci 22(5):905–915CrossRefGoogle Scholar
  76. Kumar S, Koh J (2012) Physiochemical and optical study of chitosan–terephthaldehyde derivative for biomedical applications. Int J Biol Macromol 51(5):1167–1172CrossRefGoogle Scholar
  77. Kumirska J, Mg Czerwicka, Kaczyaski Z, Bychowska A, Brzozowski K, Thaming J, Stepnowski P (2010) Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar Drugs 8(5):1567–1636CrossRefGoogle Scholar
  78. Kumirska J, Weinhold MX, Thaming J, Stepnowski P (2011) Biomedical activity of chitin/chitosan based materials influence of physicochemical properties apart from molecular weight and degree of n-acetylation. Polymers 3(4):1875–1901CrossRefGoogle Scholar
  79. Kwok KC, Koong LF, Chen G, McKay G (2014) Mechanism of arsenic removal using chitosan and nanochitosan. J Colloid Interface Sci 416:1–10CrossRefGoogle Scholar
  80. Lin SB, Chen SH, Peng KC (2009) Preparation of antibacterial chito-oligosaccharide by altering the degree of deacetylation of β-chitosan in a Trichoderma harzianum chitinase-hydrolysing process. J Sci Food Agric 89(2):238–244CrossRefGoogle Scholar
  81. Liu C-G, Desai KGH, Chen X-G, Park H-J (2005) Preparation and characterization of nanoparticles containing trypsin based on hydrophobically modified chitosan. J Agric Food Chem 53(5):1728–1733CrossRefGoogle Scholar
  82. Liu H, Tian W, Li B, Wu G, Ibrahim M, Tao Z, Sun G et al (2012) Antifungal effect and mechanism of chitosan against the rice sheath blight pathogen, Rhizoctonia solani. Biotechnol Lett 34(12):2291–2298CrossRefGoogle Scholar
  83. Lopez-Leon T, Carvalho ELS, Seijo B, Ortega-Vinuesa JL, Bastos-Gonzailez D (2005) Physicochemical characterization of chitosan nanoparticles: electrokinetic and stability behavior. J Colloid Interface Sci 283(2):344–351CrossRefGoogle Scholar
  84. Ma Y, Liu P, Si C, Liu Z (2010) Chitosan nanoparticles: preparation and application in antibacterial paper. J Macromol Sci Part B 49(5):994–1001CrossRefGoogle Scholar
  85. Mahdavi B, Rahimi A (2013) Seed priming with chitosan improves the germination and growth performance of ajowan (carum copticum) under salt stress. EurAsia J Biosci 7:69–76CrossRefGoogle Scholar
  86. Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A (2005) Microwave assisted synthesis of nanocrystalline mgo and its use as a bacteriocide. Adv Funct Mater 15(10):1708–1715CrossRefGoogle Scholar
  87. Malmiri HJ, Jahanian MAG, Berenjian A (2012) Potential applications of chitosan nanoparticles as novel support in enzyme immobilization. Am J Biochem Biotechnol 8(4):203–219CrossRefGoogle Scholar
  88. Manikandan A, Sathiyabama M (2016) Preparation of chitosan nanoparticles and its effect on detached rice leaves infected with pyricularia grisea. Int J Biol Macromol 84:58–61CrossRefGoogle Scholar
  89. Manjusha EM, Mohan JC, Manzoor K, Nair SV, Tamura H, Jayakumar R (2010) Folate conjugated carboxymethyl chitosan–manganese doped zinc sulphide nanoparticles for targeted drug delivery and imaging of cancer cells. Carbohydr Polym 80:414–420Google Scholar
  90. Min B-M, Lee SW, Lim JN, You Y, Lee TS, Kang PH, Park WH (2004) Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer 45(21):7137–7142CrossRefGoogle Scholar
  91. Mohammadpour Dounighi N, Eskandari R, Avadi M, Zolfagharian H, Mir Mohammad Sadeghi A, Rezayat M (2012) Preparation and in vitro characterization of chitosan nanoparticles containing Mesobuthus eupeus scorpion venom as an antigen delivery system. J Venom Anim Toxins Incl Trop Dis 18(1):44–52Google Scholar
  92. Mondal M, Rana MIK, Dafader N, Haque M (2011) Effect of foliar application of chitosan on growth and yield in Indian spinach. J Agrofor Environ 5(1):99–102Google Scholar
  93. Mondal M, Malek M, Puteh A, Ismail M, Ashrafuzzaman M, Naher L (2012) Effect of foliar application of chitosan on growth and yield in okra. Aust J Crop Sci 6(5):918Google Scholar
  94. Muzzarelli RAAJC, Gooday GW (1986) Chitin in nature and technology. Plenum Publishing Corporation, New YorkCrossRefGoogle Scholar
  95. Namasivayam SKR, Roy EA (2013) Enhanced antibiofilm activity of chitosan stabilized chemogenic silver nanoparticles against Escherichia coli. Int J Sci Res 2013:591Google Scholar
  96. Nge KL, Nwe N, Chandrkrachang S, Stevens WF (2006) Chitosan as a growth stimulator in orchid tissue culture. Plant Sci 170(6):1185–1190CrossRefGoogle Scholar
  97. Nguyen T, Dzung T, Cuong P (2014) Assessment of antifungal activity of turmeric essential oil-loaded chitosan nanoparticles. J Chem Biol Phys Sci 4:2347–2356Google Scholar
  98. Nguyen TV, Nguyen TTH, Wang S-L, Vo TPK, Nguyen AD (2016) Preparation of chitosan nanoparticles by tpp ionic gelation combined with spray drying, and the antibacterial activity of chitosan nanoparticles and a chitosan nanoparticle–amoxicillin complex. Res Chem Intermed 2016:1–11Google Scholar
  99. Niwa T, Takeuchi H, Hino T, Kunou N, Kawashima Y (1993) Preparations of biodegradable nanospheres of water-soluble and insoluble drugs with d, l-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behavior. J Control Release 25(1):89–98CrossRefGoogle Scholar
  100. Ohkawa K, Cha D, Kim H, Nishida A, Yamamoto H (2004) Electrospinning of chitosan. Macromol Rapid Commun 25(18):1600–1605CrossRefGoogle Scholar
  101. Olivera S, Muralidhara HB, Venkatesh K, Guna VK, Gopalakrishna K, Kumar Y (2016) Potential applications of cellulose and chitosan nanoparticles/composites in wastewater treatment: a review. Carbohydr Polym 153:600–618CrossRefGoogle Scholar
  102. Onsosyen E, Skaugrud O (1990) Metal recovery using chitosan. J Chem Technol Biotechnol 49(4):395–404CrossRefGoogle Scholar
  103. Ottey MH, Varum KM, Smidsra DO (1996) Compositional heterogeneity of heterogeneously deacetylated chitosans. Carbohydr Polym 29(1):17–24CrossRefGoogle Scholar
  104. Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55(3):329–347CrossRefGoogle Scholar
  105. Park JK, Chung MJ, Choi HN, Park YI (2011) Effects of the molecular weight and the degree of deacetylation of chitosan oligosaccharides on antitumor activity. Int J Mol Sci 12(1):266–277CrossRefGoogle Scholar
  106. Peppas NA, Huang Y (2004) Nanoscale technology of mucoadhesive interactions. Adv Drug Deliv Rev 56(11):1675–1687CrossRefGoogle Scholar
  107. Perera U, Rajapakse N (2013) Chitosan nanoparticles: preparation, characterization, and applications. In: Kim SK (ed) Seafood processing by-products: trends and applications. Springer, New York, pp 371–387Google Scholar
  108. Pilon L, Spricigo PC, Miranda M, Moura MR, Assis OBG, Mattoso LHC, Ferreira MD (2015) Chitosan nanoparticle coatings reduce microbial growth on fresh-cut apples while not affecting quality attributes. Int J Food Sci Technol 50(2):440–448CrossRefGoogle Scholar
  109. Plainsirichai M, Leelaphatthanapanich S, Wongsachai N (2014) Effect of chitosan on the quality of rose apples (syzygium agueum alston) cv. Tabtim chan stored at an ambient temperature. APCBEE Procedia 8:317–322CrossRefGoogle Scholar
  110. Postma J, Stevens LH, Wiegers GL, Davelaar E, Nijhuis EH (2009) Biological control of pythium aphanidermatum in cucumber with a combined application of lysobacter enzymogenes strain 3.1 T8 and chitosan. Biol Control 48(3):301–309CrossRefGoogle Scholar
  111. Puvvada YS, Vankayalapati S, Sukhavasi S (2012) Extraction of chitin from chitosan from exoskeleton of shrimp for application in the pharmaceutical industry. Int Curr Pharm J 1(9):258–263CrossRefGoogle Scholar
  112. Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339(16):2693–2700CrossRefGoogle Scholar
  113. Raafat D, Von Bargen K, Haas A, Sahl H-G (2008) Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol 74(12):3764–3773CrossRefGoogle Scholar
  114. Rajalakshmi A, Krithiga N, Jayachitra A (2013) Antioxidant activity of the chitosan extracted from shrimp exoskeleton. Middle East J Sci Res 16(10):1446–1451Google Scholar
  115. Rajasree R, Rahate K (2013) An overview on various modifications of chitosan and it’s applications. Int J Pharm Sci Res 4(11):4175Google Scholar
  116. Rajendran R, Abirami M, Prabhavathi P, Premasudha P, Kanimozhi B, Manikandan A (2015) Biological treatment of drinking water by chitosan based nanocomposites. Afr J Biotechnol 14(11):930–936Google Scholar
  117. Ravishankar Rai V, Jamuna Bai A (2011) Nanoparticles and their potential application as antimicrobials, science against microbial pathogens: communicating current research and technological advances. In: Méndez-Vilas A (ed), Formatex, Microbiology Series, No. 3, Vol. 1. Spain, pp 197–209Google Scholar
  118. Rekso GT (2008) Development of radiation degraded chitosan as plant growth promoter and its economic evaluation. JAEA CONF 2008-9Google Scholar
  119. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632CrossRefGoogle Scholar
  120. Rodriguez A, Ramirez M, Cardenas R, Hernandez A, Velazquez M, Bautista S (2007) Induction of defense response of Oryza sativa L. against Pyricularia grisea (cooke) Sacc. By treating seeds with chitosan and hydrolyzed chitosan. Pestic Biochem Physiol 89(3):206–215CrossRefGoogle Scholar
  121. Saavedra GM, Figueroa NE, Poblete LA, Cherian S, Figueroa CR (2016) Effects of preharvest applications of methyl jasmonate and chitosan on postharvest decay, quality and chemical attributes of fragaria chiloensis fruit. Food Chem 190:448–453CrossRefGoogle Scholar
  122. Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma S, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683CrossRefGoogle Scholar
  123. Sailaja A, Amareshwar P, Chakravarty P (2011) Different techniques used for the preparation of nanoparticles using natural polymers and their application. Int J Pharm Pharm Sci 3(Suppl 2):45–50Google Scholar
  124. Salachna P, Zawadzińska A (2014) Effect of chitosan on plant growth, flowering and corms yield of potted freesia. J Ecol Eng 15(3):97–102Google Scholar
  125. Sarwar A, Katas H, Zin NM (2014) Antibacterial effects of chitosan–tripolyphosphate nanoparticles: impact of particle size molecular weight. J Nanopart Res 16(7):2517CrossRefGoogle Scholar
  126. Seyedi SM, Anvaripour B, Motavassel M, Jadidi N (2013) Comparative cadmium adsorption from water by nanochitosan and chitosan. Int J Eng Innov Technol 2(9):145–148Google Scholar
  127. Shahidi F, Arachchi JKV, Jeon Y-J (1999) Food applications of chitin and chitosans. Trends Food Sci Technol 10(2):37–51CrossRefGoogle Scholar
  128. Sharma S, Sharma S (2013) Synthesis, characterization and determination of encapsulation efficiency of chitosan nanoparticles for terbinafine. Indo Am J Pharm Res 3(12):1564–1567Google Scholar
  129. Shi B, Shen Z, Zhang H, Bi J, Dai S (2011a) Exploring N-imidazolyl-O-carboxymethyl chitosan for high performance gene delivery. Biomacromol 13(1):146–153CrossRefGoogle Scholar
  130. Shi LE, Tang ZX, Yi Y, Chen JS, Xiong WY, Ying GQ (2011b) Immobilization of nuclease p1 on chitosanmicro-spheres. Chem Biochem Eng Q 25(1):83–88Google Scholar
  131. Shiraishi S, Imai T, Otagiri M (1993) Controlled release of indomethacin by chitosan-polyelectrolyte complex: optimization and in vivo/in vitro evaluation. J Control Release 25(3):217–225CrossRefGoogle Scholar
  132. Sims DC, Butler PE, Casanova R, Lee BT, Randolph MA, Lee WA, Yaremchuk MJ et al (1996) Injectable cartilage using polyethylene oxide polymer substrates. Plast Reconstr Surg 98(5):843–850CrossRefGoogle Scholar
  133. Sivakami M, Gomathi T, Venkatesan J, Jeong H-S, Kim S-K, Sudha P (2013) Preparation and characterization of nano chitosan for treatment wastewaters. Int J Biol Macromol 57:204–212CrossRefGoogle Scholar
  134. Sonia T, Sharma CP (2011) Chitosan and its derivatives for drug delivery perspective. Adv Polym Sci 243:23–53CrossRefGoogle Scholar
  135. Sudarshan NR, Hoover DG, Knorr D (1992) Antibacterial action of chitosan. Food Biotechnol 6(3):257–272CrossRefGoogle Scholar
  136. Sun K, Li Z (2011) Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning. Express Polym Lett 5(4):342–361CrossRefGoogle Scholar
  137. Thanou M, Nihot M, Jansen M, Verhoef JC, Junginger H (2001) Mono-N-carboxymethyl chitosan (MCC), a polyampholytic chitosan derivative, enhances the intestinal absorption of low molecular weight heparin across intestinal epithelia in vitro and in vivo. J Pharm Sci 90(1):38–46CrossRefGoogle Scholar
  138. Tiyaboonchai W (2003) Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ J 11(3):51–66Google Scholar
  139. Van Toan N, Hanh TT (2013) Application of chitosan solutions for rice production in vietnam. Afr J Biotechnol 12(4):382–384CrossRefGoogle Scholar
  140. Van SN, Minh HD, Anh DN (2013) Study on chitosan nanoparticles on biophysical characteristics and growth of robusta coffee in green house. Biocatal Agric Biotechnol 2(4):289–294Google Scholar
  141. Vauthier CDC, Chauvierre C, Brigger I, Couvreur P (2003) Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. J Control Release 93:151–160CrossRefGoogle Scholar
  142. Vazquez-Duhalt R, Tinoco R, D’Antonio P, Topoleski LDT, Payne GF (2001) Enzyme conjugation to the polysaccharide chitosan: smart biocatalysts and biocatalytic hydrogels. Bioconjug Chem 12(2):301–306CrossRefGoogle Scholar
  143. Wang X, Xing B (2007) Importance of structural makeup of biopolymers for organic contaminant sorption. Environ Sci Technol 41(10):3559–3565CrossRefGoogle Scholar
  144. Wang M, Chen Y, Zhang R, Wang W, Zhao X, Du Y, Yin H (2015) Effects of chitosan oligosaccharides on the yield components and production quality of different wheat cultivars (triticum aestivum l.) in northwest china. Field Crop Res 172:11–20CrossRefGoogle Scholar
  145. Wei D, Sun W, Qian W, Ye Y, Ma X (2009) The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr Res 344(17):2375–2382CrossRefGoogle Scholar
  146. Whitesides GM (2003) The’right’size in nanobiotechnology. Nat Biotechnol 21(10):1161–1165CrossRefGoogle Scholar
  147. Xie W, Xu P, Liu Q (2001) Antioxidant activity of water-soluble chitosan derivatives. Bioorg Med Chem Lett 11(13):1699–1701CrossRefGoogle Scholar
  148. Xing K, Shen X, Zhu X, Ju X, Miao X, Tian J, Qin S et al (2016) Synthesis and in vitro antifungal efficacy of oleoyl-chitosan nanoparticles against plant pathogenic fungi. Int J Biol Macromol 82:830–836CrossRefGoogle Scholar
  149. Yacob N, Mahmud M, Talip N, Hashim K, Harun AR, Zaman K, Dahlan H (2013) Degradation of chitosan for rice crops application. Nucl Sci Tech 24(S1):10301–S010301Google Scholar
  150. Yang K, Xu N-S, Su WW (2010) Co-immobilized enzymes in magnetic chitosan beads for improved hydrolysis of macromolecular substrates under a time-varying magnetic field. J Biotechnol 148(2):119–127CrossRefGoogle Scholar
  151. Yen MT, Mau JL (2007) Selected physical properties of chitin prepared from shiitake stipes. LWT Food Sci Technol 40(3):558–563CrossRefGoogle Scholar
  152. Yen MT, Yang JH, Mau JL (2008) Antioxidant properties of chitosan from crab shells. Carbohydr Polym 74(4):840–844CrossRefGoogle Scholar
  153. Yen MT, Yang JH, Mau JL (2009) Physicochemical characterization of chitin and chitosan from crab shells. Carbohydr Polym 75(1):15–21CrossRefGoogle Scholar
  154. Yien L, Zin NM, Sarwar A, Katas H (2012) Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int J Biomater 2012:1–9Google Scholar
  155. Yoshii F, Zhanshan Y, Isobe K, Shinozaki K, Makuuchi K (1999) Electron beam crosslinked PEO and PEO/PVA hydrogels for wound dressing. Radiat Phys Chem 55(2):133–138CrossRefGoogle Scholar
  156. Zhang Y, Zhang X, Ding R, Zhang J, Liu J (2011) Determination of the degree of deacetylation of chitosan by potentiometric titration preceded by enzymatic pretreatment. Carbohydr Polym 83(2):813–817CrossRefGoogle Scholar
  157. Zhao LM, Shi LE, Zhang ZL, Chen JM, Shi DD, Yang J, Tang ZX (2011) Preparation and application of chitosan nanoparticles and nanofibers. Braz J Chem Eng 28(3):353–362CrossRefGoogle Scholar
  158. Zolghadri S, Jalilian AR, Yousefnia H, Bahrami-Samani A, Shirvani-Arani S, Mazidi M, Akhlaghi M, Ghannadi-Maragheh M (2010) Production and quality control of 166Ho-Chitosan for therapeutic applications. Iran J Nucl Med 18(2):1–8Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of BiosciencesMahatma Gandhi UniversityKeralaIndia

Personalised recommendations