Environmental Chemistry Letters

, Volume 16, Issue 1, pp 211–237 | Cite as

Toxicity, degradation and analysis of the herbicide atrazine

  • Simranjeet Singh
  • Vijay Kumar
  • Arun Chauhan
  • Shivika Datta
  • Abdul Basit Wani
  • Nasib Singh
  • Joginder Singh


Excessive use of pesticides and herbicides is a major environmental and health concern worldwide. Atrazine, a synthetic triazine herbicide commonly used to control grassy and broadleaf weeds in crops, is a major pollutant of soil and water ecosystems. Atrazine modifies the growth, enzymatic processes and photosynthesis in plants. Atrazine exerts mutagenicity, genotoxicity, defective cell division, erroneous lipid synthesis and hormonal imbalance in aquatic fauna and nontarget animals. It has threatened the sustainability of agricultural soils due to detrimental effects on resident soil microbial communities. The detection of atrazine in soil and reservoir sites is usually made by IR spectroscopy, ELISA, HPLC, UPLC, LC–MS and GC–MS techniques. HPLC/LC–MS and GC–MS techniques are considered the most effective tools, having detection limits up to ppb levels in different matrices. Biodegradation of atrazine by microbial species is increasingly being recognized as an eco-friendly, economically feasible and sustainable bioremediation strategy. This review presents the toxicity, analytical techniques, abiotic degradation and microbial metabolism of atrazine.


Atrazine Herbicide Toxicity Microbial degradation Monitoring 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This study does not involve work


  1. Abarikwu SO, Farombi EO (2015) Atrazine induces apoptosis of SH-SY5Y human neuroblastoma cells via the regulation of Bax/Bcl-2 ratio and caspase-3-dependent pathway. Pest Biochem Physiol 118:90–98. doi: 10.1016/j.pestbp.2014.12.006 CrossRefGoogle Scholar
  2. Ahel M, Evans KM, Fileman TW, Mantoura RFC (1992) Determination of atrazine and simazine in estuarine samples by high-resolution gas chromatography and nitrogen selective detection. Anal Chim Acta 268(2):195–204. doi: 10.1016/0003-2670(92)85213-P CrossRefGoogle Scholar
  3. Ahrens JF, Newton M (2008) Benefits of triazine herbicides in the production of ornamentals and conifer trees. The Triazine Herbicides (Chapter 18), p 225234. ISBN: 978-0-444-51167-6Google Scholar
  4. Aislabie J, Bej AK, Ryburn J, Lloyd N, Wilkins A (2005) Characterization of Arthrobacter nicotinovorans HIM an atrazine-degrading bacterium from agricultural soil New Zealand. FEMS Microbiol Ecol 52(2):279–286. doi: 10.1016/j.femsec.2004 CrossRefGoogle Scholar
  5. Akbulut GB, Yigit E (2010) The changes in some biochemical parameters in Zea mays cv. ‘‘Martha F1’’ treated with atrazine. Ecotoxicol Environ Saf 73:1429–1432. doi: 10.1016/j.ecoenv.2010.05.023 CrossRefGoogle Scholar
  6. Albanis TA, Hela DG, Sakellarides TM, Konstantinou IK (1998) Monitoring of pesticide residues and their metabolites in surface and underground waters of Imathia (N. Greece) by means of solid-phase extraction disks and gas chromatography. J Chromatogr A 823(1):59–71. doi: 10.1016/S0021-9673(98)00304-5 CrossRefGoogle Scholar
  7. Amistadi MK, Hall JK, Bogus ER, Mumma RO (1997) Comparison of gas chromatography and immunoassay methods for the detection of atrazine in water and soil. J Environ Sci Health B 32(6):845–860. doi: 10.1080/03601239709373116 CrossRefGoogle Scholar
  8. Andrus JM, Winter D, Scanlan M, Sullivan S, Bollman W, Waggoner JB, Brain RA (2013) Seasonal synchronicity of algal assemblages in three Midwestern agricultural streams having varying concentrations of atrazine, nutrients, and sediment. Sci Total Environ 458:125–139. doi: 10.1016/j.scitotenv.2013.03.070 CrossRefGoogle Scholar
  9. AOAC (Association of Official Analytical Chemists) (1993) Peer verified methods program. AOAC, manual on policies and procedures. AOAC, ArlingtonGoogle Scholar
  10. Bai X, Sun C, Xie J, Song H, Zhu Q, Su Y, Fu Z (2015) Effects of atrazine on photosynthesis and defense response and the underlying mechanisms in Phaeodactylum tricornutum. Environ Sci Pollut Res 22(22):17499–17507. doi: 10.1007/s11356-015-4923-7 CrossRefGoogle Scholar
  11. Barbusiński K, Filipek K (2001) Use of Fenton’s reagent for removal of pesticides from industrial wastewater. Pol J Environ Stud 10(4):207–212Google Scholar
  12. Barchanska H, Babilas B, Gluzicka K, Zralek D, Baranowska I (2014) Rapid determination of mesotrione, atrazine and its main degradation products in selected plants by MSPD–HPLC and indirect estimation of herbicides phytotoxicity by chlorophyll quantification. Int J Environ Anal Chem 94(2):99–114. doi: 10.1080/03067319.2013.791979 CrossRefGoogle Scholar
  13. Batra M, Pandey J, Suri CR, Jain RK (2009) Isolation and characterization of an atrazine-degrading Rhodococcus sp. strain MB-P1 from contaminated soil. Lett Appl Microbiol 49(6):721–729. doi: 10.1111/j.1472-765X.2009.02724.x CrossRefGoogle Scholar
  14. Baxter L, Brain RA, Hosmer AJ, Nema M, Müller KM, Solomon KR, Hanson ML (2015) Effects of atrazine on egg masses of the yellow-spotted salamander (Ambystoma maculatum) and its endosymbiotic alga (Oophila amblystomatis). Environ Pollut 206:324–331. doi: 10.1016/j.envpol.2015.07.017 CrossRefGoogle Scholar
  15. Baxter L, Brain RA, Lissemore L, Solomon KR, Hanson ML, Prosser RS (2016) Influence of light, nutrients, and temperature on the toxicity of atrazine to the algal species Raphidocelis subcapitata: implications for the risk assessment of herbicides. Ecotoxicol Environ Saf 132:250–259. doi: 10.1016/j.ecoenv.2016.06.022 CrossRefGoogle Scholar
  16. Beale DJ, Porter NA, Roddick FA (2009) A fast screening method for the presence of atrazine and other triazines in water using flow injection with chemiluminescent detection. Talanta 78(2):342–347. doi: 10.1016/j.talanta.2008.11.033 CrossRefGoogle Scholar
  17. Behki RM, Khan SU (1986) Degradation of atrazine by Pseudomonas: N-dealkylation and dehalogenation of atrazine and its metabolites. J Agric Food Chem 34(4):746–749. doi: 10.1021/jf00070a039 CrossRefGoogle Scholar
  18. Behki RM, Khan SU (1994) Degradation of atrazine, propazine, and simazine by Rhodococcus strain B-30. J Agric Food Chem 42(5):1237–1241. doi: 10.1021/jf00041a036 CrossRefGoogle Scholar
  19. Behki R, Topp E, Dick W, Germon P (1993) Metabolism of the herbicide atrazine by Rhodococcus strains. Appl Environ Microbiol 59(6):1955–1959Google Scholar
  20. Beilstein P, Cook AM, Hütter R (1981) Determination of seventeen s-triazine herbicides and derivatives by high-pressure liquid chromatography. J Agric Food Chem 29(6):1132–1135. doi: 10.1021/jf00108a008 CrossRefGoogle Scholar
  21. Belden JB, Lydy MJ (2001) Effects of atrazine on acetylcholinesterase activity in midges (Chironomus tentans) exposed to organophosphorus insecticides. Chemosphere 44(8):1685–1689. doi: 10.1016/S0045-6535(00)00519-1 CrossRefGoogle Scholar
  22. Belkhamssa N, Justino CI, Santos PS, Cardoso S, Lopes I, Duarte AC, Ksibi M (2016) Label-free disposable immunosensor for detection of atrazine. Talanta 146:430–434. doi: 10.1016/j.talanta.2015.09.015 CrossRefGoogle Scholar
  23. Bennett ER, Moore MT, Cooper CM, Smith S (2000) Method for the simultaneous extraction and analysis of two current use pesticides atrazine and lambda-cyhalothrin in sediment and aquatic plants. Bull Environ Contam Toxicol 64(6):825–833. doi: 10.1007/s001280000077 CrossRefGoogle Scholar
  24. Bethsass J, Colangelo A (2013) European Union bans atrazine while the United States negotiates continued use. Int J Occup Environ Health 12(3):260–267. doi: 10.1179/oeh.2006.12.3.260 CrossRefGoogle Scholar
  25. Bhushan C, Bhardwaj A, Misra SS (2013) State of pesticide regulations in India. Centre for Science and Environment, New Delhi, pp 1–72Google Scholar
  26. Blahova J, Plhalova L, Hostovsky M, Divisova L, Dobsikova R, Mikulikova I, Svobodova Z (2013) Oxidative stress responses in zebrafish Danio rerio after subchronic exposure to atrazine. Food Chem Toxicol 61:82–85. doi: 10.1016/j.fct.2013.02.041 CrossRefGoogle Scholar
  27. Bohn T, Cocco E, Gourdol L, Guignard C, Hoffmann L (2011) Determination of atrazine and degradation products in Luxembourgish drinking water: origin and fate of potential endocrine-disrupting pesticides. Food Addit Contam Part A 28(8):1041–1054. doi: 10.1080/19440049.2011.580012 CrossRefGoogle Scholar
  28. Bonansea RI, Amé MV, Wunderlin DA (2013) Determination of priority pesticides in water samples combining SPE and SPME coupled to GC–MS. A case study: Suquía River basin (Argentina). Chemosphere 90(6):1860–1869. doi: 10.1016/j.chemosphere.2012.10.007 CrossRefGoogle Scholar
  29. Borras N, Oliver R, Arias C, Brillas E (2010) Degradation of atrazine by electrochemical advanced oxidation processes using a boron-doped diamond anode. J Phys Chem A 114(24):6613–6621. doi: 10.1021/jp1035647 CrossRefGoogle Scholar
  30. Bouquard C, Ouazzani J, Prome J, Michel-Briand Y, Plesiat P (1997) Dechlorination of atrazine by a Rhizobium sp. Isolate. Appl Environ Microbiol 63(3):862–866Google Scholar
  31. Bringolf RB, Cope WG, Barnhart MC, Mosher S, Lazaro PR, Shea D (2007) Acute and chronic toxicity of pesticide formulations (atrazine chlorpyrifos and permethrin) to glochidia and juveniles of Lampsilis siliquoidea. Environ Toxicol Chem 26(10):2101–2107. doi: 10.1897/06-555R.1 CrossRefGoogle Scholar
  32. Bruzzoniti MC, Sarzanini C, Costantino G, Fungi M (2006) Determination of herbicides by solid phase extraction gas chromatography–mass spectrometry in drinking waters. Anal Chim Acta 578(2):241–249. doi: 10.1590/S0103-50532009000500017 CrossRefGoogle Scholar
  33. Brzezicki JM, Andersen ME, Cranmer BK, Tessari JD (2003) Quantitative identification of atrazine and its chlorinated metabolites in plasma. J Anal Toxicol 27(8):569–573. doi: 10.1093/jat/27.8.569 CrossRefGoogle Scholar
  34. Burken JG, Schnoor JL (1997) Uptake and metabolism of atrazine by poplar trees. Environ Sci Technol 31(5):1399–1406. doi: 10.1021/es960629v CrossRefGoogle Scholar
  35. Byzova NA, Zherdev AV, Zvereva EA, Dzantiev BB (2010) Immunochromatographic assay with photometric detection for rapid determination of the herbicide atrazine and other triazines in foodstuffs. J AOAC Int 93(1):36–43Google Scholar
  36. Cai B, Han Y, Liu B, Ren Y, Jiang S (2003) Isolation and characterization of an atrazine-degrading bacterium from industrial wastewater in China. Lett Appl Microbiol 36(5):272–276. doi: 10.1046/j.1472-765X.2003.01307.x CrossRefGoogle Scholar
  37. Campos-Pereira FD, Oliveira CA, Pigoso AA, Silva-Zacarin EC, Barbieri R, Spatti EF, Marin-Morales MA, Severi-Aguiar GD (2012) Early cytotoxic and genotoxic effects of atrazine on Wistar rat liver: a morphological, immunohistochemical, biochemical, and molecular study. Ecotoxicol Environ Saf 78:170–177. doi: 10.1016/j.ecoenv.2011.11.020 CrossRefGoogle Scholar
  38. Caoa W, Yanga B, Qia F, Qiana L, Lib J, Luc L, Qian X (2017) Simple and sensitive determination of atrazine and its toxic metabolites in environmental water by carboxyl modified polyacrylonitrile nanofibers mat-based solid-phase extraction coupled with liquid chromatography-diode array detection. J Chromatogr A 1491:16–26. doi: 10.1016/j.chroma.2017.02.035 CrossRefGoogle Scholar
  39. Caux PY, Ménard L, Kent RA (1996) Comparative study of the effects of MCPA, butylate, atrazine, and cyanazine on Selenastrum capricornutum. Environ Pollut 92(2):219–225. doi: 10.1016/0269-7491(95)00060-7 CrossRefGoogle Scholar
  40. Cerejeira MJ, Viana P, Batista S, Pereira T, Silva E, Valério MJ, Silva-Fernandes AM (2003) Pesticides in Portuguese surface and ground waters. Water Res 37(5):1055–1063. doi: 10.1016/S0043-1354(01)00462-6 CrossRefGoogle Scholar
  41. Chen D, Zhang Y, Miao H, Zhao Y, Wu Y (2015a) Determination of triazine herbicides in drinking water by dispersive micro solid phase extraction with ultrahigh-performance liquid chromatography–high-resolution mass spectrometric detection. J Agric Food Chem 63:9855–9862. doi: 10.1021/acs.jafc.5b03973 CrossRefGoogle Scholar
  42. Chen J, Huo J, Jia Z, Song Y, Li Y, Zhang L (2015b) Effects of atrazine on the proliferation and cytotoxicity of murine lymphocytes with the use of carboxyfluorescein succinimidyl ester-based flow cytometric approaches. Food Chem Toxicol 76:61–69. doi: 10.1016/j.fct.2014.11.026 CrossRefGoogle Scholar
  43. Chen SM, Lu N, Chen JY, Yang CY, Yeh YP, Feng TY, Shih Y, Kokulnathan T, Chen D (2017) Enhanced photocatalytic degradation of atrazine by platinized titanium dioxide under 352 nm irradiation. Water Sci Technol 75(5):1128–1137. doi: 10.2166/wst.2016.593 CrossRefGoogle Scholar
  44. Cheng G, Shapir N, Sadowsky MJ, Wackett LP (2005) Allophanate hydrolase, not urease, functions in bacterial cyanuric acid metabolism. Appl Environ Microbiol 71(8):4437–4445. doi: 10.1128/AEM.71.8.4437-4445
  45. Cheng M, Zeng G, Huang D, Lai C, Xu P, Zhang C, Zhu Y (2016) Degradation of atrazine by a novel Fenton-like process and assessment the influence on the treated soil. J Hazard Mater 312:184–191. doi: 10.1016/j.jhazmat.2016.03.033 CrossRefGoogle Scholar
  46. Christin MS, Gendron AD, Brousseau P, Ménard L, Marcogliese DJ, Cyr D, Fournier M (2003) Effects of agricultural pesticides on the immune system of Rana pipiens and on its resistance to parasitic infection. Environ Toxicol Chem 22(5):1127–1133. doi: 10.1002/etc.5620220522 CrossRefGoogle Scholar
  47. Cook AM, Hutter R (1984) Deethylsimazine: bacterial dechlorination, deamination, and complete degradation. J Agric Food Chem 32(3):581–585. doi: 10.1021/jf00123a040 CrossRefGoogle Scholar
  48. Cooper RL, Stoker TE, Tyrey L, Goldman JM, McElroy WK (2000) Atrazine disrupts the hypothalamic control of pituitary-ovarian function. Toxicol Sci 53(2):297–307. doi: 10.1093/toxsci/53.2.297 CrossRefGoogle Scholar
  49. Cooper RL, Laws SC, Das PC, Narotsky MG, Goldman JM, Lee Tyrey E, Stoker TE (2007) Atrazine and reproductive function: mode and mechanism of action studies. Birth Defects Res B Dev Reprod Toxicol 80(2):98–112. doi: 10.1002/bdrb.20110 CrossRefGoogle Scholar
  50. Correia FV, Macrae A, Guilherme LRG, Langenbach T (2007) Atrazine sorption and fate in a Ultisol from humid tropical Brazil. Chemosphere 67(5):847–854. doi: 10.1016/j.chemosphere.2006.11.03 CrossRefGoogle Scholar
  51. Cosselman KE, Navas-Acien A, Kaufman JD (2015) Environmental factors in cardiovascular disease. Nat Rev Cardiol 12(11):627–642. doi: 10.1038/nrcardio.2015.152 CrossRefGoogle Scholar
  52. Cox C (2001) Atrazine environmental contamination and ecological effects. J Pestic Reform 21(3):1–9. doi: 10.1016/j.chemosphere.2006.11.034 Google Scholar
  53. Dalluge J, Hankemeier T, Vreuls RJ, Udo A (1999) On-line coupling of immunoaffinity-based solid-phase extraction and gas chromatography for the determination of s-triazines in aqueous samples. J Chromatogr A 830(2):377–386. doi: 10.1016/S0021-9673(98)00932-7 CrossRefGoogle Scholar
  54. De Campos Ventura B, de Angelis DDF, Marin-Morales MA (2008) Mutagenic and genotoxic effects of the Atrazine herbicide in Oreochromis niloticus (Perciformes, Cichlidae) detected by the micronuclei test and the comet assay. Pestic Biochem Physiol 90(1):42–51. doi: 10.1016/j.pestbp.2007.07.009 CrossRefGoogle Scholar
  55. De Souza ML, Seffernick J, Martinez B, Sadowsky MJ, Wackett LP (1998) The atrazine catabolism genes atzABC are widespread and highly conserved. J Bacteriol 180(7):1951–1954Google Scholar
  56. Denovan LA, Lu C, Hines CJ, Fenske RA (2000) Saliva biomonitoring of atrazine exposure among herbicide applicators. Int Arch Occup Environ Health 73(7):457–462. doi: 10.1007/s004200000174 CrossRefGoogle Scholar
  57. Dornelles MF, Oliveira GT (2014) Effect of atrazine, glyphosate and quinclorac on biochemical parameters, lipid peroxidation and survival in bullfrog tadpoles (Lithobates catesbeianus). Arch Environ Contam Toxicol 66(3):415–429. doi: 10.1007/s00244-013-9967-4 CrossRefGoogle Scholar
  58. Dos-Santos KC, Martinez CB (2014) Genotoxic and biochemical effects of atrazine and Roundup®, alone and in combination, on the Asian clam Corbicula fluminea. Ecotoxicol Environ Saf 100:7–14. doi: 10.1016/j.ecoenv.2013.11.014 CrossRefGoogle Scholar
  59. Dutta A, Singh N (2013) Degradation of atrazine in mineral salts medium and soil using enrichment culture. J Environ Sci Health Part B 48(10):860–868. doi: 10.1080/03601234.2013.795845 CrossRefGoogle Scholar
  60. Dutta A, Vasudevan V, Nain L, Singh N (2016) Characterization of bacterial diversity in an atrazine degrading enrichment culture and degradation of atrazine, cyanuric acid and biuret in industrial wastewater. J Environ Sci Health B 51(1):24–34. doi: 10.1080/03601234.2015.1080487 CrossRefGoogle Scholar
  61. Eaton RW, Karns JS (1991) Cloning and analysis of s-triazine catabolic genes from Pseudomonas sp. strain NRRLB-12227. J Bacteriol 173(3):1215–1222CrossRefGoogle Scholar
  62. El Sebai T, Devers-Lamrani M, Changey F, Rouard N, Martin-Laurent F (2011) Evidence of atrazine mineralization in a soil from the Nile Delta: isolation of Arthrobacter sp. TES6, an atrazine-degrading strain. Int Biodeterior Biodegrad 65(8):1249–1255. doi: 10.1016/j.ibiod.2011.05.011 CrossRefGoogle Scholar
  63. Fan W, Yanase T, Morinaga H, Gondo S, Okabe T, Nomura M, Nawata H (2007) Atrazine-induced aromatase expression is SF-1 dependent: implications for endocrine disruption in wildlife and reproductive cancers in humans. Environ Health Perspect 115(5):720–727. doi: 10.1289/ehp.9758 CrossRefGoogle Scholar
  64. Ferrari R, Nilsson T, Arena R, Arlati P, Bartolucci G, Basla R, Fungi M (1998) Inter-laboratory validation of solid-phase microextraction for the determination of triazine herbicides and their degradation products at ng/l level in water samples. J Chromatogr A 795(2):371–376. doi: 10.1016/S0021-9673(97)00837-6 CrossRefGoogle Scholar
  65. Francisco F (2001) Physiological mechanism of herbicide action. In: Pessarakli M (ed) Handbook of plant and crop physiology. Marcel Dekker Inc., New York, pp 773–783. doi: 10.1201/9780203908426.fmatt Google Scholar
  66. Gao Y, Fang J, Zhang J, Ren L, Mao Y, Li B, Zhang M, Liu D, Du M (2011) The impact of the herbicide atrazine on growth and photosynthesis of seagrass, Zostera marina (L.), seedlings. Mar Pollut Bull 62(8):1628–1631. doi: 10.1016/j.marpolbul.2011.06.014 CrossRefGoogle Scholar
  67. Gao S, Wang Z, Zhang C, Jia L, Zhang Y (2016) Oral exposure to atrazine induces oxidative stress and calcium homeostasis disruption in spleen of mice. Oxid Med Cellular Longevity, Article ID 7978219. doi: 10.1155/2016/7978219
  68. Gely-Pernot A, Hao C, Becker E, Stuparevic I, Kervarrec C, Chalmel F, Primig M, Jégou B, Smagulova F (2015) The epigenetic processes of meiosis in male mice are broadly affected by the widely used herbicide atrazine. BMC Genom 16(1):885. doi: 10.6084/m9.figshare.c.3623711 CrossRefGoogle Scholar
  69. Gervais G, Brosillon S, Laplanche A, Helen C (2008) Ultra-pressure liquid chromatography–electrospray tandem mass spectrometry for multi-residue determination of pesticides in water. J Chromatogr A 1202(2):163–172. doi: 10.1016/j.foodchem.2010.10.017 CrossRefGoogle Scholar
  70. Getenga Z, Dorfler U, Iwobi A, Schmid M, Schroll R (2009) Atrazine and terbuthylazine mineralization by an Arthrobacter sp, isolated from a sugarcane-cultivated soil in Kenya. Chemosphere 77(4):534–539. doi: 10.1016/j,chroma,2008,07,006 CrossRefGoogle Scholar
  71. Giardina MC, Giardi MT, Buffone R (1979) Soil enrichment studies with atrazine long term atrazine effects on degradation and microbiological composition. Chemosphere 8(11–12):831–834. doi: 10.1016/0045-6535(79)90013-4 CrossRefGoogle Scholar
  72. Giardina MC, Giardi MT, Filacchioni G (1980) 4-Amino-2-chloro-1, 3, 5-triazine: a new metabolite of atrazine by a soil bacterium. Agric Biol Chem 44(9):2067–2072. doi: 10.1080/00021369.1980.10864288 Google Scholar
  73. Giardina MC, Giardi MT, Filacchioni G (1982) Atrazine metabolism by Nocardia: elucidation of initial pathway and synthesis of potential metabolites. Agric Biol Chem 46(6):1439–1445. doi: 10.1080/00021369.1982.10865301 Google Scholar
  74. Giardina MC, Giardi MT, Filacchioni G (1985) Chemical and biological degradation of primary metabolites of atrazine bv a Nocardia strain. Agric Biol Chem 49(6):1551–1558. doi: 10.1080/00021369.1985.10866949 Google Scholar
  75. Glæsner N, Bælum J, Strobel BW, Jacobsen CS (2014) Ageing of atrazine in manure amended soils assessed by bioavailability to Pseudomonas sp. strain ADP. Biodegradation 25(2):217–225. doi: 10.1007/s10532-013-9654-1 CrossRefGoogle Scholar
  76. Gojmerac T, Kniewald J (1989) Atrazine biodegradation in rats a model for mammalian metabolism. Bull Environ Contam Toxicol 43(2):199–206 (PMID: 2775886) CrossRefGoogle Scholar
  77. Gonzáleza NR, Gonzáleza EB, González-Castroa MJ, Mlpendurada MF (2016) On-line solid-phase extraction method for determination of triazine herbicides and degradation products in seawater by ultra-pressure liquid chromatography–tandem mass spectrometry. J Chromatogr A 1470:33–41. doi: 10.1016/j.chroma.2016.10.007 CrossRefGoogle Scholar
  78. González-Techera A, Zon MA, Molina PG, Fernández H, González-Sapienza G, Arévalo FJ (2015) Development of a highly sensitive noncompetitive electrochemical immunosensor for the detection of atrazine by phage anti-immunocomplex assay. Biosens Bioelectron 64:650–656. doi: 10.1016/j.bios.2014.09.046 CrossRefGoogle Scholar
  79. Graymore M, Stagnitti F, Allinson G (2001) Impacts of atrazine in aquatic ecosystems. Environ Int 26(7):483–495. doi: 10.1016/S0160-4120(01)00031-9 CrossRefGoogle Scholar
  80. Haiyan YUN, Center TEM (2015) Determination of organic phosphorous pesticides in water by LLE-GC-FPD. Shanxi Chem Ind 5:1–8Google Scholar
  81. Hassan NM, Nemat AMM (2005) Oxidative stress in herbicide treated broad bean and maize plants. Acta Physiol Plant 27(4A):429–438. doi: 10.1007/s11738-005-0047-x CrossRefGoogle Scholar
  82. Hayes TB, Collins A, Lee M, Mendoza M, Noriega N, Stuart AA, Vonk A (2002) Hermaphroditic demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc Natl Acad Sci 99(8):5476–5480. doi: 10.1073/pnas.082121499 CrossRefGoogle Scholar
  83. Hayes TB, Stuart AA, Mendoza M, Collins A, Noriega N, Vonk A, Johnston G, Liu R, Kpodzo D (2006) Characterization of atrazine-induced gonadal malformations in African clawed frogs (Xenopus laevis) and comparisons with effects of an androgen antagonist (cyproterone acetate) and exogenous estrogen (17beta-estradiol): support for the demasculinization/feminization hypothesis. Environ Health Perspect 114:134–141. doi: 10.1289/ehp.8067 CrossRefGoogle Scholar
  84. Helali S, Martelet C, Abdelghani A, Maaref MA, Jaffrezic-Renault N (2006) A disposable immunomagnetic electrochemical sensor based on functionalised magnetic beads on gold surface for the detection of atrazine. Electrochim Acta 51(24):5182–5186. doi: 10.1016/j.electacta.2006.03.086 CrossRefGoogle Scholar
  85. Hernandez F, Beltran J, Lopez FJ, Gaspar JV (2000) Use of solid-phase microextraction for the quantitative determination of herbicides in soil and water samples. Anal Chem 72(10):2313–2322. doi: 10.1021/ac991115s CrossRefGoogle Scholar
  86. Howe GE, Gillis R, Mowbray RC (1998) Effect of chemical synergy and larval stage on the toxicity of atrazine and alachlor to amphibian larvae. Environ Toxicol Chem 17(3):519–525. doi: 10.1002/etc.5620170324 CrossRefGoogle Scholar
  87. Huang H, Zhang S, Wu N, Luo L, Christie P (2009) Influence of Glomus etunicatum/Zea mays mycorrhiza on atrazine degradation, soil phosphatase and dehydrogenase activities, and soil microbial community structure. Soil Biol Biochem 41(4):726–734. doi: 10.1016/j.soilbio.2009.01.009 CrossRefGoogle Scholar
  88. Ikonen R, Kangas J, Savolainen H (1988) Urinary atrazine metabolites as indicators for rat and human exposure to atrazine. Toxicol Lett 44(1–2):109–112. doi: 10.1016/j.toxlet.2011.11.023 CrossRefGoogle Scholar
  89. Inoue-Choi M, Weyer PJ, Jones RR, Booth BJ, Cantor KP, Robien K, Ward MH (2016) Atrazine in public water supplies and risk of ovarian cancer among postmenopausal women in the Iowa Women’s Health Study. Occup Environ Med 73(9):582. doi: 10.1136/oemed-2016-103575 CrossRefGoogle Scholar
  90. Ionescu RE, Gondran C, Bouffier L, Jaffrezic-Renault N, Martelet C, Cosnier S (2010) Label-free impedimetric immunosensor for sensitive detection of atrazine. Electrochim Acta 55(21):6228–6232. doi: 10.1016/j.electacta.2009.11.029 CrossRefGoogle Scholar
  91. Iriel A, Novo JM, Cordon GB, Lagorio MG (2014) Atrazine and methyl viologen effects on chlorophyll-a fluorescence revisited—implications in photosystems emission and ecotoxicity assessment. J Photochem Photobiol 90(1):107–112. doi: 10.1111/php.12142 CrossRefGoogle Scholar
  92. Jestadi DB, Phaniendra A, Babji U, Shanmuganathan B, Periyasamy L (2014) Effects of atrazine on reproductive health of nondiabetic and diabetic male rats. Int Scholarly Res Notices 676013:1–7. doi: 10.1155/2014/676013 CrossRefGoogle Scholar
  93. Jia K, Eltzov E, Toury T, Marks RS, Ionescu RE (2012) A lower limit of detection for atrazine was obtained using bioluminescent reporter bacteria via a lower incubation temperature. Ecotoxicol Environ Saf 84:221–226. doi: 10.1016/j.ecoenv.2012.07.009 CrossRefGoogle Scholar
  94. Jiang Z, Ma B, Erinle KO, Cao B, Liu X, Ye S, Zhang Y (2016) Enzymatic antioxidant defense in resistant plant: pennisetum americanum (L.) K. Schum during long-term atrazine exposure. Pestic Biochem Physiol 133:59–66. doi: 10.1016/j.pestbp.2016.03.003 CrossRefGoogle Scholar
  95. Jin Y, Zhang X, Shu L, Chen L, Sun L, Qian H, Fu Z (2010) Oxidative stress response and gene expression with atrazine exposure in adult female zebrafish (Danio rerio). Chemosphere 78(7):846–852. doi: 10.1016/j.chemosphere.2009 CrossRefGoogle Scholar
  96. Jin Y, Wang L, Chen G, Lin X, Miao W, Fu Z (2014) Exposure of mice to atrazine and its metabolite diaminochlorotriazine elicits oxidative stress and endocrine disruption. Environ Toxicol Pharmacol 37(2):782–790. doi: 10.1016/j.etap.2014.02.014 CrossRefGoogle Scholar
  97. Jowa L, Howd R (2011) Should atrazine and related chlorotriazines be considered carcinogenic for human health risk assessment. J Environ Sci Health C 29(2):91–144. doi: 10.1080/10590501.2011.577681 CrossRefGoogle Scholar
  98. Kabra AN, Ji MK, Choi J, Kim JR, Govindwar SP, Jeon BH (2014) Toxicity of atrazine and its bioaccumulation and biodegradation in a green microalga Chlamydomonas mexicana. Environ Sci Pollut Res 21(21):12270–12278. doi: 10.1007/s11356-014-3157-4 CrossRefGoogle Scholar
  99. Kadian N, Gupta A, Satya S, Mehta RK, Malik A (2008) Biodegradation of herbicide (atrazine) in contaminated soil using various bioprocessed materials. Bioresour Technol 99(11):4642–4647. doi: 10.1016/j.biortech.2007.06.064 CrossRefGoogle Scholar
  100. Kaoutit ME, Bouchta D, Zejli H, Izaoumen N, Temsamani KR (2004) A simple conducting polymer-based biosensor for the detection of atrazine. Anal Lett 37(8):1671–1681. doi: 10.1081/AL-120037595 CrossRefGoogle Scholar
  101. Karlsson AS, Weihermüller L, Tappe W, Mukherjee S, Spielvogel S (2016) Field scale boscalid residues and dissipation half-life estimation in a sandy soil. Chemosphere 145:163–173. doi: 10.1016/j.chemosphere.2015.11.026 CrossRefGoogle Scholar
  102. Karns JS, Eaton RW (1997) Genes encoding s-triazine degradation are plasmid-borne in Klebsiella pneumoniae strain 99. J Agric Food Chem 45(3):1017–1022. doi: 10.1021/jf960464%2B CrossRefGoogle Scholar
  103. Kaur J, Singh KV, Boro R, Thampi KR, Raje M, Varshney GC, Suri CR (2007) Immunochromatographic dipstick assay format using gold nanoparticles labeled protein−hapten conjugate for the detection of atrazine. Environ Sci Technol 41(14):5028–5036. doi: 10.1021/es070194j CrossRefGoogle Scholar
  104. Kaur S, Kumar V, Chawla M, Cavallo L, Poater A, Upadhyay A (2017) Pesticides curbing soil fertility: effect of complexation of free metal ions. Front Chem 5:1–9. doi: 10.3389/fchem.2017.00043 CrossRefGoogle Scholar
  105. Khan A, Shah N, Khan MS, Ahmad MS, Farooq M, Adnan M, Yousafzai AM (2016a) Quantitative determination of lethal concentration Lc 50 of atrazine on biochemical parameters; total protein and serum albumin of freshwater fish grass carp (Ctenopharyngodon idella). Pol J Environ Stud 25(4):1555–1561. doi: 10.15244/pjoes/61849 CrossRefGoogle Scholar
  106. Khan A, Yousafzai AM, Shah N, Ahmad MS, Farooq M, Aziz F, Adnan M, Rizwan M, Jawad SM (2016b) Enzymatic profile a activity of grass carp (Ctenopharyngodon idella) after exposure to the pollutant named atrazine (Herbicide). Pol J Environ Stud 25(5):2003–2008. doi: 10.15244/pjoes/62821 CrossRefGoogle Scholar
  107. Khilji S (2011) Toxicity testing with green alga Pseudokirchneriella subcapitata.
  108. Khoshnood Z, Jamili S, Khodabandeh S (2015) Histopathological effects of atrazine on gills of Caspian kutum Rutilus frisii kutum fingerlings. Dis Aquat Org 113(3):227–234. doi: 10.3354/dao02850 CrossRefGoogle Scholar
  109. Kim JY, Mulchandani A, Chen W (2003) An immunoassay for atrazine using tunable immunosorbent. Anal Biochem 322(2):251–256. doi: 10.1016/j.ab.2003.08.009 CrossRefGoogle Scholar
  110. Kniewald J, Jakominic M, Tomljenovic A, Simic B, Romac P, Vranesic D, Kniewald Z (2000) Disorders of male reproductive tract under the influence of atrazine. J Appl Toxicol 20:61–68. doi: 10.1111/j.1349-7006.2005.00041.x CrossRefGoogle Scholar
  111. Komtchou S, Dirany A, Drogui P, Delegan N, Khakani MAE, Robert D, Lafrance P (2016) Degradation of atrazine in aqueous solution with electrophotocatalytic process using TiO2−x photoanode. Chemosphere 157:79–88. doi: 10.1016/j.chemosphere.2016.05.022 CrossRefGoogle Scholar
  112. Kong X, Jiang J, Ma J, Yang Y, Liu W, Liu Y (2016) Degradation of atrazine by UV/chlorine: efficiency, influencing factors, and products. Water Res 90:15–23. doi: 10.1016/j.watres.2015.11.068 CrossRefGoogle Scholar
  113. Konstantinou IK, Sakellarides TM, Sakkas VA, Albanis TA (2001) Photocatalytic degradation of selected s-triazine herbicides and organophosphorus insecticides over aqueous TiO2 suspensions. Environ Sci Technol 35(2):398–405. doi: 10.1021/es001271c CrossRefGoogle Scholar
  114. Kroon FJ, Hook SE, Jones D, Metcalfe S, Osborn HL (2014) Effects of atrazine on endocrinology and physiology in juvenile barramundi, Lates calcarifer (Bloch). Environ Toxicol Chem 33(7):1607–1614. doi: 10.1002/etc.2594 CrossRefGoogle Scholar
  115. Kuklenyik Z, Panuwet P, Jayatilaka NK, Pirkle JL, Calafat AM (2012) Two-dimensional high performance liquid chromatography separation and tandem mass spectrometry detection of atrazine and its metabolic and hydrolysis products in urine. J Chromatogr B 901:1–8. doi: 10.1016/j.jchromb.2012.05.028 CrossRefGoogle Scholar
  116. Kumar A, Singh N (2016) Atrazine and its metabolites degradation in mineral salts medium and soil using an enrichment culture. Environ Monit Assess 188(3):1–12. doi: 10.1007/s10661-016-5144-3 Google Scholar
  117. Kumar V, Upadhyay N, Singh S, Singh J, Kaur P (2013) Thin-layer chromatography: comparative estimation of soil’s atrazine. Curr World Environ 8(3):469–472. doi: 10.12944/CWE.8.3.17 CrossRefGoogle Scholar
  118. Kumar V, Upadhyay N, Kumar V, Sharma S (2015a) A review on sample preparation and chromatographic determination of acephate and methamidophos in different samples. Arab J Chem 8:624–631. doi: 10.1016/j.arabjc.2014.12.007 CrossRefGoogle Scholar
  119. Kumar V, Singh S, Singh J, Upadhyay N (2015b) Potential of plant growth promoting traits by bacteria isolated from heavy metal contaminated soils. Bull Environ Contam Toxicol 94:807–815. doi: 10.1007/s00128-015-1523-7 CrossRefGoogle Scholar
  120. Kumar V, Upadhyay N, Manhas A (2015c) Designing syntheses characterization computational study and biological activities of silver-phenothiazine metal complex. J Mol Struct 1099:135–140. doi: 10.1016/j.molstruc.2015.06.055 CrossRefGoogle Scholar
  121. Kumar V, Kumar V, Upadhyay N, Sharma S (2015d) Interactions of atrazine with transition metal ions in aqueous media: experimental and computational approach. 3 Biotech 5:791–798. doi: 10.1007/s13205-015-0281-x CrossRefGoogle Scholar
  122. Kumar V, Kumar V, Kaur S, Singh S, Upadhyay N (2016) Unexpected formation of N-phenyl-thiophosphorohydrazidic acid O, S-dimethyl ester from acephate: chemical biotechnical and computational study. 3 Biotech 6:1–11. doi: 10.1007/s13205-015-0313-6 CrossRefGoogle Scholar
  123. Kumar V, Singh S, Singh R, Upadhyay N, Singh J (2017) Design, synthesis, and characterization of 2,2-bis(2,4-dinitrophenyl)-2-(phosphonatomethylamino)acetate as a herbicidal and biological active agent. J Chem Biol 11:1–12. doi: 10.1007/s12154-017-0174-z Google Scholar
  124. Kungolos A, Samaras P, Kipopoulou AM, Zoumboulis A, Sakellaropoulos GP (1999) Interactive toxic effects of agrochemicals on aquatic organisms. Water Sci Tech 40(1):357–364Google Scholar
  125. Lang D, Criegee D, Grothusen A, Saalfrank RW, Böcker RH (1996) In vitro metabolism of atrazine, terbuthylazine, ametryne, and terbutryne in rats, pigs, and humans. Drug Metab Dispos 24(8):859–865Google Scholar
  126. Lee DH, Rhee YJ, Choi KS, Nam SE, Eom HJ, Rhee JS (2017) Sublethal concentrations of atrazine promote molecular and biochemical changes in the digestive gland of the Pacific oyster Crassostrea gigas. Toxicol Environ Health Sci 9(1):50–58. doi: 10.1007/s13530-017-0303-7 CrossRefGoogle Scholar
  127. Lewis SE, Brodie JE, Bainbridge ZT, Rohde KW, Davis AM, Masters BL, Schaffelke B (2009) Herbicides: a new threat to the Great Barrier Reef. Environ Pollut 157(8):2470–2484. doi: 10.1016/j.envpol.2009.03.006 (Epub 2009) CrossRefGoogle Scholar
  128. Li X, Wu T, Huang H, Zhang S (2012) Atrazine accumulation and toxic responses in maize (Zea mays). J Environ Sci 24(2):203–208. doi: 10.1016/S1001-0742(11)60718-3 CrossRefGoogle Scholar
  129. Lin J, Li HX, Qin L, Du ZH, Xia J, Li JL (2016a) A novel mechanism underlies atrazine toxicity in quails (Coturnix coturnix): triggering ionic disorder via disruption of ATPases. Oncotarget 7(51):83880. doi: 10.1016/j.envpol.2017.04.015 CrossRefGoogle Scholar
  130. Lin J, Li HX, Xia J, Li XN, Jiang XQ, Zhu SY, Ge J, Li JL (2016b) The chemopreventive potential of lycopene against atrazine-induced cardiotoxicity: modulation of ionic homeostasis. Sci Rep 6:24855. doi: 10.1038/srep24855 CrossRefGoogle Scholar
  131. Lin J, Zhao HS, Xiang LR, Xia J, Wang LL, Li XN, Li JL, Zhang Y (2016c) Lycopene protects against atrazine-induced hepatic ionic homeostasis disturbance by modulating ion-transporting ATPases. J Nutr Biochem 27:249–256. doi: 10.1016/j.jnutbio.2015.09.009 CrossRefGoogle Scholar
  132. Lioy PJ, Edwards RD, Freeman N, Gurunathan S, Pellizzari E, Adgate JL, Sexton K (2000) House dust levels of selected insecticides and a herbicide measured by the EL and LWW samplers and comparisons to hand rinses and urine metabolites. J Expo Sci Environ Epidemiol 10(4):327–340. doi: 10.1038/sj.jea.7500099 CrossRefGoogle Scholar
  133. Liu C, Yang F, Lu X, Huang F, Liu L, Yang C (2010) Isolation, identification and soil remediation of atrazine-degrading strain T3 AB1. Wei Sheng Wu Xue Bao. 50(12):1642–1650Google Scholar
  134. Liu R, Guan G, Wang S, Zhang Z (2011) Core-shell nanostructured molecular imprinting fluorescent chemosensor for selective detection of atrazine herbicide. Analyst 136(1):184–190. doi: 10.1039/C0AN00447B CrossRefGoogle Scholar
  135. Liu X, Li WJ, Li L, Yang Y, Mao LG, Peng Z (2014) A label-free electrochemical immunosensor based on gold nanoparticles for direct detection of atrazine. Sens Actuator B Chem 191:408–414. doi: 10.1016/j.snb.2013.10.033 CrossRefGoogle Scholar
  136. Lopez MA, Ortega F, Domínguez E, Katakis I (1998) Electrochemical immunosensor for the detection of atrazine. J Mol Recognit 11(1–6):178–181. doi: 10.1002/(SICI)1099-1352(199812)11:1/6<178:AID-JMR417>3.0 CrossRefGoogle Scholar
  137. Lua YC, Yang SN, Zhang JJ, Zhang JJ, Tana LR, Yang H (2013) A collection of glycosyltransferases from rice (Oryza sativa) exposed to atrazine. Gene 531(2):43–252. doi: 10.1016/j.gene.2013.09.004 Google Scholar
  138. Lydy MJ, Linck SL (2003) Assessing the impact of triazine herbicides on organophosphate insecticide toxicity to the earthworm Eisenia fetida. Arch Environ Contam Toxicol 45(3):343–349. doi: 10.1007/s00244-002-0218-y CrossRefGoogle Scholar
  139. Ma J, Wang S, Wang P, Ma L, Chen X, Xu R (2006) Toxicity assessment of 40 herbicides to the green alga Raphidocelis subcapitata. Ecotoxicol Environ Saf 63(3):456–462. doi: 10.1016/j.ecoenv.2004.12.001 CrossRefGoogle Scholar
  140. Ma K, Wu HY, Zhang B, He X, Li BX (2015) Neurotoxicity effects of atrazine-induced SH-SY5Y human dopaminergic neuroblastoma cells via microglial activation. Mol BioSyst 11(11):2915–2924. doi: 10.1039/C5MB00432B CrossRefGoogle Scholar
  141. Ma L, Chen S, Yuan J, Yang P, Liu Y, Stewart K (2017) Rapid biodegradation of atrazine by Ensifer sp. strain and its degradation genes. Int Biodeterior Biodegrad 116:133–140. doi: 10.1016/j.ibiod.2016.10.022 CrossRefGoogle Scholar
  142. Mahía J, Martín A, Carballas T, Díaz-Raviña M (2007) Atrazine degradation and enzyme activities in an agricultural soil under two tillage systems. Sci Total Environ 378(1):187–194. doi: 10.1016/j.scitotenv.2007.01.036 CrossRefGoogle Scholar
  143. Mahler BJ, Van Metre PC, Burley TE, Loftin KA, Meyer MT, Nowell LH (2017) Similarities and differences in occurrence and temporal fluctuations in glyphosate and atrazine in small Midwestern streams (USA) during the 2013 growing season. Sci Total Environ 579:149–158. doi: 10.1016/j.scitotenv.2016.10.236 CrossRefGoogle Scholar
  144. Mandelbaum RT, Allan DL, Wackett LP (1995) Isolation and characterization of a Pseudomonas sp. that mineralizes the s-triazine herbicide atrazine. Appl Environ Microbiol 61(4):1451–1457Google Scholar
  145. Marcus SR, Fiumera AC (2016) Atrazine exposure affects longevity, development time and body size in Drosophila melanogaster. J Insect Physiol 91:18–25. doi: 10.1016/j.jinsphys.2016.06.006 CrossRefGoogle Scholar
  146. Marecik R, Króliczak P, Czaczyk K, Białas W, Olejnik A, Cyplik P (2008) Atrazine degradation by aerobic microorganisms isolated from the rhizosphere of sweet flag (Acorus calamus L,). Biodegradation 19(2):293–301. doi: 10.1007/s10532-007-9135-5 CrossRefGoogle Scholar
  147. Martinez B, Tomkins J, Wackett LP, Wing R, Sadowsky MJ (2001) Complete nucleotide sequence and organization of the atrazine catabolic plasmid padp-1 from Pseudomonas sp. strain ADP. J Bacteriol 183(19):5684–5697. doi: 10.1128/JB.183.19.5684-5697.2001 CrossRefGoogle Scholar
  148. McGregor EB, Solomonb KR, Hanson ML (2008) Effects of planting system design on the toxicological sensitivity of Myriophyllum spicatum and Elodea canadensis to atrazine. Chemosphere 73(3):249–260. doi: 10.1016/j.chemosphere.2008.06.045 CrossRefGoogle Scholar
  149. Mei M, Huang X, Yang X, Luo Q (2016) Effective extraction of triazines from environmental water samples using magnetism-enhanced monolith-based in-tube solid phase microextraction. Anal Chim Acta 937:69–79. doi: 10.1016/j.aca.2016.08.001 CrossRefGoogle Scholar
  150. Mela M, Guiloski IC, Doria HB, Randi MAF, de Oliveira Ribeiro CA, Pereira L, de Assis HS (2013) Effects of the herbicide atrazine in neotropical catfish (Rhamdia quelen). Ecotoxicol Environ Saf 93:13–21. doi: 10.1016/j.ecoenv.2013.03.026 CrossRefGoogle Scholar
  151. Miensah ED, Fianko JR, Adu-Kumi S (2015) Assessment of lindane and atrazine residues in maize produced in ghana using gas chromatography-electron capture detector (GC-ECD) and gas chromatography-mass spectrometry (GC-MS). J Environ Prot Sci 6(10):1105. doi: 10.4236/jep.2015.610097 CrossRefGoogle Scholar
  152. Morales-Pérez AA, Arias C, Ramírez-Zamora RM (2016) Removal of atrazine from water using an iron photo catalyst supported on activated carbon. Adsorption 22(1):49–58. doi: 10.1007/s10450-015-9739-8 CrossRefGoogle Scholar
  153. Na Y, Sheng W, Yuan M, Li L, Liu B, Zhang Y, Wang S (2012) Enzyme-linked immunosorbent assay and immunochromatographic strip for rapid detection of atrazine in water samples. Microchim Acta 177(1–2):177–184. doi: 10.1007/s00604-012-0772-y CrossRefGoogle Scholar
  154. National Institute for Occupational Safety and Health, NIOSH (1998a) Criteria for a recommended standard. Occupational exposure to noise. Revised Criteria. USDHHS, PHS, CDC, NIOSH, publication no. 98–126, CincinnatiGoogle Scholar
  155. National Institute for Occupational Safety and Health, NIOSH (1998b) Chlorinated and organonitrogen herbicides (hand wash): method 9200, manual of analytical methods (NMAM), 4th ednGoogle Scholar
  156. Nawaz A, Razpotnik A, Rouimi P, de Sousa G, Cravedi JP, Rahmani R (2014) Cellular impact of combinations of endosulfan, atrazine, and chlorpyrifos on human primary hepatocytes and HepaRG cells after short and chronic exposures. Cell Biol Toxicol 30(1):17–29. doi: 10.1007/s10565-013-9266-x CrossRefGoogle Scholar
  157. Nélieu S, Kerhoas L, Einhorn J (2000) Degradation of atrazine into ammeline by combined ozone/hydrogen peroxide treatment in water. Environ Sci Technol 34(3):430–437. doi: 10.1021/es980540k CrossRefGoogle Scholar
  158. Nemat AMM, Hassan NM (2006) Changes of antioxidants levels in two maize lines following atrazine treatments. Plant Phys Biochem 44(4):202–210. doi: 10.1016/j.plaphy.2006.05.004 CrossRefGoogle Scholar
  159. Nousiainen AO, Björklöf K, Sagarkar S, Nielsen JL, Kapley A, Jørgensen KS (2015) Bioremediation strategies for removal of residual atrazine in the boreal groundwater zone. Appl Microbiol Biotechnol 99(23):10249–10259. doi: 10.1007/s00253-015-6828-2 CrossRefGoogle Scholar
  160. Nsibande SA, Dabrowski JM, van der Walt E, Venter A, Forbes PB (2015) Validation of the AGDISP model for predicting airborne atrazine spray drift: a South African ground application case study. Chemosphere 138:454–461. doi: 10.1016/j.chemosphere.2015.06.092 CrossRefGoogle Scholar
  161. Nwani CD, Nagpure NS, Kumar R, Kushwaha B, Kumar P, Lakra WS (2011) Mutagenic and genotoxic assessment of atrazine-based herbicide to freshwater fish Channa punctatus (Bloch) using micronucleus test and single cell gel electrophoresis. Environ Toxicol Pharmacol 31(2):314–322. doi: 10.1016/j.etap.2010.12.001 CrossRefGoogle Scholar
  162. Oka T, Tooi O, Mitsui N, Miyahara M, Ohnishi Y, Takase M, Iguchi T (2008) Effect of atrazine on metamorphosis and sexual differentiation in Xenopus laevis. Aquat Toxicol 87(4):215–226. doi: 10.1016/j.aquatox.2008.02.009 CrossRefGoogle Scholar
  163. Oluah NS, Obiezue RNN, Ochulor AJ, Onuoha E (2016) Toxicity and histopathological effect of atrazine (herbicide) on the earthworm Nsukkadrilus mbae under laboratory conditions. Anim Res Int 7(3):1287–1293Google Scholar
  164. Omotayo AE, Ilori MO, Obayori OS, Amund OO (2016) Influence of pH, temperature and nutrient addition on the degradation of atrazine by Nocardioides spp. isolated from agricultural soil in Nigeria. Malays J Microbiol. doi: 10.21161/mjm.81315 Google Scholar
  165. Omran NE, Salama WM (2016) The endocrine disruptor effect of the herbicides atrazine and glyphosate on Biomphalaria alexandrina snails. Toxicol Ind Health 32(4):656–665. doi: 10.1177/0748233713506959 CrossRefGoogle Scholar
  166. Orton F, Carr JA, Handy RD (2006) Effects of nitrate and atrazine on larval development and sexual differentiation in the northern leopard frog Rana pipiens. Environ Toxicol Chem 25(1):65–71. doi: 10.1897/05-136R.1 CrossRefGoogle Scholar
  167. Pardieu E, Cheap H, Vedrine C, Lazerges M, Lattach Y, Garnier F, Pernelle C (2009) Molecularly imprinted conducting polymer based electrochemical sensor for detection of atrazine. Anal Chim Acta 649(2):236–245. doi: 10.1016/j.aca.2009.07.029 CrossRefGoogle Scholar
  168. Peighambarzadeh SZ, Safi S, Shahtaheri SJ, Javanbakht M, Forushani AR (2011) Presence of atrazine in the biological samples of cattle and its consequence adversity in human health. Iran J Public Health 40(4):112Google Scholar
  169. Pensabene JW, Fiddler W, Donoghue DJ (2000) Supercritical fluid extraction of atrazine and other triazine herbicides from fortified and incurred eggs. J Agric Food Chem 48(5):1668–1672. doi: 10.1021/jf990841t CrossRefGoogle Scholar
  170. Piutti S, Semon E, Landry D, Hartmann A, Dousset S, Lichtfouse E, Martin-Laurent F (2003) Isolation and characterisation of Nocardioides sp, SP12 an atrazine-degrading bacterial strain possessing the gene trzN from bulk-and maize rhizosphere soil. FEMS Microbiol Lett 221(1):111–117. doi: 10.1016/S0378-1097(03)00168-X CrossRefGoogle Scholar
  171. Pogrmic K, Fa S, Dakic V, Kaisarevic S, Kovacevic R (2009) Atrazine oral exposure of peripubertal male rats downregulates steroidogenesis gene expression in Leydig cells. Toxicol Sci 111(1):189–197. doi: 10.1093/toxsci/kfp135 CrossRefGoogle Scholar
  172. Pommery J, Mathieu M, Mathieu D, Lhermitte M (1993) Atrazine in plasma and tissue following atrazine-aminotriazole-ethylene glycol-formaldehyde poisoning. J Toxicol Clin Toxicol 31(2):323–331. doi: 10.3109/15563659309000399 CrossRefGoogle Scholar
  173. Prasad R, Upadhyay N, Kumar V (2013) Simultaneous determination of seven carbamate pesticide residues in gram wheat lentil soybean fenugreek leaves and apple matrices. Microchem J 111:91–97. doi: 10.1016/j.microc.2012.12.014 CrossRefGoogle Scholar
  174. Qie Z, Ning B, Liu M, Bai J, Peng Y, Song N, Zhang Y (2013) Fast detection of atrazine in corn using thermometric biosensors. Analyst 138(17):5151–5156. doi: 10.1039/c3an00490b CrossRefGoogle Scholar
  175. Qingyan LI, Ying LI, Xikun ZHU, Baoli CAI (2008) Isolation and characterization of atrazine-degrading Arthrobacter sp, AD26 and use of this strain in bioremediation of contaminated soil. J Environ Sci 20(10):1226–1230. doi: 10.1111/lam.12584 CrossRefGoogle Scholar
  176. Radosevich M, Traina SJ, Hao YL, Tuovinen OH (1995) Degradation and mineralization of atrazine by a soil bacterial isolate. Appl Environ Microbiol 61(1):297–302Google Scholar
  177. Ralston-Hooper K, Hardy J, Hahn L, Ochoa-Acuña H, Lee LS, Mollenhauer R, Sepúlveda MS (2009) Acute and chronic toxicity of atrazine and its metabolites deethylatrazine and deisopropylatrazine on aquatic organisms. Ecotoxicol 18(7):899–905. doi: 10.1007/s10646-009-0351-0 CrossRefGoogle Scholar
  178. Raveton M, Ravanel P, Kaouadji M, Bastide J, Tissut M (1997) The chemical transformation of atrazine in corn seedlings. Pestic Biochem Physiol 58(3):199–208. doi: 10.1006/pest.1997.2303 CrossRefGoogle Scholar
  179. Rodriguez VM, Mendoza-Trejo MS, Hernandez-Plata I, Giordano M (2017) Behavioral effects and neuroanatomical targets of acute atrazine exposure in the male Sprague-Dawley rat. NeuroToxicol 58:161–170. doi: 10.1016/j.neuro.2016.12.006 CrossRefGoogle Scholar
  180. Rousseaux S, Hartmann A, Soulas G (2001) Isolation and characterisation of new Gram-negative and Gram-positive atrazine degrading bacteria from different French soils. FEMS Microbiol Ecol 36(2–3):211–222. doi: 10.1111/j.1574-6941.2001.tb00842.x CrossRefGoogle Scholar
  181. Sabik H, Jeannot R (1998) Determination of organonitrogen pesticides in large volumes of surface water by liquid–liquid and solid-phase extraction using gas chromatography with nitrogen–phosphorus detection and liquid chromatography with atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 818(2):197–207. doi: 10.1016/S0021-9673(98)00555-X CrossRefGoogle Scholar
  182. Santos TG, Martinez CB (2012) Atrazine promotes biochemical changes and DNA damage in a Neotropical fish species. Chemosphere 89(9):1118–1125. doi: 10.1016/j.chemosphere.2012.05.096 CrossRefGoogle Scholar
  183. Sawangjit S (2016) Isolation and characterization of atrazine-degrading Xanthomonas sp. ARB2 and its use in bioremediation of contaminated soils. Int J Environ Sci Technol 7(5):351. doi: 10.7763/IJESD.2016.V7.798 Google Scholar
  184. Schipper EF, Bergevoet AJH, Kooyman RPH, Greve J (1997) New detection method for atrazine pesticides with the optical waveguide Mach-Zehnder immunosensor. Anal Chim Acta 341(2–3):171–176. doi: 10.1016/S0003-2670(96)00622-8 CrossRefGoogle Scholar
  185. Schirhagl R, Latif U, Dickert FL (2011) Atrazine detection based on antibody replicas. J Mater Chem 21(38):14594–14598. doi: 10.1039/C1JM11576F CrossRefGoogle Scholar
  186. Schroeder JC, Olshan AF, Baric R, Dent GA, Weinberg CR, Yount B, Rothman N (2001) Agricultural risk factors for t (14; 18) subtypes of non-Hodgkin’s lymphoma. Epidemiology 12(6):701–709. doi: 10.1097/00001648-200111000-00020 CrossRefGoogle Scholar
  187. Schwab AP, Splichal PA, Banks MK (2006) Persistence of atrazine and alachlor in ground water aquifers and soil. Water Air Soil Pollut 171(1–4):203–235. doi: 10.1007/s11270-005-9037-2 CrossRefGoogle Scholar
  188. Seffernick JL, de Souza ML, Sadowsky MJ, Wackett LP (2001) Melamine deaminase and atrazine chlorohydrolase: 98 percent identical but functionally different. J Bacteriol 183(8):2405–2410. doi: 10.1128/JB.183.8.2405-2410.2001 CrossRefGoogle Scholar
  189. Seffernick JL, McTavish H, Osborne JP, de Souza ML, Sadowsky MJ, Wackett LP (2002) Atrazine chlorohydrolase from Pseudomonas sp, strain ADP is a metalloenzyme. Biochem 41(48):14430–14437. doi: 10.1021/bi020415s CrossRefGoogle Scholar
  190. Shamsedini N, Dehghani M, Nasseri S, Baghapour MA (2017) Photocatalytic degradation of atrazine herbicide with illuminated Fe3+–TiO2 nanoparticles. J Environ Health Sci Eng 15:7. doi: 10.1186/s40201-017-0270-6 CrossRefGoogle Scholar
  191. Shao ZQ, Behki R (1995) Cloning of the genes for degradation of the herbicides EPTC (S-ethyl dipropylthiocarbamate) and atrazine from Rhodococcus sp. strain TE1. Appl Environ Microbiol 61(5):2061–2065. doi: 10.1111/j.1472-765X.2009.02724.x Google Scholar
  192. Shao ZQ, Behki R (1996) Characterization of the expression of the thcB gene, coding for a pesticide-degrading cytochrome P-450 in Rhodococcus strains. Appl Environ Microbiol 62(2):403–407Google Scholar
  193. Shim WB, Yang ZY, Kim JY, Choi JG, Je JH, Kang SJ, Chung DH (2006) Immunochromatography using colloidal gold-antibody probe for the detection of atrazine in water samples. J Agric Food Chem 54(26):9728–9734. doi: 10.1021/jf0620057 CrossRefGoogle Scholar
  194. Shimabukuro RH, Swanson HR, Walsh WC (1970) Glutathione conjugation atrazine detoxication mechanism in corn. Plant Physiol 46(1):103–107. doi: 10.1104/pp.46.1.103 CrossRefGoogle Scholar
  195. Silveyra GR, Canosa IS, Rodríguez EM, Medesani DA (2017) Effects of atrazine on ovarian growth, in the estuarine crab Neohelice granulata. Comp Biochem Physiol C Toxicol Pharmacol 192:1–6. doi: 10.1016/j.cbpc.2016.10.011 CrossRefGoogle Scholar
  196. Simpkins JW, Swenberg JS, Weiss N, Brusick D, Eldridge JC, Stevens JT, Handa RJ, Hovey RC, Plant TM, Pastoor TP, Breckenridge CB (2011) Atrazine and breast cancer: a framework assessment of the toxicological and epidemiological evidence. Toxicol Sci 123(2):441–459. doi: 10.1093/toxsci/kfr176 CrossRefGoogle Scholar
  197. Singh S, Singh N, Kumar V, Datta S, Wani AB, Singh D, Singh K, Singh J (2016) Toxicity monitoring and biodegradation of the fungicide carbendazim. Environ Chem Lett 14:317–329. doi: 10.1007/s10311-016-0566-2 CrossRefGoogle Scholar
  198. Singh S, Kumar V, Upadhyay N, Singh J, Singla S, Datta S (2017) Efficient biodegradation of acephate by Pseudomonas pseudoalcaligenes PS-5 in the presence and absence of heavy metal ions [Cu(II) and Fe(III)], and humic acid. 3 Biotech 7:262. doi: 10.1007/s13205-017-0900-9 CrossRefGoogle Scholar
  199. Solomon KR, Giesy JP, LaPoint TW, Giddings JM, Richards RP (2013a) Ecological risk assessment of atrazine in North American surface waters. Environ Toxicol Chem 32(1):10–11. doi: 10.1002/etc.5620150105 CrossRefGoogle Scholar
  200. Solomon RDJ, Kumar A, Santhi VS (2013b) Atrazine biodegradation efficiency metabolite detection and trzD gene expression by enrichment bacterial cultures from agricultural soil. J Zhejiang Univ Sci B 14(12):1162–1172. doi: 10.1631/jzus.B1300001 CrossRefGoogle Scholar
  201. Soltanian S (2016) Effect of atrazine on immunocompetence of red-eared slider turtle (Trachemys scripta). J Immunotoxicol 13(6):804–809. doi: 10.1080/1547691X.2016.1195463 CrossRefGoogle Scholar
  202. Sopid S (2012) Characterization of novel atrazine degrading Klebsiella sp, isolated from Thai agricultural soil. World Acad Sci Eng Technol 68:1656–1658. doi: 10.7763/IJESD.2016.V7.798 Google Scholar
  203. Stoker TE, Guidici DL, Laws SC, Cooper RL (2002) The effects of atrazine metabolites on puberty and thyroid function in the male Wistar rat. Toxicol Sci 67(2):198–206. doi: 10.1093/toxsci/58.1.50 CrossRefGoogle Scholar
  204. Strategic Diagnostics Inc., SDI (1998) Environmental technology verification report, immunoassay kit. EPA/600/R-98/112Google Scholar
  205. Strategic Diagnostics Inc., SDI (1999) Water quality testing product profile: atrazine rapid assay. Strategic Diagnostics Inc, Newark, DelawareGoogle Scholar
  206. Strong LC, Rosendahl C, Johnson G, Sadowsky MJ, Wackett LP (2002) Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds. Appl Environ Microbiol 68(12):5973–5980. doi: 10.1128/AEM.68.12.5973-5980.2002 CrossRefGoogle Scholar
  207. Struthers JK, Jayachandran K, Moorman TB (1998) Biodegradation of atrazine by Agrobacterium radiobacter J14a and use of this strain in bioremediation of contaminated soil. Appl Environ Microbiol 64(9):3368–3375Google Scholar
  208. Su YH, Zhu YG (2006) Bioconcentration of atrazine and chlorophenols into roots and shoots of rice seedlings. Environ Pollut 139(1):32–39. doi: 10.1016/j.envpol.2005.04.035 CrossRefGoogle Scholar
  209. Suri CR, Kaur J, Gandhi S, Shekhawat GS (2008) Label-free ultra-sensitive detection of atrazine based on nanomechanics. Nanotech 19(23):235502. doi: 10.1088/0957-4484/19/23/235502 CrossRefGoogle Scholar
  210. Suzawa M, Ingraham HA (2008) The herbicide atrazine activates endocrine gene networks via non-steroidal NR5A nuclear receptors in fish and mammalian cells. PLoS ONE 3(5):e2117. doi: 10.1371/journal.pone.0002117 CrossRefGoogle Scholar
  211. Szigeti Z, Lehoczki E (2003) A review of physiological and biochemical aspects of resistance to atrazine and paraquat in Hungarian weeds. Pestic Manag Sci 59(4):451–458. doi: 10.1002/ps.647 CrossRefGoogle Scholar
  212. Tan F, Zhao C, Li L, Liu M, He X, Gao J (2015) Graphene oxide based in-tube solid-phase microextraction combined with liquid chromatography tandem mass spectrometry for the determination of triazine herbicides in water. J Sep Sci 38(13):2312–2319. doi: 10.1002/jssc.201570131/full CrossRefGoogle Scholar
  213. Tana LR, Lua YC, Zhanga JJ, Luo F, Yang H (2015) A collection of cytochrome P450 monooxygenase genes involved in modification and detoxification of herbicide atrazine in rice (Oryza sativa) plants. Ecotoxicol Environ Saf 119:25–34. doi: 10.1016/j.ecoenv.2015.04.035 CrossRefGoogle Scholar
  214. Tavera-Mendoza L, Ruby S, Brousseau P, Fournier M, Cyr D, Marcogliese D (2002) Response of the amphibian tadpole (Xenopus laevis) to atrazine during sexual differentiation of the testis. Environ Toxicol Chem 21(3):527–531. doi: 10.1002/etc.5620210309 CrossRefGoogle Scholar
  215. Topp E, Mulbry WM, Zhu H, Nour SM, Cuppels D (2000a) Characterization of s-triazine herbicide metabolism by a Nocardioides sp, isolated from agricultural soils. Appl Environ Microbiol 66(8):3134–3141. doi: 10.1128/AEM.66.8.3134-3141.2000 CrossRefGoogle Scholar
  216. Topp E, Zhu H, Nour SM, Houot S, Lewis M, Cuppels D (2000b) Characterization of an atrazine-degrading Pseudaminobacter sp, isolated from Canadian and French agricultural soils. Appl Environ Microbiol 66(7):2773–2782. doi: 10.1128/AEM.66.7.2773-2782.2000 CrossRefGoogle Scholar
  217. Tortolini C, Bollella P, Antiochia R, Favero G, Mazzei F (2016) Inhibition-based biosensor for atrazine detection. Sens Actuator B Chem 224:552–558. doi: 10.1016/j.snb.2015.10.095 CrossRefGoogle Scholar
  218. Tran HV, Reisberg S, Piro B, Nguyen TD, Pham MC (2013) Label-free electrochemical immunoaffinity sensor based on impedimetric method for pesticide detection. Electroanalysis 25(3):664–670. doi: 10.1002/elan.201200331/ CrossRefGoogle Scholar
  219. Udiković-Kolić N, Hršak D, Devers M, Klepac-Ceraj V, Petrić I, Martin-Laurent F (2010) Taxonomic and functional diversity of atrazine-degrading bacterial communities enriched from agrochemical factory soil. J Appl Microbiol 109(1):355–367. doi: 10.1111/j.1365-2672.2010.04700.x Google Scholar
  220. Vaishampayan PA, Kanekar PP, Dhakephalkar PK (2007) Isolation and characterization of Arthrobacter sp, strain MCM B-436 an atrazine-degrading bacterium from rhizospheric soil. Int Biodeterior Biodegrad 60(4):273–278. doi: 10.1016/j.ibiod.2007.05.001 CrossRefGoogle Scholar
  221. Victor-Costa AB, Bandeira SMC, Oliveira AG, Mahecha GAB, Oliveira CA (2010) Changes in testicular morphology and steroidogenesis in adult rats exposed to Atrazine. Reprod Toxicol 29(3):323–331. doi: 10.1016/j.reprotox.2009.12.006 CrossRefGoogle Scholar
  222. Vogel A, Jocque H, Sirot LK, Fiumera AC (2015) Effects of atrazine exposure on male reproductive performance in Drosophila melanogaster. J Insect Physiol 72:14–21. doi: 10.1016/j.jinsphys.2014.11.002 CrossRefGoogle Scholar
  223. Vonberg D, Vanderborght J, Cremer N, Pütz T, Herbst M, Vereecken H (2014) 20 years of long-term atrazine monitoring in a shallow aquifer in western Germany. Water Res 50:294–306. doi: 10.1016/j.watres.2013.10.032 CrossRefGoogle Scholar
  224. Wackett L, Sadowsky M, Martinez B, Shapir N (2002) Biodegradation of atrazine and related s-triazine compounds: from enzymes to field studies. Appl Microbiol Biotechnol 58(1):39–45. doi: 10.1007/s00253-001-0862-y CrossRefGoogle Scholar
  225. Wang Q, Xie S (2012) Isolation and characterization of a high-efficiency soil atrazine-degrading Arthrobacter sp, strain. Int Biodeterior Biodegrad 71:61–66. doi: 10.1371/journal.pone.0107270 CrossRefGoogle Scholar
  226. Wang L, Samac DA, Shapir N, Wackett LP, Vance CP, Olszewski NE, Sadowsky MJ (2005) Biodegradation of atrazine in transgenic plants expressing a modified bacterial atrazine chlorohydrolase (atzA) gene. Plant Biotech J 3(5):475–486. doi: 10.1111/j.1467-7652.2005.00138.x CrossRefGoogle Scholar
  227. Wang X, Zhu L, Wang J, Xie H, Liu W, Wang Q (2006) Study on enzymatic degradation of herbicide atrazine by bacteria HB-5. J Environ Sci 26(4):579–583Google Scholar
  228. Wang Q, Xie S, Hu R (2013) Bioaugmentation with Arthrobacter sp, strain DAT1 for remediation of heavily atrazine-contaminated soil. Int Biodeterior Biodegrad 77:63–67. doi: 10.1016/j.ibiod.2012.11.003 CrossRefGoogle Scholar
  229. Wang J, Zhu L, Wang Q, Wang J, Xie H (2014a) Isolation and characterization of atrazine mineralizing Bacillus subtilis strain HB-6. PLoS ONE 9(9):e107270. doi: 10.1371/journal.pone.0107270 CrossRefGoogle Scholar
  230. Wang L, Cao M, Ai Z, Zhang L (2014b) Dramatically enhanced aerobic atrazine degradation with Fe@ Fe2O3 core–shell nanowires by tetrapolyphosphate. Environ Sci Technol 48(6):3354–3362. doi: 10.1021/es404741x CrossRefGoogle Scholar
  231. Wang H, Liu Y, Li J, Lin M, Hu X (2016) Biodegradation of atrazine by Arthrobacter sp. C3, isolated from the herbicide-contaminated corn field. Int J Environ Sci Technol 13(1):257–262. doi: 10.1007/s13762-015-0860-8 CrossRefGoogle Scholar
  232. Weber GJ, Sepúlveda MS, Peterson SM, Lewis SS, Freeman JL (2013) Transcriptome alterations following developmental atrazine exposure in zebrafish are associated with disruption of neuroendocrine and reproductive system function, cell cycle, and carcinogenesis. Toxicol Sci 132(2):458–466. doi: 10.1093/toxsci/kft017 CrossRefGoogle Scholar
  233. White A (2016) Atrazine-a case of discrediting science. Sci Educ News 65(1):22. ISSN: 0048-9603Google Scholar
  234. Williams DBG, George MJ, Marjanovic L (2014) Rapid detection of atrazine and metolachlor in farm soils: gas chromatography-mass spectrometry-based analysis using the bubble-in-drop single drop microextraction enrichment method. J Agric Food Chem 62(31):7676–7681. doi: 10.1021/jf502411t CrossRefGoogle Scholar
  235. Wolf DC, Martin JP (1975) Microbial decomposition of ring-14C atrazine, cyanuric acid, and 2-chloro-4, 6-diamino-s-triazine. J Environ Qual 4(1):134–139. doi: 10.2134/jeq1975.00472425000400010032x CrossRefGoogle Scholar
  236. Wüst S, Hock B (1992) A sensitive enzyme immunoassay for the detection of atrazine based upon sheep antibodies. Anal Lett 25:1025–1037. doi: 10.1080/00032719208020056 CrossRefGoogle Scholar
  237. Xing H, Wang X, Sun G, Gao X, Xu S, Wang X (2012) Effects of atrazine and chlorpyrifos on activity and transcription of glutathione S-transferase in common carp (Cyprinus carpio L.). Environ Toxicol Pharmacol 33(2):233–244. doi: 10.1016/j.etap.2011.12.014 CrossRefGoogle Scholar
  238. Xing H, Li S, Wang X, Gao X, Xu S, Wang X (2013) Effects of atrazine and chlorpyrifos on the mRNA levels of HSP70 and HSC70 in the liver, brain, kidney and gill of common carp (Cyprinus carpio L.). Chemosphere 90(3):910–916. doi: 10.1016/j.chemosphere.2012.06.028 CrossRefGoogle Scholar
  239. Xu J, Zhang P, Mu H, Gao ML (2006) Toxicity effect of combined contamination of two herbicides to earthworm [J]. J Agro Environ Sci 5:018Google Scholar
  240. Yang C, Li Y, Zhang K, Wang X, Ma C, Tang H, Xu P (2010) Atrazine degradation by a simple consortium of Klebsiella sp, A1 and Comamonas sp, A2 in nitrogen enriched medium. Biodegradation 21(1):97–105. doi: 10.1007/s10532-009-9284-9 CrossRefGoogle Scholar
  241. Yang SONG, Jia ZC, Chen JY, Hu JX, Zhang LS (2014) Toxic effects of atrazine on reproductive system of male rats. Biomed Environ Sci 27(4):281–288. doi: 10.3967/bes2014.050 Google Scholar
  242. Yang J, Li J, Dong W, Mab J, Lia J (2016a) Influence of nitrite on the degradation of atrazine by ozonation. J Chem Technol Biotechnol 92(2):442–450. doi: 10.1002/jctb.5031 CrossRefGoogle Scholar
  243. Yang J, Lia J, Dong W, Ma J, Cao J, Li T, Li J, Gu J, Liu P (2016b) Study on enhanced degradation of atrazine by ozonation in thepresence of hydroxylamine. J Hazard Mat 316:110–121. doi: 10.1016/j.jhazmat.2016.04.078 CrossRefGoogle Scholar
  244. Yang M, Zhao X, Zheng S, Liu X, Jin B, Li H, Gan Y (2017) A new electrochemical platform for ultrasensitive detection of atrazine based on modified self-ordered Nb2O5 nanotube arrays. J Electroanal Chem 791:17–22. doi: 10.1016/j.jelechem.2017.03.009 CrossRefGoogle Scholar
  245. Yanze-Kontchou C, Gschwind N (1994) Mineralization of the herbicide atrazine as a carbon source by a Pseudomonas strain. Appl Environ Microbiol 60(12):4297–4302Google Scholar
  246. Yaqub S, Latif U, Dickert FL (2011) Plastic antibodies as chemical sensor material for atrazine detection. Sens Actuators B Chem 160(1):227–233. doi: 10.1016/j.electacta.2009.11.029 CrossRefGoogle Scholar
  247. Yilmaz E, Özgür E, Bereli N, Türkmen D, Denizli A (2017) Plastic antibody based surface plasmon resonance nanosensors for selective atrazine detection. Mater Sci Eng C 73:603–610. doi: 10.1016/j.msec.2016.12.090 CrossRefGoogle Scholar
  248. Yokley RA, Mayer LC, Rezaaiyan R, Manuli ME, Cheung MW (2000) Analytical method for the determination of cyromazine and melamine residues in soil using LC-UV and GC-MSD. J Agric Food Chem 48(8):3352–3358. doi: 10.1021/jf991231w CrossRefGoogle Scholar
  249. Zadeh AK, Sohrab AD, Alishahi M, Khazaei SH, Asgari HM (2016) Evaluation of acute and sub-lethal toxicity of herbicide, atrazine, on hematological parameters of Tor grypus. J Vet Res 71(3):295–301Google Scholar
  250. Zhang Y, Jiang Z, Cao B, Hu M, Wang Z, Dong X (2011) Metabolic ability and gene characteristics of Arthrobacter sp, strain DNS10 the sole atrazine-degrading strain in a consortium isolated from black soil. Int Biodeterior Biodegrad 65(8):1140–1144. doi: 10.1016/j.ibiod.2011.08.010 CrossRefGoogle Scholar
  251. Zhao P, Wang L, Zhou L, Zhang F, Kang S, Pan C (2012) Multi-walled carbon nanotubes as alternative reversed-dispersive solid phase extraction materials in pesticide multi-residue analysis with QuEChERS method. J Chromatogr A 1225:17–25. doi: 10.1016/j.chroma.2011.12.070 CrossRefGoogle Scholar
  252. Zhao X, Wang L, Ma F, Bai S, Yang J, Qi S (2017) Pseudomonas sp, ZXY-1 a newly isolated and highly efficient atrazine-degrading bacterium and optimization of biodegradation using response surface methodology. J Environ Sci 54:52–159. doi: 10.1016/j.jes.2016.06.010 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of BiotechnologyLovely Professional UniversityPhagwaraIndia
  2. 2.Department of ChemistryLovely Professional UniversityPhagwaraIndia
  3. 3.Department of ZoologyLovely Professional UniversityPhagwaraIndia
  4. 4.Department of MicrobiologyEternal UniversityBaru SahibIndia
  5. 5.Regional Ayurveda Research Institute for Drug DevelopmentGwaliorIndia

Personalised recommendations