Environmental Chemistry Letters

, Volume 16, Issue 1, pp 59–70 | Cite as

Encapsulation of bioactive compounds using nanoemulsions

Review
  • 190 Downloads

Abstract

Roughly one-third of the food produced in the world for human consumption every year, approximately 1.3 billion tonnes, gets lost or wasted, according to the Food and Agriculture Organization (FAO). There is therefore an urgent need for new methods to preserve food. Encapsulation using nanoemulsions is a powerful technique for the protection of food-grade ingredients including vitamins, lipids, antioxidants and antimicrobial agents. In general, nanoemulsion systems demonstrate superior characteristics over conventional emulsions. This is due to their smaller droplet size, transparent optical properties, higher physical stability against droplet destabilization factors and improved bioavailability of the entrapped active ingredients. In general, nanoemulsions have been prepared with different sizes of droplets. However, a droplet size higher than 200 nm is generally preferred for food applications. Here we review nanoemulsion compositions, types of active ingredients, applications in different types of food systems, toxicological and safety aspects, and future directions.

Keywords

Nanoemulsion Phytochemicals Toxicity Bioactives 

Notes

Acknowledgements

The authors would like to thank the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India for the financial support through a research grant (YSS/2015/000546) to Dr. Preetam Sarkar.

References

  1. Abbas S, Hayat K, Karangwa E, Bashari M, Zhang X (2013) An overview of ultrasound-assisted food-grade nanoemulsions. Food Eng Rev 5:139–157. doi: 10.1007/s12393-013-9066-3 CrossRefGoogle Scholar
  2. Aboalnaja KO, Yaghmoor S, Kumosani TA, McClements DJ (2016) Utilization of nanoemulsions to enhance bioactivity of pharmaceuticals, supplements, and nutraceuticals: nanoemulsion delivery systems and nanoemulsion excipient systems. Expert Opin Drug Deliv 13:1327–1336. doi: 10.1517/17425247.2016.1162154 CrossRefGoogle Scholar
  3. Aditya NP, Espinosa YG, Norton IT (2017) Encapsulation systems for the delivery of hydrophilic nutraceuticals: food application. Biotechnol Adv 35:450–457. doi: 10.1016/j.biotechadv.2017.03.012 CrossRefGoogle Scholar
  4. Ahmed K, Li Y, McClements DJ, Xiao H (2012) Nanoemulsion- and emulsion-based delivery systems for curcumin: encapsulation and release properties. Food Chem 132:799–807. doi: 10.1016/j.foodchem.2011.11.039 CrossRefGoogle Scholar
  5. Alfaro L, Hayes D, Boeneke C, Xu Z, Bankston D, Bechtel PJ, Sathivel S (2015) Physical properties of a frozen yogurt fortified with a nano-emulsion containing purple rice bran oil. LWT Food Sci Technol 62:1184–1191. doi: 10.1016/j.lwt.2015.01.055 CrossRefGoogle Scholar
  6. Artiga-Artigas M, Acevedo-Fani A, Martín-Belloso O (2017) Improving the shelf life of low-fat cut cheese using nanoemulsion-based edible coatings containing oregano essential oil and mandarin fiber. Food Control 76:1–12. doi: 10.1016/j.foodcont.2017.01.001 CrossRefGoogle Scholar
  7. Arunkumar R, Harish Prashanth KV, Baskaran V (2013) Promising interaction between nanoencapsulated lutein with low molecular weight chitosan: characterization and bioavailability of lutein in vitro and in vivo. Food Chem 141:327–337. doi: 10.1016/j.foodchem.2013.02.108 CrossRefGoogle Scholar
  8. Bertrand N, Leroux J-C (2012) The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Release 161:152–163. doi: 10.1016/j.jconrel.2011.09.098 CrossRefGoogle Scholar
  9. Borel T, Sabliov C (2014) Nanodelivery of bioactive components for food applications: types of delivery systems, properties, and their effect on adme profiles and toxicity of nanoparticles. Ann Rev Food Sci Technol 5:197–213. doi: 10.1146/annurev-food-030713-092354 CrossRefGoogle Scholar
  10. Chaiittianan R, Sripanidkulchai B (2014) Development of a nanoemulsion of phyllanthus emblica L. branch extract. Drug Dev Ind Pharm 40:1597–1606. doi: 10.3109/03639045.2013.838580 CrossRefGoogle Scholar
  11. Chang Y, McLandsborough L, McClements DJ (2012) Physical properties and antimicrobial efficacy of thyme oil nanoemulsions: influence of ripening inhibitors. J Agric Food Chem 60:12056–12063. doi: 10.1021/jf304045a CrossRefGoogle Scholar
  12. Chávarri M, Marañón I, Ares R, Ibáñez FC, Marzo F, del Carmen Villarán M (2010) Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int J Food Microbiol 142:185–189. doi: 10.1016/j.ijfoodmicro.2010.06.022 CrossRefGoogle Scholar
  13. Chen Q, Zhong F, Wen J, McGillivray D, Quek SY (2013) Properties and stability of spray-dried and freeze-dried microcapsules co-encapsulated with fish oil, phytosterol esters, and limonene. Dry Technol 31:707–716. doi: 10.1080/07373937.2012.755541 CrossRefGoogle Scholar
  14. da Silva BV, Barreira JC, Oliveira MBP (2016) Natural phytochemicals and probiotics as bioactive ingredients for functional foods: extraction, biochemistry and protected-delivery technologies. Trends Food Sci Technol 50:144–158. doi: 10.1016/j.tifs.2015.12.007 CrossRefGoogle Scholar
  15. Dasgupta N, Ranjan S, Mundra S, Ramalingam C, Kumar A (2016) Fabrication of food grade vitamin e nanoemulsion by low energy approach, characterization and its application. Int J Food Prop 19:700–708. doi: 10.1080/10942912.2015.1042587 CrossRefGoogle Scholar
  16. Davidov-Pardo G, McClements DJ (2015) Nutraceutical delivery systems: resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification. Food Chem 167:205–212. doi: 10.1016/j.foodchem.2014.06.082 CrossRefGoogle Scholar
  17. Djordjevic D, Cercaci L, Alamed J, McClements DJ, Decker EA (2008) Stability of citral in protein-and gum arabic-stabilized oil-in-water emulsions. Food Chem 106:698–705. doi: 10.1016/j.foodchem.2007.06.033 CrossRefGoogle Scholar
  18. Donsì F, Annunziata M, Sessa M, Ferrari G (2011) Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT Food Sci Technol 44:1908–1914. doi: 10.1016/j.lwt.2011.03.003 CrossRefGoogle Scholar
  19. Dorman H, Deans S (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316. doi: 10.1046/j.1365-2672.2000.00969.x CrossRefGoogle Scholar
  20. El Kinawy OS, Petersen S, Ulrich J (2012) Technological aspects of nanoemulsion formation of low-fat foods enriched with vitamin e by high-pressure homogenization. Chem Eng Technol 35:937–940. doi: 10.1002/ceat.201100608 CrossRefGoogle Scholar
  21. Ezhilarasi P, Karthik P, Chhanwal N, Anandharamakrishnan C (2013) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol 6:628–647. doi: 10.1007/s11947-012-0944-0 CrossRefGoogle Scholar
  22. Fathi M, Mozafari M-R, Mohebbi M (2012) Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci Technol 23:13–27. doi: 10.1016/j.tifs.2011.08.003 CrossRefGoogle Scholar
  23. Fathi M, Martín Á, McClements DJ (2014) Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends Food Sci Technol 39:18–39. doi: 10.1016/j.tifs.2014.06.007 CrossRefGoogle Scholar
  24. Gallucci M, Oliva M, Casero C, Dambolena J, Luna A, Zygadlo J, Demo M (2009) Antimicrobial combined action of terpenes against the food-borne microorganisms escherichia coli, staphylococcus aureus and bacillus cereus. Flavour Fragr J 24:348–354. doi: 10.1002/ffj.1948 CrossRefGoogle Scholar
  25. Given PS (2009) Encapsulation of flavors in emulsions for beverages. Curr Opin Colloid Interface Sci 14:43–47. doi: 10.1016/j.cocis.2008.01.007 CrossRefGoogle Scholar
  26. González MJ, Medina I, Maldonado OS, Lucas R, Morales JC (2015) Antioxidant activity of alkyl gallates and glycosyl alkyl gallates in fish oil in water emulsions: relevance of their surface active properties and of the type of emulsifier. Food Chem 183:190–196. doi: 10.1016/j.foodchem.2015.03.035 CrossRefGoogle Scholar
  27. Gudipati V, Sandra S, McClements DJ, Decker EA (2010) Oxidative stability and in vitro digestibility of fish oil-in-water emulsions containing multilayered membranes. J Agric Food Chem 58:8093–8099. doi: 10.1021/jf101348c CrossRefGoogle Scholar
  28. Guichard E (2002) Interactions between flavor compounds and food ingredients and their influence on flavor perception. Food Rev Int 18:49–70. doi: 10.1081/FRI-120003417 CrossRefGoogle Scholar
  29. Guichard E, Langourieux S (2000) Interactions between β-lactoglobulin and flavour compounds. Food Chem 71:301–308. doi: 10.1016/S0308-8146(00)00181-3 CrossRefGoogle Scholar
  30. Gulotta A, Saberi AH, Nicoli MC, McClements DJ (2014) Nanoemulsion-based delivery systems for polyunsaturated (ω-3) oils: formation using a spontaneous emulsification method. J Agric Food Chem 62:1720–1725. doi: 10.1021/jf4054808 CrossRefGoogle Scholar
  31. Gupta S, Kesarla R, Omri A (2013) Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. ISRN Pharm 2013:848043. doi: 10.1155/2013/848043 Google Scholar
  32. He W, Tan Y, Tian Z, Chen L, Hu F, Wu W (2011) Food protein-stabilized nanoemulsions as potential delivery systems for poorly water-soluble drugs: preparation, in vitro characterization, and pharmacokinetics in rats. Int J Nanomedicine 6:521–533. doi: 10.2147/IJN.S17282 Google Scholar
  33. Helgason T, Awad TS, Kristbergsson K, Decker EA, McClements DJ, Weiss J (2009) Impact of surfactant properties on oxidative stability of β-carotene encapsulated within solid lipid nanoparticles. J Agric Food Chem 57:8033–8040. doi: 10.1021/jf901682m CrossRefGoogle Scholar
  34. Hou R, Lin M, Wang M, Tzen J (2003) Increase of viability of entrapped cells of lactobacillus delbrueckii ssp. Bulgaricus in artificial sesame oil emulsions. J Dairy Sci 86:424–428. doi: 10.3168/jds.S0022-0302(03)73620-0 CrossRefGoogle Scholar
  35. Huang Q, Yu H, Ru Q (2010) Bioavailability and delivery of nutraceuticals using nanotechnology. J Food Sci 75:R50–R57. doi: 10.1111/j.1750-3841.2009.01457.x CrossRefGoogle Scholar
  36. Huo T, Ferruzzi MG, Schwartz SJ, Failla ML (2007) Impact of fatty acyl composition and quantity of triglycerides on bioaccessibility of dietary carotenoids. J Agric Food Chem 55:8950–8957. doi: 10.1021/jf071687a CrossRefGoogle Scholar
  37. Huq T, Khan A, Khan RA, Riedl B, Lacroix M (2013) Encapsulation of probiotic bacteria in biopolymeric system. Crit Rev Food Sci Nutr 53:909–916. doi: 10.1080/10408398.2011.573152 CrossRefGoogle Scholar
  38. Hyldgaard M, Mygind T, Meyer RL (2012) Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. doi: 10.3389/fmicb.2012.00012 Google Scholar
  39. Iyer C, Kailasapathy K (2005) Effect of co-encapsulation of probiotics with prebiotics on increasing the viability of encapsulated bacteria under in vitro acidic and bile salt conditions and in yogurt. J Food Sci 70:M18–M23. doi: 10.1111/j.1365-2621.2005.tb09041.x CrossRefGoogle Scholar
  40. Jo Y-J, Chun J-Y, Kwon Y-J, Min S-G, Hong G-P, Choi M-J (2015) Physical and antimicrobial properties of trans-cinnamaldehyde nanoemulsions in water melon juice. LWT Food Sci Technol 60:444–451. doi: 10.1016/j.lwt.2014.09.041 CrossRefGoogle Scholar
  41. Johnson EJ (2002) The role of carotenoids in human health. Nutr Clin Care 5:56–65. doi: 10.1046/j.1523-5408.2002.00004.x CrossRefGoogle Scholar
  42. Joung HJ, Choi MJ, Kim JT, Park SH, Park HJ, Shin GH (2016) Development of food-grade curcumin nanoemulsion and its potential application to food beverage system: antioxidant property and in vitro digestion. J Food Sci 81:N745–N753. doi: 10.1111/1750-3841.13224 CrossRefGoogle Scholar
  43. Jung EY, Hong KB, Son HS, Suh HJ, Park Y (2016) Effect of layer-by-layer (lbl) encapsulation of nano-emulsified fish oil on their digestibility ex vivo and skin permeability in vitro. Prev Nutr Food Sci 21:85. doi: 10.3746/pnf.2016.21.2.85 CrossRefGoogle Scholar
  44. Katsuda MS, McClements DJ, Miglioranza LH, Decker EA (2008) Physical and oxidative stability of fish oil-in-water emulsions stabilized with β-lactoglobulin and pectin. J Agric Food Chem 56:5926–5931. doi: 10.1021/jf800574 CrossRefGoogle Scholar
  45. Kim SO, Ha TV, Choi YJ, Ko S (2014) Optimization of homogenization-evaporation process for lycopene nanoemulsion production and its beverage applications. J Food Sci 79:N1604–N1610. doi: 10.1111/1750-3841.12472 CrossRefGoogle Scholar
  46. Klinkesorn U, Julian McClements D (2010) Impact of lipase, bile salts, and polysaccharides on properties and digestibility of tuna oil multilayer emulsions stabilized by lecithin–chitosan. Food Biophys 5:73–81. doi: 10.1007/s11483-010-9147-2 CrossRefGoogle Scholar
  47. Kobayashi I, Mukataka S, Nakajima M (2005) Effects of type and physical properties of oil phase on oil-in-water emulsion droplet formation in straight-through microchannel emulsification, experimental and cfd studies. Langmuir 21:5722–5730. doi: 10.1021/la050039n CrossRefGoogle Scholar
  48. Krasaekoopt W, Bhandari B, Deeth H (2003) Evaluation of encapsulation techniques of probiotics for yoghurt. Int Dairy J 13:3–13. doi: 10.1016/S0958-6946(02)00155-3 CrossRefGoogle Scholar
  49. Kumar DD, Mann B, Pothuraju R, Sharma R, Bajaj R, Minaxi (2016) Formulation and characterization of nanoencapsulated curcumin using sodium caseinate and its incorporation in ice cream. Food Funct 7:417–424. doi: 10.1039/c5fo00924c CrossRefGoogle Scholar
  50. Lane KE, Li W, Smith C, Derbyshire E (2014) The bioavailability of an omega-3-rich algal oil is improved by nanoemulsion technology using yogurt as a food vehicle. Int J Food Sci Technol 49:1264–1271. doi: 10.1111/ijfs.12455 CrossRefGoogle Scholar
  51. Lante A, Friso D (2013) Oxidative stability and rheological properties of nanoemulsions with ultrasonic extracted green tea infusion. Food Res Int 54:269–276. doi: 10.1016/j.foodres.2013.07.009 CrossRefGoogle Scholar
  52. Leong TSH, Wooster TJ, Kentish SE, Ashokkumar M (2009) Minimising oil droplet size using ultrasonic emulsification. Ultrason Sonochem 16:721–727. doi: 10.1016/j.ultsonch.2009.02.008 CrossRefGoogle Scholar
  53. Li Y, McClements DJ (2010) New mathematical model for interpreting ph-stat digestion profiles: impact of lipid droplet characteristics on in vitro digestibility. J Agric Food Chem 58:8085–8092. doi: 10.1021/jf101325m CrossRefGoogle Scholar
  54. Li M, Cui J, Ngadi MO, Ma Y (2015) Absorption mechanism of whey-protein-delivered curcumin using caco-2 cell monolayers. Food Chem 180:48–54. doi: 10.1016/j.foodchem.2015.01.132 CrossRefGoogle Scholar
  55. Liu S, Sun C, Xue Y, Gao Y (2016) Impact of ph, freeze-thaw and thermal sterilization on physicochemical stability of walnut beverage emulsion. Food Chem 196:475–485. doi: 10.1016/j.foodchem.2015.09.061 CrossRefGoogle Scholar
  56. Lohith Kumar D (2017) Designing and characterization of emulsion-based matrices for the encapsulation of bioactive oils using polysaccharides. Food Process Engineering, National Institute of Technology Rourkela, RourkelaGoogle Scholar
  57. Lohith Kumar D, Sarkar P (2017) Nanoemulsions for nutrient delivery in food. In: Ranjan S, Dasgupta NLichtfouse E (eds) Nanoscience in food and agriculture 5. Springer, Cham, pp 81–121CrossRefGoogle Scholar
  58. Lohith Kumar DH, Anush SM, JaganMohan Rao L, Sowbhagya HB (2017) Microwave impact on the flavour compounds of cinnamon bark (cinnamomum cassia) volatile oil and polyphenol extraction. Curr Microw Chem 4:115–121. doi: 10.2174/2213335602666151012193155 CrossRefGoogle Scholar
  59. Loveday SM, Singh H (2008) Recent advances in technologies for vitamin A protection in foods. Trends Food Sci Technol 19:657–668. doi: 10.1016/j.tifs.2008.08.002 CrossRefGoogle Scholar
  60. Lu W, Kelly AL, Miao S (2016) Emulsion-based encapsulation and delivery systems for polyphenols. Trends Food Sci Technol 47:1–9. doi: 10.1016/j.tifs.2015.10.015 CrossRefGoogle Scholar
  61. Mao Y, Julian McClements D (2012) Fabrication of reduced fat products by controlled heteroaggregation of oppositely charged lipid droplets. J Food Sci 77:E144–E152. doi: 10.1111/j.1750-3841.2012.02680.x CrossRefGoogle Scholar
  62. Martín MJ, Lara-Villoslada F, Ruiz MA, Morales ME (2015) Microencapsulation of bacteria: a review of different technologies and their impact on the probiotic effects. Innov Food Sci Emerg Technol 27:15–25. doi: 10.1016/j.ifset.2014.09.010 CrossRefGoogle Scholar
  63. Maswal M, Dar AA (2014) Formulation challenges in encapsulation and delivery of citral for improved food quality. Food Hydrocoll 37:182–195. doi: 10.1016/j.foodhyd.2013.10.035 CrossRefGoogle Scholar
  64. McClements DJ (2012) Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter 8:1719–1729. doi: 10.1039/C2SM06903B CrossRefGoogle Scholar
  65. McClements DJ (2015a) Enhancing nutraceutical bioavailability through food matrix design. Curr Opin Food Sci 4:1–6. doi: 10.1016/j.cofs.2014.12.008 CrossRefGoogle Scholar
  66. McClements DJ (2015b) Food emulsions: principles, practices, and techniques. CRC Press, Boca RatonCrossRefGoogle Scholar
  67. McClements DJ (2015c) Reduced-fat foods: the complex science of developing diet-based strategies for tackling overweight and obesity. Adv Nutr 6:338S–352S. doi: 10.3945/an.114.006999 CrossRefGoogle Scholar
  68. McClements DJ, Rao J (2011) Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr 51:285–330. doi: 10.1080/10408398.2011.559558 CrossRefGoogle Scholar
  69. McClements DJ, Li F, Xiao H (2015) The nutraceutical bioavailability classification scheme: classifying nutraceuticals according to factors limiting their oral bioavailability. Ann Rev Food Sci Technol 6:299–327. doi: 10.1146/annurev-food-032814-014043 CrossRefGoogle Scholar
  70. Mohanty D, Jena R, Choudhury PK, Pattnaik R, Mohapatra S, Saini MR (2015) Milk derived antimicrobial bioactive peptides: a review. Int J Food Prop 19:837–846. doi: 10.1080/10942912.2015.1048356 CrossRefGoogle Scholar
  71. Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P (2013) Biocompatibility of engineered nanoparticles for drug delivery. J Control Release 166:182–194. doi: 10.1016/j.jconrel.2012.12.013 CrossRefGoogle Scholar
  72. Nagao A, Kotake-Nara E, Hase M (2013) Effects of fats and oils on the bioaccessibility of carotenoids and vitamin e in vegetables. Biosci Biotechnol Biochem 77:1055–1060. doi: 10.1271/bbb.130025 CrossRefGoogle Scholar
  73. Otoni CG, Pontes SF, Medeiros EA, Soares NdF (2014) Edible films from methylcellulose and nanoemulsions of clove bud (syzygium aromaticum) and oregano (origanum vulgare) essential oils as shelf life extenders for sliced bread. J Agric Food Chem 62:5214–5219. doi: 10.1021/jf501055f CrossRefGoogle Scholar
  74. Ozturk B, McClements DJ (2016) Progress in natural emulsifiers for utilization in food emulsions. Curr Opin Food Sci 7:1–6. doi: 10.1016/j.cofs.2015.07.008 CrossRefGoogle Scholar
  75. Ozturk B, Argin S, Ozilgen M, McClements DJ (2015) Formation and stabilization of nanoemulsion-based vitamin e delivery systems using natural biopolymers: whey protein isolate and gum arabic. Food Chem 188:256–263. doi: 10.1016/j.foodchem.2015.05.005 CrossRefGoogle Scholar
  76. Palafox-Carlos H, Ayala-Zavala JF, González-Aguilar GA (2011) The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. J Food Sci 76:R6–R15. doi: 10.1111/j.1750-3841.2010.01957.x CrossRefGoogle Scholar
  77. Pinheiro AC, Lad M, Silva HD, Coimbra MA, Boland M, Vicente AA (2013) Unravelling the behaviour of curcumin nanoemulsions during in vitro digestion: effect of the surface charge. Soft Matter 9:3147–3154. doi: 10.1039/C3SM27527B CrossRefGoogle Scholar
  78. Pinheiro AC, Coimbra MA, Vicente AA (2016) In vitro behaviour of curcumin nanoemulsions stabilized by biopolymer emulsifiers—effect of interfacial composition. Food Hydrocolloids 52:460–467. doi: 10.1016/j.foodhyd.2015.07.025 CrossRefGoogle Scholar
  79. Piorkowski DT, McClements DJ (2014) Beverage emulsions: recent developments in formulation, production, and applications. Food Hydrocolloids 42:5–41. doi: 10.1016/j.foodhyd.2013.07.009 CrossRefGoogle Scholar
  80. Qian C, Decker EA, Xiao H, McClements DJ (2012a) Nanoemulsion delivery systems: influence of carrier oil on β-carotene bioaccessibility. Food Chem 135:1440–1447. doi: 10.1016/j.foodchem.2012.06.047 CrossRefGoogle Scholar
  81. Qian C, Decker EA, Xiao H, McClements DJ (2012b) Physical and chemical stability of β-carotene-enriched nanoemulsions: influence of ph, ionic strength, temperature, and emulsifier type. Food Chem 132:1221–1229. doi: 10.1016/j.foodchem.2011.11.091 CrossRefGoogle Scholar
  82. Rao J, McClements DJ (2011) Formation of flavor oil microemulsions, nanoemulsions and emulsions: influence of composition and preparation method. J Agric Food Chem 59:5026–5035. doi: 10.1021/jf200094m CrossRefGoogle Scholar
  83. Rao J, McClements DJ (2013) Optimization of lipid nanoparticle formation for beverage applications: influence of oil type, cosolvents, and cosurfactants on nanoemulsion properties. J Food Eng 118:198–204. doi: 10.1016/j.jfoodeng.2013.04.010 CrossRefGoogle Scholar
  84. Ru Q, Yu H, Huang Q (2010) Encapsulation of epigallocatechin-3-gallate (egcg) using oil-in-water (o/w) submicrometer emulsions stabilized by ι-carrageenan and β-lactoglobulin. J Agric Food Chem 58:10373–10381. doi: 10.1021/jf101798m CrossRefGoogle Scholar
  85. Saberi AH, Fang Y, McClements DJ (2015) Thermal reversibility of vitamin e-enriched emulsion-based delivery systems produced using spontaneous emulsification. Food Chem 185:254–260. doi: 10.1016/j.foodchem.2015.03.080 CrossRefGoogle Scholar
  86. Sah E, Sah H (2015) Recent trends in preparation of poly(lactide-co-glycolide) nanoparticles by mixing polymeric organic solution with antisolvent. J Nanomater 2015:1–22. doi: 10.1155/2015/794601 CrossRefGoogle Scholar
  87. Santos DT, Meireles MAA (2010) Carotenoid pigments encapsulation: fundamentals, techniques and recent trends. Open Chem Eng J. doi: 10.2174/1874123101004010042 Google Scholar
  88. Sarkar P, Lohith Kumar DH, Dhumal C, Panigrahi SS, Choudhary R (2015) Traditional and ayurvedic foods of indian origin. J Ethn Foods 2:97–109. doi: 10.1016/j.jef.2015.08.003 CrossRefGoogle Scholar
  89. Scalbert A, Williamson G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130:2073S–2085SCrossRefGoogle Scholar
  90. Shanmugam A, Ashokkumar M (2015) Characterization of ultrasonically prepared flaxseed oil enriched beverage/carrot juice emulsions and process-induced changes to the functional properties of carrot juice. Food Bioprocess Technol 8:1258–1266. doi: 10.1007/s11947-015-1492-1 CrossRefGoogle Scholar
  91. Silva HD, Cerqueira MÂ, Vicente AA (2012) Nanoemulsions for food applications: development and characterization. Food Bioprocess Technol 5:854–867. doi: 10.1007/s11947-011-0683-7 CrossRefGoogle Scholar
  92. Silva EK, Gomes MTMS, Hubinger MD, Cunha RL, Meireles MAA (2015) Ultrasound-assisted formation of annatto seed oil emulsions stabilized by biopolymers. Food Hydrocolloids 47:1–13. doi: 10.1016/j.foodhyd.2015.01.001 CrossRefGoogle Scholar
  93. Simion V, Stan D, Constantinescu CA, Deleanu M, Dragan E, Tucureanu MM, Gan AM, Butoi E, Constantin A, Manduteanu I, Simionescu M, Calin M (2016) Conjugation of curcumin-loaded lipid nanoemulsions with cell-penetrating peptides increases their cellular uptake and enhances the anti-inflammatory effects in endothelial cells. J Pharm Pharmacol 68:195–207. doi: 10.1111/jphp.12513 CrossRefGoogle Scholar
  94. Soong Y-Y, Barlow PJ (2004) Antioxidant activity and phenolic content of selected fruit seeds. Food Chem 88:411–417. doi: 10.1016/j.foodchem.2004.02.003 CrossRefGoogle Scholar
  95. Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A (2013) Nanostructured lipid carriers (nlc): a potential delivery system for bioactive food molecules. Innov Food Sci Emerg Technol 19:29–43. doi: 10.1016/j.ifset.2013.03.002 CrossRefGoogle Scholar
  96. Tian H, Li D, Xu T, Hu J, Rong Y, Zhao B (2017) Citral stabilization and characterization of nanoemulsions stabilized by a mixture of gelatin and tween 20 in an acidic system. J Sci Food Agric 97:2991–2998. doi: 10.1002/jsfa.8139 CrossRefGoogle Scholar
  97. Tønnesen HH (2002) Solubility, chemical and photochemical stability of curcumin in surfactant solutions. Studies of curcumin and curcuminoids, xxviii. Pharmazie 57:820–824Google Scholar
  98. Walker R, Decker EA, McClements DJ (2015) Development of food-grade nanoemulsions and emulsions for delivery of omega-3 fatty acids: opportunities and obstacles in the food industry. Food Funct 6:42–55. doi: 10.1039/c4fo00723a CrossRefGoogle Scholar
  99. Wooster TJ, Augustin MA (2006) Β-lactoglobulin–dextran maillard conjugates: their effect on interfacial thickness and emulsion stability. J Colloid Interface Sci 303:564–572. doi: 10.1016/j.jcis.2006.07.081 CrossRefGoogle Scholar
  100. Wooster TJ, Golding M, Sanguansri P (2008) Impact of oil type on nanoemulsion formation and ostwald ripening stability. Langmuir 24:12758–12765. doi: 10.1021/la801685v CrossRefGoogle Scholar
  101. Wulff-Pérez M, Torcello-Gómez A, Gálvez-Ruíz M, Martín-Rodríguez A (2009) Stability of emulsions for parenteral feeding: preparation and characterization of o/w nanoemulsions with natural oils and pluronic f68 as surfactant. Food Hydrocolloids 23:1096–1102. doi: 10.1016/j.foodhyd.2008.09.017 CrossRefGoogle Scholar
  102. Yang Y, Marshall-Breton C, Leser ME, Sher AA, McClements DJ (2012) Fabrication of ultrafine edible emulsions: comparison of high-energy and low-energy homogenization methods. Food Hydrocolloids 29:398–406. doi: 10.1016/j.foodhyd.2012.04.009 CrossRefGoogle Scholar
  103. Ye A, Cui J, Taneja A, Zhu X, Singh H (2009) Evaluation of processed cheese fortified with fish oil emulsion. Food Res Int 42:1093–1098. doi: 10.1016/j.foodres.2009.05.006 CrossRefGoogle Scholar
  104. Yu H, Huang Q (2012) Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. J Agric Food Chem 60:5373–5379. doi: 10.1021/jf300609p CrossRefGoogle Scholar
  105. Yu H, Huang Q (2013) Investigation of the cytotoxicity of food-grade nanoemulsions in caco-2 cell monolayers and hepg2 cells. Food Chem 141:29–33. doi: 10.1016/j.foodchem.2013.03.009 CrossRefGoogle Scholar
  106. Yuan Y, Gao Y, Zhao J, Mao L (2008) Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Res Int 41:61–68. doi: 10.1016/j.foodres.2007.09.006 CrossRefGoogle Scholar
  107. Yucel U, Elias RJ, Coupland JN (2013) Localization and reactivity of a hydrophobic solute in lecithin and caseinate stabilized solid lipid nanoparticles and nanoemulsions. J Colloid Interface Sci 394:20–25. doi: 10.1016/j.jcis.2012.12.042 CrossRefGoogle Scholar
  108. Zambrano-Zaragoza M, Mercado-Silva E, Gutiérrez-Cortez E, Cornejo-Villegas M, Quintanar-Guerrero D (2014a) The effect of nano-coatings with α-tocopherol and xanthan gum on shelf-life and browning index of fresh-cut “red delicious” apples. Innov Food Sci Emerg Technol 22:188–196. doi: 10.1016/j.ifset.2013.09.008 CrossRefGoogle Scholar
  109. Zambrano-Zaragoza ML, Gutiérrez-Cortez E, Del Real A, González-Reza RM, Galindo-Pérez MJ, Quintanar-Guerrero D (2014b) Fresh-cut red delicious apples coating using tocopherol/mucilage nanoemulsion: effect of coating on polyphenol oxidase and pectin methylesterase activities. Food Res Int 62:974–983. doi: 10.1016/j.foodres.2014.05.011 CrossRefGoogle Scholar
  110. Zou L, Zheng B, Zhang R, Zhang Z, Liu W, Liu C, Xiao H, McClements DJ (2016) Food matrix effects on nutraceutical bioavailability: Impact of protein on curcumin bioaccessibility and transformation in nanoemulsion delivery systems and excipient nanoemulsions. Food Biophys. doi: 10.1007/s11483-016-9425-8 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Food Process EngineeringNational Institute of Technology RourkelaRourkelaIndia

Personalised recommendations